Complex analysis, homework 5 due February 22nd.

Exercise 1.[5 points] Prove the function defined by $f(z)=x^{2}-y^{2}+y+2+i x(2 y-1)$ for $z=x+i y$ is entire and find $f^{\prime}(z)$.

Exercise 2.[5 points] Compute the following quantities (that is express them in $x+i y$ form):
(1) $\exp \left(2+i \frac{5 \pi}{6}\right)$;
(2) $\log ((-e+e i) / \sqrt{2})$ and $\log ((-e+e i) / \sqrt{2})$.

Exercise 3. [3 points] Let $z \in \mathbb{C}$. Prove that $\overline{\exp (z)}=\exp (\bar{z})$.
Exercise 4.[4 points] Solve the equation $e^{2 z}+1=i$.
Exercise 5. [6 points] Prove that
(1) $\log \left((1-i)^{2}\right)=2 \log (1-i)$;
(2) $\log \left((1+i \sqrt{3})^{4}\right) \neq 4 \log (1+i \sqrt{3})$;

Exercise 6. [7 points] Recall that for any $z \neq 0$, we define $\log (z)=\ln |z|+i \operatorname{Arg}(z)$. Let $D=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.
(1) Using a geometric argument, express $\operatorname{Arg}(z)$ for $z=x+i y \in D$ in terms of $\cos ^{-1}, x$ and y. Explain why this formula does not work for all $z \neq 0$.
(2) Using the theorem of Section 23, prove that Log is analytic on D and that $\log ^{\prime}(z)=1 / z$ for any $z \in D$.
Reminder: $\frac{\mathrm{d}}{\mathrm{d} t} \cos ^{-1}(t)=-\frac{1}{\sqrt{1-t^{2}}}$.

