Complex analysis, homework 1 plus 2, due February 1st.

Exercise 1.[12 points] Compute the following quantities. Show your steps.
(1) $(3-i)(-2+5 i)-3+2 i$
(2) $\frac{-3+2 i}{2-i}$
(3) $(1+i)^{3}$

Exercise 2. [4 points] Which of the points $z_{1}=3+6 i$ and $z_{2}=5-4 i$ is closer to the origin?

Exercise 3. [6 points]
(1) Show that, for any $z \in \mathbb{C}, z^{2}+1=(z-i)(z+i)$.
(2) Prove that the equation $z^{2}+1=0$ has exactly two solutions, which are i and $-i$.
Exercise 4. [4 points] Sketch the region in the complex plane $\{z \in \mathbb{C}:|z-2+i| \leq$ $3\}$, that is the set of all points z such that $|z-2+i| \leq 3$.

Exercise 5. [4 points] Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be complex numbers. Express $\operatorname{Re}\left(z_{1} \overline{z_{2}}\right)$ in terms of $x_{1}, x_{2}, y_{1}, y_{2}$. What does it represent for the vectors z_{1} and z_{2} ?

Exercise 6. [4 points] Let $z_{1}, z_{2} \in \mathbb{C}$ be in the upper left quarter plane (that is with negative real part and positive imaginary part). Prove that

$$
\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)-2 \pi
$$

Exercise 7. [4 points] Let $w, z \in \mathbb{C}$ with $|w|=1$ and $z \neq w$. Prove that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|=1 .
$$

Exercise 8. [4 points] Suppose that $z_{1} z_{2}$ is real and non-zero. Prove that there exists a real number c such that $z_{1}=c \bar{z}_{2}$.

Exercise 9. [4 points] Prove that for any z with modulus $R>1$, one has

$$
\left|\frac{z^{4}+\mathrm{i} z}{z^{2}+z+1}\right| \leq \frac{R^{4}+R}{(R-1)^{2}}
$$

