Complex analysis, homework 3, solutions.

Exercise 1.[4 points| Calculate (—2 + 2i)!°. Give your result in the form x + iy with z and y real
numbers. Show you steps.
Remark: We have seen a method in class for this, do not expand directly (—2 + 2i)1°.

Solution. Let z = —2 + 2i. Then |z| = /(—2)2 + 22 = V/8 = 2v/2. Then, we have
) = 2/2 (cos(3m/4) + isin(3m/4)) = 2v/2e™/4,
Therefore,
. 10 0 L e
(—2+2i)10 = (2\/§e““/4) = (2[2) 10 9F = 915 +2im3 — 39768 . (—4) = —32768i.

Exercise 2.[6 points|

(1) Find the fourth roots of i. Give them in exponential forms and then represent them on a
picture. Highlight the principal fourth root.

(2) Find the third roots of —8 + 81/3i? Give them in exponential forms and then represent them
on a picture. Highlight the principal third root.

Solution.

(1) We have i = 2. So applying the result seen in class, we know that the fourth roots of i are

3 +0 512 T +4 46
exp i2+ , eXp i2+ il , €Xp i2+ T cexp [ i2 T ,
4 4 4 4

and they can be rewritten as

Since Arg(i) = 7, the principal fourth root is et Arg(i)/4 — oin/8,
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(2) Let z = —8 + 8/3i. We have |z| = /(—8)2 + (8v/3)2 = /82 + 3-82 = V482 = 16. Hence,

we write
1 \/g 2
z 16( 2+12> 6exp<23>

So applying the result seen in class, we know that the third roots of z are

27 2 21
4 L 2y
1613 exp (z33> L1613 exp <2337T) 163 exp (HBW) 7

and they can be rewritten as
2 8 14
2\?/§exp <297r) 72\3/§exp (zéT) ,2\3/§exp <2971-> .

Since Arg(z) = 2, the principal third root is |z|t/3etAre(2)/3 = 2{/2¢%m/9,
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Exercise 3.[4 points] We consider the following transformation z + 2¢*™/4(z — 1 +4). Describe its
effect on a point z of the complex plane in words (there should be three successive simple steps).
Tllustrate it with a picture in the case z = 2 4 (that is represent z and 2¢™/4(z — 1 + i), as well as
the results of the successive steps described earlier).

Solution. The effects of the transformation are successively

e translation by the vector —1 + i;
e rotation centered at 0 with angle 7/4;
e scaling centered at 0 with factor 2.

Note that the two last steps can be switched (product is commutative).

A

2/ 4z —1+1i)e

1
Exercise 4.[4 points] Prove that lim + il exists and give its value in the form x + iy.

z—1—1 12



Solution. We want to prove
2z+1 2(1—-4)+1
m - = = 7 )
aol-igz+1  i(l—1d)+1

which equals % — %z by the previous calculation. Let ¢ > 0. We choose § = min(e,v/5 — 1) > 0. We
set zp = 1 — ¢ and consider z such that 0 < |z — 2| < J, then we have

2z+1  22+1| |22+ 1)(iz0 +1) — (220 + 1)(iz + 1)

iz+1  dzg+1| (iz 4+ 1)(izo + 1)
_|2izz0 tizo + 22+ 1 — 2izzp —iz — 220 — 1
B (iz+1)(izo + 1)
i(z0 — 2) + 2(z — 20)

(iz+1)(iz0 + 1)

24 - |20 — 2]
liz + 1| - |izo + 1]
_ 20—~
liz + 1]’

where in the last equality we used that |izg + 1| = |2+1|, since zg = 1 —i. We then use that |z —zg| < ¢
to get

2z+1  2zp+1 )

: - = < = .

iz+1 dzg+1 liz + 1|

On the other hand,
liz+ 1| = |izo + 1 +i(z — 2o)]

> lizo + 1| — |i(z — 20)] (triangle inequality)
=5 — |z — (lizo + 1| = |2 +i| = V/5)
>V5-46 (Iz — 20| < 9)

>1 (6 <V5-1).
Hence, we get

2 1 2 1
‘Z+ —‘ZO+ <d<e.
iz+1 izg +1

This proves that

2241 2(1-d)+1 4 7T
1m = = - — —1.
ssl-iiz+1  i(l—i)+1 5 5

Exercise 5.[5 points] Let f be a function defined on C. We say that f is Lipschitz on C if there exists
K > 0 such that, for any 2,2’ € C,

1f(z) = ()] < K]z = 2.
Prove that, if f is Lipschitz on C, then f has a limit at any point in C.

Solution. Let zy in C, we will prove that f is continuous at zy. Let € > 0. We set 6 = ¢/K > 0 and
consider consider z such that |z — zo| < §. Then we have

If(2) = f(20)] < K|z — 20| < K6 = .

Therefore, lim,_,,, f(z) = f(20). This proves that f is continuous at zy and therefore on C.

Exercise 6.[5 points] Prove that lim1 Arg(z) does not exist.
z2——
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Solution. Note that if Re(z) < 0 and Im(z) > 0, then Arg(z) € (7/2,7], and if Re(z) < 0 and
Im(z) < 0, then Arg(z) € (—m,—7/2). So Arg(z) takes values both in (7/2,7] and in (—m,—7/2)
arbitrarily close to —1 so it cannot have a limit.

Let’s prove it properly. For the sake of contradiction, assume lim,_, 1 Arg(z) = w for some w € C.
Let e = /2 > 0. Then there is a § > 0 such that, for any z with 0 < |z+1| < §, |[Arg(z)—w| < e = 7/2.
Consider

0
21:—1+i§ and 22:—172'5.

We have, for k =1 or 2,0 < |z + 1| < J, so |Arg(zr) — w| < w/2. Hence, we get, using the triangle
inequality,

|Arg(z1) — Arg(z2)] < [Arg(z1) — w[ + [w — Arg(z)| <.
But, on the other hand, we have Arg(z;) € (7/2, 7] and Arg(z2) =€ (-7, —7/2), so

[Arg(e1) — Arg(ea)] > Arg(e) — Arg(ea) > & — (-2} > 7.

This is our contradiction.

Exercise 7.[8 points] Let zy € C. Prove or disprove the following statements:
(1) Let f and g be functions defined on a deleted neighborhood of z.

If Zlgrzlg f(z) = o0 and zll)nzlog(z) = 00, then Zlgrzlo(f(z) +g(2)) = 0.

(2) Let f and g be functions defined on a deleted neighborhood of z.

If lim f(z) =oc and lim g(z) = oo, then lim (f(z) X g(z)) = 0.
Remark: In order t6 didprove a result, you have to give a counterexample.

Solution.
(1) This is false. Consider the functions
1 1
flz) = and g(z) =

Z— 20 20— 2

defined for any z # zy. Then, we have

lim f(z) = o0 and lim g(z) = oo,
zZ—r20 zZ—20

as a consequence of the fact that lim, ,,, 1/f(2) = lim,_,,,(z — z0) = 0 combined with the
theorem seen in class for limits involving infinity (and similarly for g). But, on the other hand,
f(2) +g(2) =0 for any z # 2y, so we have

Tim (£(2) + 9(2)) = 0 # oo.
(2) This is true. Let f and g be functions defined on a deleted neighborhood of zy such that

lim f(z) = o0 and lim g(z) = co.
z—20 220

We want to prove that lim,_,,, f(2)g(z) = cc.

Approach 1 (using the definition): Let € > 0. We have /e > 0.
Since lim,_, ., f(z) = oo, there is a §; > 0 such that for any z with |z — 29| < 1, we have

[f(2)] > 1/

Since lim,_, ., g(z) = oo, there is a d > 0 such that for any z with |z — 29| < d2, we have

l9(2)] > 1/ /e
Let § = min(d1,d2) > 0. Consider z such that |z — z9| < 6. Then we have |f(2)| > 1//¢

and |g(z)| > 1/+/e. Hence,

This proves lim,_,., f(2)g(z) = cc.



Approach 2 (using results): By the theorem concerning limits involving infinity, we have

Therefore, using the result for products of limits (we can apply it to these finite limits!), we

get
1 1 1
lim ———=1lim — - ——=0-0=0.
=20 f(2)g(2) == f(2) g(2)
Using again the theorem concerning limits involving infinity, this implies that lim,_, ,, f(2)g(z) =

Q.



