Complex analysis, homework 5, solutions

Exercise 1[5 points] Prove the function defined by f(z) = 2?2 —y?+y+2+ix(2y—1)
for z = x + 4y is entire and find f'(2).

Solution. We write f(z) = u(x,y) + iv(x,y) with u(z,y) = 22 —y> +y + 2
and v(x,y) = 2zy — z. Note that v and v are two-variable polynomials so they
have partial derivatives everywhere and these partial derivatives are continuous
everywhere. Moreover,

'U/a:(xa y) =2z = Uy<x7y)
uy(z,y) = =2y +1= -2y — 1) = —ve(2,y).
Therefore, the Cauchy-Riemann Equations are satisfied everywhere. We can apply

the theorem in Section 23 to conclude that f is differentiable on C and therefore
entire. Moreover,

F(2) = ugp(z,y) + ivg(x,y) =20 +i(2y — 1) = 22 — .

Exetcise 2.[5 points] Compute the following quantities (that is express them in
x + iy form):
(1) exp(2+ i%”);
(2) log((—e + ei)/+/2) and Log((—e + ei)/V/2).
Solution.
(1) exp(2 + i%’;) =e?- ¢
—@eQ +i5.

(2) Let z = (—e +ei)/v/2. Then
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Therefore, z = |z|(—% +z%) = [z|(cos(“F) +isin(f)) = e-e'a . We get

T = e*(cos(3F) + isin(3F)) = 62(—§ +i3) =

log(z) = In|z| +iarg(z) =141 <?Zr + 2k7r> , kel
Since 2 € (—m, m], we have Arg(z) = 2* and therefore
3
Log(z) =1+ z%

Execise 3.[3 points] Let z € C. Prove that exp(z) = exp(z).

Solution. Write z = x + iy, with z,y € R. Then

exp(z) = €% - e = e% - ey,
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Since e® is real, we have e = . On the other hand, since ¥ = cosy + isiny,
€Y = cosy — isiny = cos(—y) +isin(—y) = e~ (This is a useful formula!)

so we get

exp(z) = e e W = "W = exp(Z).

Exercise 4.[4 points] Solve the equation 2 + 1 = 1.

Solution. Let z = z + iy € C. We have
e +l=i & e¥*=-1+i
& €2 =12l

=

= ian

e
=
{2y_ 3jf+2k7r, for some k € Z
x
y:%“+k7r, for some k € Z

1 3
& z:ln2+i<87r+k7r), for some k € Z.

e

So the set of solutions to the equation is {In2+ (3 + kn) : k € Z}.
Exercise 5.[6 points| Prove that
(1) Log((1 —)*) = 2Log(1 — i)
(2) Log((1+iv3)*) # 4Log(1 +iv3).
Solution.
(1) First note that 1 —i = v/2e~"%, where —7 is its principal argument. So
we have

1
Log(1 — i) :1n\/§—zg =3 (mz-%).

Moreover, (1 —i)? = (v2e~7%)? = 2¢~'%, where —7 is its principal argu-
ment. So we have

Log((1 —)?) = In2 —ig.

This proves that Log((1 —4)?) = 2 Log(1 — i).
(2) First note that 1 +iv3 = 2( + z?) = 2¢'3, where Z is its principal
argument. Therefore,

Log(l +iV3) =In2+ zg

Moreover, (1 + iv/3)* = 2l = 24615 where —%” is its principal
argument. So we get

2 2 4
Log((1 +iV3)*) = In(2*) — zg =4In2 - zg £4In2 + z% = 4Log(1 +iV3).

Exercise 6.[7 points] Recall that for any z # 0, we define Log(z) = In|z|+1i Arg(z).
Let D = {z € C: Im(z) > 0}.
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(1) Using a geometric argument, express Arg(z) for z = z + iy € D in terms
of cos™!, x and y. Explain why this formula does not work for all z # 0.

(2) Using the theorem of Section 23, prove that Log is analytic on D and that
Log'(z) = 1/z for any 2 € D.

1
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d
Reminder: % cos H(t) = —

Solution.
(1) Let z # 0. Write z = z + iy = 7e?, with » > 0 and § € (—7, 7] (so that
0 = Arg(z)). Then z = r cos ¢ and therefore cos § = £ (this is always true).
Now assume that z € D. In that case § € (0,7), so we have (because
cos: (0,7) = (—1,1) is bijective with inverse function arccos)

== = 0 s A (2) -
cosf = — = arccos — rg(z) = arccos | ——— | .
r r & VP
This formula is not true if z is in the lower half plane, because then 6 €
(—m,0), but the function arccos only takes values in [0, 7.

(2) We write Log(z) = u(z,y) + iv(z,y) with

u(,y) = (Va2 T 5P) = 5 Ina? +17)

x
v(z,y) = arccos | ——
/x2 + y2

Note that v and v have partial derivatives everywhere in D: for u, note that
22 4+ y? is always positive and In is differentiable on (0, 00), and for v note
that, since 2 + y? is always positive, z/y/22 + y2 has partial derivatives
and z//x? + y? takes values only in (0,1), where arccos is differentiable.
Since D is open, for any point in D, the partial derivatives exist in a
neighborhood of this point (because there is a neighborhood of this point
included in D).

The partial derivatives of u are
1 2z T
Ua:(xay) = §$2+y2 = x2—|—y2
_ Y
2 +y?

uy (2, y)



The partial derivatives of v are
2 2 g 2z
' ’ 4 x —1 Vet by e
v (,y) = arccos’ [ ————— | - — | ——— | = '
Vi +y?) 0x\ /2?12 = PR

-1 @4y -2 ety oy oy

= y2 : ($2+y2)3/2 - y (x2+y2)3/2 - x2—|—y2
I2+y2
2
9 ~1 s
e =wr () 5 (o) o =
Va2 +y2 ) 0y \ /a2 +y? 2, e
_ 1 Ty oz
= 2 (z2 +42)3/2 — 2242

22 +4y2
Therefore, note that the Cauchy-Riemann Equations are satisfied at any
point in D. Finally note that these partial derivatives are continuous on
D, because x2 + y? is never 0. So, we can apply the theorem in Section 23
to conclude that Log is differentiable on D. Moreover,

—y T—iy Z 1

:'L. .
+1 = — - -
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LOg/(Z) - ux(xay) + Z’Um(xay) =



