Complex analysis, homework 4 due February 15th.

Exercise 1.[8 points] For the following functions, say at which points they are differentiable and find their derivatives. Show your steps.
(1) $f(z)=\frac{z^{2}}{i z+1}$
(2) $f(z)=z\left(z^{2}+i z\right)^{5}$

Exercise 2. [5 points] Let $z_{0} \in \mathbb{C}$. Let f be a function differentiable at z_{0}. For any $z \in \mathbb{C}$ such that $f(\bar{z})$ is defined, we set

$$
g(z)=\overline{f(\bar{z})}
$$

Prove that g is differentiable at $\overline{z_{0}}$ and express $g^{\prime}\left(\overline{z_{0}}\right)$ in terms of $f^{\prime}\left(z_{0}\right)$.

Exercise 3. [8 points] Let $f(z)=z \operatorname{Im}(z)$ for $z \in \mathbb{C}$. Find the points $z \in \mathbb{C}$ where f is differentiable and find its derivative $f^{\prime}(z)$ at these points. For all the other points in the complex plane, prove that f is not differentiable at these points.

Exercise 4. [9 points] Let f be a function differentiable on \mathbb{C}.
(1) Prove that if $\operatorname{Re}(f)$ is constant on \mathbb{C}, then f is constant on \mathbb{C}.
(2) Prove that if $|f|$ is constant on \mathbb{C}, then f is constant on \mathbb{C}.

Hint: Use the Cauchy-Riemann equations. You can use the following fact: if a real-valued function on \mathbb{R}^{2} has its both partial derivatives that are zero on \mathbb{R}^{2}, then this function is constant on \mathbb{R}^{2}. For (b), you can start by squaring the modulus and differentiate either with respect to x or with respect to y.

