
Complex analysis, homework 3, solutions.

Exercise 1.[4 points] Calculate (−2 + 2i)10. Give your result in the form x + iy with x and y real
numbers. Show you steps.
Remark: We have seen a method in class for this, do not expand directly (−2 + 2i)10.

Solution. Let z = −2 + 2i. Then |z| =
√
(−2)2 + 22 =

√
8 = 2

√
2. Then, we have

z = 2
√
2

(
− 1√

2
+ i

1√
2

)
= 2

√
2 (cos(3π/4) + i sin(3π/4)) = 2

√
2ei3π/4.

Therefore,

(−2 + 2i)10 =
(
2
√
2ei3π/4

)10
=
(
2
√
2
)10

ei10·
3π
4 = 215ei

3π
2 +2iπ·3 = 32768 · (−i) = −32768i.

Exercise 2.[6 points]

(1) Find the fourth roots of i. Give them in exponential forms and then represent them on a
picture. Highlight the principal fourth root.

(2) Find the third roots of −8 + 8
√
3i? Give them in exponential forms and then represent them

on a picture. Highlight the principal third root.

Solution.

(1) We have i = ei
π
2 . So applying the result seen in class, we know that the fourth roots of i are

exp

(
i
π
2 + 0

4

)
, exp

(
i
π
2 + 2π

4

)
, exp

(
i
π
2 + 4π

4

)
, exp

(
i
π
2 + 6π

4

)
,

and they can be rewritten as

exp
(
i
π

8

)
, exp

(
i
5π

8

)
, exp

(
i
9π

8

)
, exp

(
i
13π

8

)
.

Since Arg(i) = π
2 , the principal fourth root is eiArg(i)/4 = eiπ/8.

1



2

1

i

eiπ/8 (principal square root)

e5iπ/8

e9iπ/8

e13iπ/8

(2) Let z = −8 + 8
√
3i. We have |z| =

√
(−8)2 + (8

√
3)2 =

√
82 + 3 · 82 =

√
4 · 82 = 16. Hence,

we write

z = 16

(
−1

2
+ i

√
3

2

)
= 16 exp

(
i
2π

3

)
.

So applying the result seen in class, we know that the third roots of z are

161/3 exp

(
i
2π
3 + 0

3

)
, 161/3 exp

(
i
2π
3 + 2π

3

)
, 161/3 exp

(
i
2π
3 + 4π

3

)
,

and they can be rewritten as

2
3
√
2 exp

(
i
2π

9

)
, 2

3
√
2 exp

(
i
8π

9

)
, 2

3
√
2 exp

(
i
14π

9

)
.

Since Arg(z) = 2π
3 , the principal third root is |z|1/3eiArg(z)/3 = 2 3

√
2e2iπ/9.
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1

i

2 3
√
2e2iπ/9 (principal square root)

2 3
√
2e8iπ/9

2 3
√
2e14iπ/9

Exercise 3.[4 points] We consider the following transformation z 7→ 2eiπ/4(z − 1 + i). Describe its
effect on a point z of the complex plane in words (there should be three successive simple steps).
Illustrate it with a picture in the case z = 2 + i (that is represent z and 2eiπ/4(z − 1 + i), as well as
the results of the successive steps described earlier).
Solution. The effects of the transformation are successively

• translation by the vector −1 + i;
• rotation centered at 0 with angle π/4;
• scaling centered at 0 with factor 2.

Note that the two last steps can be switched (product is commutative).

1

i
z

z − 1 + ieiπ/4(z − 1 + i)

2eiπ/4(z − 1 + i)

Exercise 4.[4 points] Prove that lim
z→1−i

2z + 1

iz + 1
exists and give its value in the form x+ iy.
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Solution. We want to prove

lim
z→1−i

2z + 1

iz + 1
=

2(1− i) + 1

i(1− i) + 1
,

which equals 8
5 − 1

5 i by the previous calculation. Let ε > 0. We choose δ = min(ε,
√
5 − 1) > 0. We

set z0 = 1− i and consider z such that 0 < |z − z0| < δ, then we have∣∣∣∣2z + 1

iz + 1
− 2z0 + 1

iz0 + 1

∣∣∣∣ = ∣∣∣∣ (2z + 1)(iz0 + 1)− (2z0 + 1)(iz + 1)

(iz + 1)(iz0 + 1)

∣∣∣∣
=

∣∣∣∣2izz0 + iz0 + 2z + 1− 2izz0 − iz − 2z0 − 1

(iz + 1)(iz0 + 1)

∣∣∣∣
=

∣∣∣∣ i(z0 − z) + 2(z − z0)

(iz + 1)(iz0 + 1)

∣∣∣∣
=

|2 + i| · |z0 − z|
|iz + 1| · |iz0 + 1|

=
|z0 − z|
|iz + 1|

,

where in the last equality we used that |iz0+1| = |2+ i|, since z0 = 1− i. We then use that |z−z0| < δ
to get ∣∣∣∣2z + 1

iz + 1
− 2z0 + 1

iz0 + 1

∣∣∣∣ < δ

|iz + 1|
.

On the other hand,

|iz + 1| = |iz0 + 1 + i(z − z0)|
≥ |iz0 + 1| − |i(z − z0)| (triangle inequality)

=
√
5− |z − z0| (|iz0 + 1| = |2 + i| =

√
5)

>
√
5− δ (|z − z0| < δ)

≥ 1 (δ ≤
√
5− 1).

Hence, we get ∣∣∣∣2z + 1

iz + 1
− 2z0 + 1

iz0 + 1

∣∣∣∣ < δ ≤ ε.

This proves that

lim
z→1−i

2z + 1

iz + 1
=

2(1− i) + 1

i(1− i) + 1
=

4

5
− 7

5
i.

Exercise 5.[5 points] Let f be a function defined on C. We say that f is Lipschitz on C if there exists
K > 0 such that, for any z, z′ ∈ C,

|f(z)− f(z′)| ≤ K|z − z′|.
Prove that, if f is Lipschitz on C, then f has a limit at any point in C.

Solution. Let z0 in C, we will prove that f is continuous at z0. Let ε > 0. We set δ = ε/K > 0 and
consider consider z such that |z − z0| < δ. Then we have

|f(z)− f(z0)| ≤ K|z − z0| < Kδ = ε.

Therefore, limz→z0 f(z) = f(z0). This proves that f is continuous at z0 and therefore on C.

Exercise 6.[5 points] Prove that lim
z→−1

Arg(z) does not exist.
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Solution. Note that if Re(z) < 0 and Im(z) ≥ 0, then Arg(z) ∈ (π/2, π], and if Re(z) < 0 and
Im(z) < 0, then Arg(z) ∈ (−π,−π/2). So Arg(z) takes values both in (π/2, π] and in (−π,−π/2)
arbitrarily close to −1 so it cannot have a limit.

Let’s prove it properly. For the sake of contradiction, assume limz→−1 Arg(z) = w for some w ∈ C.
Let ε = π/2 > 0. Then there is a δ > 0 such that, for any z with 0 < |z+1| < δ, |Arg(z)−w| < ε = π/2.
Consider

z1 = −1 + i
δ

2
and z2 = −1− i

δ

2
.

We have, for k = 1 or 2, 0 < |zk + 1| < δ, so |Arg(zk) − w| < π/2. Hence, we get, using the triangle
inequality,

|Arg(z1)−Arg(z2)| ≤ |Arg(z1)− w|+ |w −Arg(z2)| < π.

But, on the other hand, we have Arg(z1) ∈ (π/2, π] and Arg(z2) =∈ (−π,−π/2), so

|Arg(z1)−Arg(z2)| ≥ Arg(z1)−Arg(z2) >
π

2
−
(
−π

2

)
> π.

This is our contradiction.

Exercise 7.[8 points] Let z0 ∈ C. Prove or disprove the following statements:
(1) Let f and g be functions defined on a deleted neighborhood of z0.

If lim
z→z0

f(z) = ∞ and lim
z→z0

g(z) = ∞, then lim
z→z0

(f(z) + g(z)) = ∞.

(2) Let f and g be functions defined on a deleted neighborhood of z0.

If lim
z→z0

f(z) = ∞ and lim
z→z0

g(z) = ∞, then lim
z→z0

(f(z)× g(z)) = ∞.
Remark: In order to disprove a result, you have to give a counterexample.

Solution.
(1) This is false. Consider the functions

f(z) =
1

z − z0
and g(z) =

1

z0 − z
,

defined for any z ̸= z0. Then, we have

lim
z→z0

f(z) = ∞ and lim
z→z0

g(z) = ∞,

as a consequence of the fact that limz→z0 1/f(z) = limz→z0(z − z0) = 0 combined with the
theorem seen in class for limits involving infinity (and similarly for g). But, on the other hand,
f(z) + g(z) = 0 for any z ̸= z0, so we have

lim
z→z0

(f(z) + g(z)) = 0 ̸= ∞.

(2) This is true. Let f and g be functions defined on a deleted neighborhood of z0 such that

lim
z→z0

f(z) = ∞ and lim
z→z0

g(z) = ∞.

We want to prove that limz→z0 f(z)g(z) = ∞.
Approach 1 (using the definition): Let ε > 0. We have

√
ε > 0.

Since limz→z0 f(z) = ∞, there is a δ1 > 0 such that for any z with |z − z0| < δ1, we have
|f(z)| > 1/

√
ε.

Since limz→z0 g(z) = ∞, there is a δ2 > 0 such that for any z with |z − z0| < δ2, we have
|g(z)| > 1/

√
ε.

Let δ = min(δ1, δ2) > 0. Consider z such that |z − z0| < δ. Then we have |f(z)| > 1/
√
ε

and |g(z)| > 1/
√
ε. Hence,

|f(z)g(z)| = |f(z)| · |g(z)| > 1√
ε
· 1√

ε
=

1

ε
.

This proves limz→z0 f(z)g(z) = ∞.
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Approach 2 (using results): By the theorem concerning limits involving infinity, we have

lim
z→z0

1

f(z)
= 0 and lim

z→z0

1

g(z)
= 0.

Therefore, using the result for products of limits (we can apply it to these finite limits!), we
get

lim
z→z0

1

f(z)g(z)
= lim

z→z0

1

f(z)
· 1

g(z)
= 0 · 0 = 0.

Using again the theorem concerning limits involving infinity, this implies that limz→z0 f(z)g(z) =
∞.


