Complex analysis, homework 4 due February 15th.

Exercise 1.[8 points] For the following functions, say at which points they are differentiable and find their derivatives. Show your steps.

(1)
$$f(z) = \frac{z^2}{iz+1}$$

(2) $f(z) = z(z^2+iz)^5$

Exercise 2.[5 points] Let $z_0 \in \mathbb{C}$. Let f be a function differentiable at z_0 . For any $z \in \mathbb{C}$ such that $f(\overline{z})$ is defined, we set

$$g(z) = \overline{f(\overline{z})}.$$

Prove that g is differentiable at $\overline{z_0}$ and express $g'(\overline{z_0})$ in terms of $f'(z_0)$.

Exercise 3.[8 points] Let $f(z) = z \operatorname{Im}(z)$ for $z \in \mathbb{C}$. Find the points $z \in \mathbb{C}$ where f is differentiable and find its derivative f'(z) at these points. For all the other points in the complex plane, prove that f is not differentiable at these points.

Exercise 4. [9 points] Let f be a function differentiable on \mathbb{C} .

- (1) Prove that if $\operatorname{Re}(f)$ is constant on \mathbb{C} , then f is constant on \mathbb{C} .
- (2) Prove that if |f| is constant on \mathbb{C} , then f is constant on \mathbb{C} .

Hint: Use the Cauchy-Riemann equations. You can use the following fact: if a real-valued function on \mathbb{R}^2 has its both partial derivatives that are zero on \mathbb{R}^2 , then this function is constant on \mathbb{R}^2 . For (b), you can start by squaring the modulus and differentiate either with respect to x or with respect to y.