
Complex analysis, homework 5, solutions

Exercise 1[5 points] Prove the function defined by f(z) = x2−y2+y+2+ix(2y−1)
for z = x+ iy is entire and find f ′(z).

Solution. We write f(z) = u(x, y) + iv(x, y) with u(x, y) = x2 − y2 + y + 2
and v(x, y) = 2xy − x. Note that u and v are two-variable polynomials so they
have partial derivatives everywhere and these partial derivatives are continuous
everywhere. Moreover,

ux(x, y) = 2x = vy(x, y)

uy(x, y) = −2y + 1 = −(2y − 1) = −vx(x, y).

Therefore, the Cauchy-Riemann Equations are satisfied everywhere. We can apply
the theorem in Section 23 to conclude that f is differentiable on C and therefore
entire. Moreover,

f ′(z) = ux(x, y) + ivx(x, y) = 2x+ i(2y − 1) = 2z − i.

Exetcise 2.[5 points] Compute the following quantities (that is express them in
x+ iy form):

(1) exp(2 + i 5π6 );

(2) log((−e+ ei)/
√
2) and Log((−e+ ei)/

√
2).

Solution.

(1) exp(2 + i 5π6 ) = e2 · ei 5π
6 = e2(cos( 5π6 ) + i sin( 5π6 )) = e2(−

√
3
2 + i 12 ) =

−
√
3
2 e2 + i e

2

2 .

(2) Let z = (−e+ ei)/
√
2. Then

|z| =

√(
−e√
2

)2

+

(
e√
2

)2

=

√
e2

2
+

e2

2
=

√
e2 = e.

Therefore, z = |z|(− 1√
2
+ i 1√

2
) = |z|(cos( 3π4 )+ i sin( 3π4 )) = e · ei 3π

4 . We get

log(z) = ln|z|+ i arg(z) = 1 + i

(
3π

4
+ 2kπ

)
, k ∈ Z.

Since 3π
4 ∈ (−π, π], we have Arg(z) = 3π

4 and therefore

Log(z) = 1 + i
3π

4
.

Execise 3.[3 points] Let z ∈ C. Prove that exp(z) = exp(z).

Solution. Write z = x+ iy, with x, y ∈ R. Then

exp(z) = ex · eiy = ex · eiy.
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Since ex is real, we have ex = ex. On the other hand, since eiy = cos y + i sin y,

eiy = cos y − i sin y = cos(−y) + i sin(−y) = e−iy (This is a useful formula!)

so we get

exp(z) = ex · e−iy = ex−iy = exp(z).

Exercise 4.[4 points] Solve the equation e2z + 1 = i.

Solution. Let z = x+ iy ∈ C. We have

e2z + 1 = i ⇔ e2z = −1 + i

⇔ e2z =
√
2ei

3π
4

⇔ e2x+i2y = eln
√
2+i 3π

4

⇔

{
2x = ln

√
2

2y = 3π
4 + 2kπ, for some k ∈ Z

⇔

{
x = 1

4 ln 2

y = 3π
8 + kπ, for some k ∈ Z

⇔ z =
1

4
ln 2 + i

(
3π

8
+ kπ

)
, for some k ∈ Z.

So the set of solutions to the equation is { 1
4 ln 2 + i( 3π8 + kπ) : k ∈ Z}.

Exercise 5.[6 points] Prove that

(1) Log((1− i)2) = 2Log(1− i);

(2) Log((1 + i
√
3)4) ̸= 4Log(1 + i

√
3).

Solution.

(1) First note that 1 − i =
√
2e−iπ

4 , where −π
4 is its principal argument. So

we have

Log(1− i) = ln
√
2− i

π

4
=

1

2

(
ln 2− i

π

2

)
.

Moreover, (1 − i)2 = (
√
2e−iπ

4 )2 = 2e−iπ
2 , where −π

2 is its principal argu-
ment. So we have

Log((1− i)2) = ln 2− i
π

2
.

This proves that Log((1− i)2) = 2Log(1− i).

(2) First note that 1 + i
√
3 = 2( 12 + i

√
3
2 ) = 2ei

π
3 , where π

3 is its principal
argument. Therefore,

Log(1 + i
√
3) = ln 2 + i

π

3

Moreover, (1 + i
√
3)4 = 24ei

4π
3 = 24e−i 2π

3 , where − 2π
3 is its principal

argument. So we get

Log((1 + i
√
3)4) = ln(24)− i

2π

3
= 4 ln 2− i

2π

3
̸= 4 ln 2 + i

4π

3
= 4Log(1 + i

√
3).

Exercise 6.[7 points] Recall that for any z ̸= 0, we define Log(z) = ln|z|+iArg(z).
Let D = {z ∈ C : Im(z) > 0}.
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(1) Using a geometric argument, express Arg(z) for z = x + iy ∈ D in terms
of cos−1, x and y. Explain why this formula does not work for all z ̸= 0.

(2) Using the theorem of Section 23, prove that Log is analytic on D and that
Log′(z) = 1/z for any z ∈ D.

Reminder:
d

dt
cos−1(t) = − 1√

1− t2
.

Solution.

(1) Let z ̸= 0. Write z = x + iy = reiθ, with r > 0 and θ ∈ (−π, π] (so that
θ = Arg(z)). Then x = r cos θ and therefore cos θ = x

r (this is always true).
Now assume that z ∈ D. In that case θ ∈ (0, π), so we have (because

cos : (0, π) → (−1, 1) is bijective with inverse function arccos)

cos θ =
x

r
⇔ θ = arccos

x

r
⇔ Arg(z) = arccos

(
x√

x2 + y2

)
.

This formula is not true if z is in the lower half plane, because then θ ∈
(−π, 0), but the function arccos only takes values in [0, π].

x

y

θ

r

z

(2) We write Log(z) = u(x, y) + iv(x, y) with

u(x, y) = ln(
√
x2 + y2) =

1

2
ln(x2 + y2)

v(x, y) = arccos

(
x√

x2 + y2

)
Note that u and v have partial derivatives everywhere inD: for u, note that
x2 + y2 is always positive and ln is differentiable on (0,∞), and for v note

that, since x2 + y2 is always positive, x/
√
x2 + y2 has partial derivatives

and x/
√
x2 + y2 takes values only in (0, 1), where arccos is differentiable.

Since D is open, for any point in D, the partial derivatives exist in a
neighborhood of this point (because there is a neighborhood of this point
included in D).

The partial derivatives of u are

ux(x, y) =
1

2

2x

x2 + y2
=

x

x2 + y2

uy(x, y) =
y

x2 + y2
.
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The partial derivatives of v are

vx(x, y) = arccos′

(
x√

x2 + y2

)
· ∂

∂x

(
x√

x2 + y2

)
=

−1√
1− x2

x2+y2

·

√
x2 + y2 − x 2x

2
√

x2+y2

x2 + y2

=
−1√

y2

x2+y2

· (x
2 + y2)− x2

(x2 + y2)3/2
=

−
√
x2 + y2

y
· y2

(x2 + y2)3/2
=

−y

x2 + y2

vy(x, y) = arccos′

(
x√

x2 + y2

)
· ∂

∂y

(
x√

x2 + y2

)
=

−1√
1− x2

x2+y2

·
−x 2y

2
√

x2+y2

x2 + y2

=
1√
y2

x2+y2

· xy

(x2 + y2)3/2
=

x

x2 + y2
.

Therefore, note that the Cauchy-Riemann Equations are satisfied at any
point in D. Finally note that these partial derivatives are continuous on
D, because x2 + y2 is never 0. So, we can apply the theorem in Section 23
to conclude that Log is differentiable on D. Moreover,

Log′(z) = ux(x, y) + ivx(x, y) =
x

x2 + y2
+ i

−y

x2 + y2
=

x− iy

|z|2
=

z

zz
=

1

z
.


