Complex analysis, homework 5, solutions

Exercise 1 [5 points] Prove the function defined by $f(z)=x^{2}-y^{2}+y+2+i x(2 y-1)$ for $z=x+i y$ is entire and find $f^{\prime}(z)$.

Solution. We write $f(z)=u(x, y)+i v(x, y)$ with $u(x, y)=x^{2}-y^{2}+y+2$ and $v(x, y)=2 x y-x$. Note that u and v are two-variable polynomials so they have partial derivatives everywhere and these partial derivatives are continuous everywhere. Moreover,

$$
\begin{aligned}
& u_{x}(x, y)=2 x=v_{y}(x, y) \\
& u_{y}(x, y)=-2 y+1=-(2 y-1)=-v_{x}(x, y)
\end{aligned}
$$

Therefore, the Cauchy-Riemann Equations are satisfied everywhere. We can apply the theorem in Section 23 to conclude that f is differentiable on \mathbb{C} and therefore entire. Moreover,

$$
f^{\prime}(z)=u_{x}(x, y)+i v_{x}(x, y)=2 x+i(2 y-1)=2 z-i
$$

Exetcise 2.[5 points] Compute the following quantities (that is express them in $x+i y$ form):
(1) $\exp \left(2+i \frac{5 \pi}{6}\right)$;
(2) $\log ((-e+e i) / \sqrt{2})$ and $\log ((-e+e i) / \sqrt{2})$.

Solution.

(1) $\exp \left(2+i \frac{5 \pi}{6}\right)=e^{2} \cdot e^{i \frac{5 \pi}{6}}=e^{2}\left(\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)\right)=e^{2}\left(-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)=$ $-\frac{\sqrt{3}}{2} e^{2}+i \frac{e^{2}}{2}$.
(2) Let $z=(-e+e i) / \sqrt{2}$. Then

$$
|z|=\sqrt{\left(\frac{-e}{\sqrt{2}}\right)^{2}+\left(\frac{e}{\sqrt{2}}\right)^{2}}=\sqrt{\frac{e^{2}}{2}+\frac{e^{2}}{2}}=\sqrt{e^{2}}=e
$$

Therefore, $z=|z|\left(-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=|z|\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)=e \cdot e^{i \frac{3 \pi}{4}}$. We get

$$
\log (z)=\ln |z|+i \arg (z)=1+i\left(\frac{3 \pi}{4}+2 k \pi\right), \quad k \in \mathbb{Z}
$$

Since $\frac{3 \pi}{4} \in(-\pi, \pi]$, we have $\operatorname{Arg}(z)=\frac{3 \pi}{4}$ and therefore

$$
\log (z)=1+i \frac{3 \pi}{4}
$$

Execise 3. [3 points] Let $z \in \mathbb{C}$. Prove that $\overline{\exp (z)}=\exp (\bar{z})$.
Solution. Write $z=x+i y$, with $x, y \in \mathbb{R}$. Then

$$
\overline{\exp (z)}=\overline{e^{x} \cdot e^{i y}}=\overline{e^{x}} \cdot \overline{e^{i y}}
$$

Since e^{x} is real, we have $\overline{e^{x}}=e^{x}$. On the other hand, since $e^{i y}=\cos y+i \sin y$, $\overline{e^{i y}}=\cos y-i \sin y=\cos (-y)+i \sin (-y)=e^{-i y} \quad$ (This is a useful formula!)
so we get

$$
\overline{\exp (z)}=e^{x} \cdot e^{-i y}=e^{x-i y}=\exp (\bar{z})
$$

Exercise 4.[4 points] Solve the equation $e^{2 z}+1=i$.
Solution. Let $z=x+i y \in \mathbb{C}$. We have

$$
\begin{aligned}
e^{2 z}+1=i & \Leftrightarrow e^{2 z}=-1+i \\
& \Leftrightarrow e^{2 z}=\sqrt{2} e^{i \frac{3 \pi}{4}} \\
& \Leftrightarrow e^{2 x+i 2 y}=e^{\ln \sqrt{2}+i \frac{3 \pi}{4}} \\
& \Leftrightarrow\left\{\begin{array}{l}
2 x=\ln \sqrt{2} \\
2 y=\frac{3 \pi}{4}+2 k \pi, \text { for some } k \in \mathbb{Z}
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
x=\frac{1}{4} \ln 2 \\
y=\frac{3 \pi}{8}+k \pi, \text { for some } k \in \mathbb{Z}
\end{array}\right. \\
& \Leftrightarrow z=\frac{1}{4} \ln 2+i\left(\frac{3 \pi}{8}+k \pi\right), \text { for some } k \in \mathbb{Z}
\end{aligned}
$$

So the set of solutions to the equation is $\left\{\frac{1}{4} \ln 2+i\left(\frac{3 \pi}{8}+k \pi\right): k \in \mathbb{Z}\right\}$.
Exercise 5.[6 points] Prove that
(1) $\log \left((1-i)^{2}\right)=2 \log (1-i)$;
(2) $\log \left((1+i \sqrt{3})^{4}\right) \neq 4 \log (1+i \sqrt{3})$.

Solution.

(1) First note that $1-i=\sqrt{2} e^{-i \frac{\pi}{4}}$, where $-\frac{\pi}{4}$ is its principal argument. So we have

$$
\log (1-i)=\ln \sqrt{2}-i \frac{\pi}{4}=\frac{1}{2}\left(\ln 2-i \frac{\pi}{2}\right)
$$

Moreover, $(1-i)^{2}=\left(\sqrt{2} e^{-i \frac{\pi}{4}}\right)^{2}=2 e^{-i \frac{\pi}{2}}$, where $-\frac{\pi}{2}$ is its principal argument. So we have

$$
\log \left((1-i)^{2}\right)=\ln 2-i \frac{\pi}{2}
$$

This proves that $\log \left((1-i)^{2}\right)=2 \log (1-i)$.
(2) First note that $1+i \sqrt{3}=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=2 e^{i \frac{\pi}{3}}$, where $\frac{\pi}{3}$ is its principal argument. Therefore,

$$
\log (1+i \sqrt{3})=\ln 2+i \frac{\pi}{3}
$$

Moreover, $(1+i \sqrt{3})^{4}=2^{4} e^{i \frac{4 \pi}{3}}=2^{4} e^{-i \frac{2 \pi}{3}}$, where $-\frac{2 \pi}{3}$ is its principal argument. So we get

$$
\log \left((1+i \sqrt{3})^{4}\right)=\ln \left(2^{4}\right)-i \frac{2 \pi}{3}=4 \ln 2-i \frac{2 \pi}{3} \neq 4 \ln 2+i \frac{4 \pi}{3}=4 \log (1+i \sqrt{3})
$$

Exercise 6. [7 points] Recall that for any $z \neq 0$, we define $\log (z)=\ln |z|+i \operatorname{Arg}(z)$. Let $D=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.
(1) Using a geometric argument, express $\operatorname{Arg}(z)$ for $z=x+i y \in D$ in terms of $\cos ^{-1}, x$ and y. Explain why this formula does not work for all $z \neq 0$.
(2) Using the theorem of Section 23, prove that Log is analytic on D and that $\log ^{\prime}(z)=1 / z$ for any $z \in D$.
Reminder: $\frac{\mathrm{d}}{\mathrm{d} t} \cos ^{-1}(t)=-\frac{1}{\sqrt{1-t^{2}}}$.

Solution.

(1) Let $z \neq 0$. Write $z=x+i y=r e^{i \theta}$, with $r>0$ and $\theta \in(-\pi, \pi]$ (so that $\theta=\operatorname{Arg}(z))$. Then $x=r \cos \theta$ and therefore $\cos \theta=\frac{x}{r}$ (this is always true).

Now assume that $z \in D$. In that case $\theta \in(0, \pi)$, so we have (because $\cos :(0, \pi) \rightarrow(-1,1)$ is bijective with inverse function arccos)

$$
\cos \theta=\frac{x}{r} \quad \Leftrightarrow \quad \theta=\arccos \frac{x}{r} \quad \Leftrightarrow \quad \operatorname{Arg}(z)=\arccos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) .
$$

This formula is not true if z is in the lower half plane, because then $\theta \in$ $(-\pi, 0)$, but the function arccos only takes values in $[0, \pi]$.

(2) We write $\log (z)=u(x, y)+i v(x, y)$ with

$$
\begin{aligned}
& u(x, y)=\ln \left(\sqrt{x^{2}+y^{2}}\right)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right) \\
& v(x, y)=\arccos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)
\end{aligned}
$$

Note that u and v have partial derivatives everywhere in D : for u, note that $x^{2}+y^{2}$ is always positive and \ln is differentiable on $(0, \infty)$, and for v note that, since $x^{2}+y^{2}$ is always positive, $x / \sqrt{x^{2}+y^{2}}$ has partial derivatives and $x / \sqrt{x^{2}+y^{2}}$ takes values only in $(0,1)$, where arccos is differentiable. Since D is open, for any point in D, the partial derivatives exist in a neighborhood of this point (because there is a neighborhood of this point included in D).

The partial derivatives of u are

$$
\begin{aligned}
& u_{x}(x, y)=\frac{1}{2} \frac{2 x}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}} \\
& u_{y}(x, y)=\frac{y}{x^{2}+y^{2}} .
\end{aligned}
$$

The partial derivatives of v are

$$
\begin{aligned}
v_{x}(x, y) & =\arccos ^{\prime}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) \cdot \frac{\partial}{\partial x}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)=\frac{-1}{\sqrt{1-\frac{x^{2}}{x^{2}+y^{2}}}} \cdot \frac{\sqrt{x^{2}+y^{2}}-x \frac{2 x}{2 \sqrt{x^{2}+y^{2}}}}{x^{2}+y^{2}} \\
& =\frac{-1}{\sqrt{\frac{y^{2}}{x^{2}+y^{2}}}} \cdot \frac{\left(x^{2}+y^{2}\right)-x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{-\sqrt{x^{2}+y^{2}}}{y} \cdot \frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{-y}{x^{2}+y^{2}} \\
v_{y}(x, y) & =\arccos ^{\prime}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) \cdot \frac{\partial}{\partial y}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)=\frac{-1}{\sqrt{1-\frac{x^{2}}{x^{2}+y^{2}}}} \cdot \frac{-x \frac{2 y}{2 \sqrt{x^{2}+y^{2}}}}{x^{2}+y^{2}} \\
& =\frac{1}{\sqrt{\frac{y^{2}}{x^{2}+y^{2}}}} \cdot \frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{x}{x^{2}+y^{2}} .
\end{aligned}
$$

Therefore, note that the Cauchy-Riemann Equations are satisfied at any point in D. Finally note that these partial derivatives are continuous on D, because $x^{2}+y^{2}$ is never 0 . So, we can apply the theorem in Section 23 to conclude that Log is differentiable on D. Moreover,

$$
\log ^{\prime}(z)=u_{x}(x, y)+i v_{x}(x, y)=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}}=\frac{x-i y}{|z|^{2}}=\frac{\bar{z}}{z \bar{z}}=\frac{1}{z}
$$

