Complex analysis, homework 7 due March 14th.

Exercise 1. [12 points] For each of the following arc C, sketch it and say if it is a simple arc, a simple closed curve, a smooth arc and/or a contour (that is for each one of the 4 previous properties, say if it holds or not). No justification required.
(1) Let C be the arc defined by

$$
z(t)= \begin{cases}2 t-i t & \text { if } 0 \leq t \leq 2 \\ 8-2 i-2 t & \text { if } 2 \leq t \leq 3 \\ 8-8 i+2(i-1) t & \text { if } 3 \leq t \leq 4\end{cases}
$$

(2) Let C be the arc defined by

$$
z(t)=t+i t^{2},-2 \leq t \leq 2
$$

(3) Let C be the arc defined by

$$
z(t)=1+e^{2 i t}, 0 \leq t \leq 2 \pi
$$

Exercise 2. [6 points] Let C be the arc defined by

$$
z(t)= \begin{cases}e^{-i t} & \text { if } 0 \leq t \leq \pi \\ t-1-\pi & \text { if } \pi \leq t \leq \pi+2\end{cases}
$$

and $f(z)=2 \operatorname{Re}(z)$. Calculate the following integral

$$
\int_{C} f(z) \mathrm{d} z
$$

Exercise 3. [6 points] Let C be the contour defined by $z(\theta)=e^{i \theta}, \frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$. Calculate the following integral

$$
\int_{C} \log (z) \mathrm{d} z
$$

Exercise 4. [6 points] Let C be the following arc (upper half circle centered at 0 with radius 3):

Prove the following bound

$$
\left|\int_{C} \frac{z^{2}-i z+2}{z+2} \mathrm{~d} z\right| \leq 42 \pi
$$

