Complex analysis, homework 12 due May 2nd.

Exercise 1.[8 points] Find the singularities of the following functions and the residues of the function at each singularity.
(1) $f(z)=\frac{1}{z^{2}+5 z+6}$;
(2) $f(z)=\frac{1}{\left(z^{2}-1\right)^{2}}$.

Exercise 2. [10 points] Evaluate the integral $\int_{C} f(z) \mathrm{d} z$ for the following functions and where C is a positively oriented simple closed contour around 0.
(1) $f(z)=z^{7} \cos \left(\frac{1}{z^{2}}\right)$;
(2) $f(z)=\frac{\sinh (2 z)-2 z}{z^{8}}$.

Exercise 3. [4 points] Let f be an entire function such that for any $\theta \in[0, \pi]$, $f(i \theta)=e^{\theta}$. Find $f(z)$ for any $z \in \mathbb{C}$. Justify your answer.
Exercise 4. [8 points] Let f be the function defined by

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}
$$

where we assume that these series converge on the annular domain $D=\left\{R_{1}<\right.$ $\left.\left|z-z_{0}\right|<R_{2}\right\}$ for some $0 \leq R_{1}<R_{2} \leq+\infty$. The goal of this exercise is to prove the following result seen in class: f is analytic on D and

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1}+\sum_{n=1}^{\infty}(-n) b_{n}\left(z-z_{0}\right)^{-n-1}, \quad z \in D
$$

For this, you are allowed to apply the theorem for power series seen in Section 71 (involving only non-negative powers of $z-z_{0}$), but not the theorem for Laurent series that we are trying to prove.
(1) Let $f_{1}(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, for $z \in D$. Explain why this power series has a radius of convergence larger than or equal to R_{2}. Deduce that f_{1} is analytic on D and

$$
f_{1}^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1}, \quad z \in D
$$

(2) Let $f_{2}(z)=\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}$, for $z \in D$. We introduce the following power series

$$
g(w)=\sum_{n=1}^{\infty} b_{n} w^{n}
$$

Noting that for $z \in D, f_{2}(z)=g\left(\frac{1}{z-z_{0}}\right)$, show that the power series $g(z)$ has a radius of convergence larger than or equal to $1 / R_{1}$ and therefore is analytic on $\left\{w:|w|<1 / R_{1}\right\}$. Find $g^{\prime}(w)$.
(3) Deduce from question (b) that f_{2} is analytic on D and

$$
f_{2}^{\prime}(z)=\sum_{n=1}^{\infty}(-n) b_{n}\left(z-z_{0}\right)^{-n-1}, \quad z \in D .
$$

(4) Using questions (a) and (c), conclude the exercise.

