
Complex analysis, homework 11, solutions.

Exercise 1. [9 points] Give three Laurent expansions in powers of z for the function

f(z) =
i− 3

(z − i)(z − 3)
=

1

z − i
− 1

z − 3

and specify the annular domains in which those expansions are valid.

Solution. The function f is analytic on C\{i, 3}. So it is analytic on the following
annular domains centered at 0

D1 = {z : |z| < 1}, D2 = {z : 1 < |z| < 3}, D3 = {z : 3 < |z|}.
Note that in D1 we can actually include 0, because f is analytic at 0, so we actually
know that f can be expanded as a Taylor series on D1.

If |z| < 1, then |z/i| < 1 and therefore

1

z − i
=

1

(−i)
· 1

1− (z/i)
= −1

i

∞∑
n=0

(z/i)n = −
∞∑

n=0

zn

in+1
.

On the other hand, if |z| > 1, then |i/z| < 1 and therefore

1

z − i
=

1

z
· 1

1− (i/z)
=

1

z

∞∑
n=0

(i/z)n =

∞∑
n=0

in

zn+1
=

∞∑
n=1

in−1

zn
.

We proceed similarly to get

1

z − 3
= −

∞∑
n=0

zn

3n+1
if |z| < 3,

1

z − 3
=

∞∑
n=1

3n−1

zn
if |z| > 3.

Combining this we get

f(z) =

∞∑
n=0

(
1

3n+1
− 1

in+1

)
zn if z ∈ D1,

f(z) =

∞∑
n=0

1

3n+1
zn +

∞∑
n=1

in−1

zn
if z ∈ D1,

f(z) =

∞∑
n=1

(
in−1 − 3n−1

) 1

zn
if z ∈ D3.

Exercise 2. [12 points] Find the radius of convergence of the following power series.
Explain your answer.

(1)

∞∑
n=0

(n+ 1)2nzn; (2)

∞∑
n=0

(n2n + 3n) zn;

1



2

(3)

∞∑
n=0

(ρeiθz)n, for some θ ∈ R and

ρ > 0;

(4)

∞∑
n=0

nz2n

(4i)n
;

Solution.

(1) We have an = (n + 1)2n. Let r > 0. Then |anrn| = ((n + 1)2r)n ≥ 2n

for n ≥
√
2/r. Since 2n → +∞ as n → +∞, by comparison we get that

|anrn| → +∞. In particular (anr
n) is not a bounded sequence for any

r > 0. So the radius of convergence is 0.
(2) We have an = (n2n + 3n).

• Let r > 1/3. Then |anrn| = n(2r)n + (3r)n ≥ (3r)n +∞ as n → +∞
because 3r > 1. So the sequence (anr

n) is not bounded for any
r > 1/3.

• Let r < 1/3. Then (3r)n → 0 as n → +∞ because 3r < 1.
Moreover n(2r)n → 0 as n → +∞ because 2r < 1 and geomet-
ric sequences “dominate” polynomial sequences. Therefore |anrn| =
n(2r)n + (3r)n → 0 as n → +∞. So the sequence (anr

n) is bounded
for any r < 1/3.

So the radius of convergence is 1/3.
Note that we don’t need to study the behavior of the sequence when r =

1/3 to conclude.
(3) We have an = (ρeiθ)n. Therefore |anrn| = (ρr)n so the sequence (anr

n) is
bounded if and only if r ≤ 1/ρ. So the radius of convergence is 1/ρ.

(4) We have a2n = n
(4i)n and a2n+1 = 0 for n ≥ 0. The sequence (a2n+1r

2n+1)

is bounded for any r ≥ 0 (because it is constant equal to 0). So the
sequence (anr

n) is bounded whenever the sequence (a2nr
2n) is bounded.

But we have |a2nr2n| = n(r/2)2n. If r < 2, this sequence converges to 0 and
therefore is bounded. If r > 2, this sequence tends to +∞ and therefore is
not bounded. So the radius of convergence is 2.

Exercise 3. [5 points] Show that the following function is entire

f(z) =


sin(z)

z − π
if z ̸= π,

−1 if z = π.

Solution. The function sin is analytic on C, so by Taylor’s theorem, it is equal to
its Taylor series at π on the whole complex plane:

sin(z) =

∞∑
n=0

sin(n)(π)

n!
(z − π)n, z ∈ C.

Note that sin(π) = 0 so the first term is 0. Therefore, for any z ̸= 0,

f(z) =
1

z − π

∞∑
n=1

sin(n)(π)

n!
(z − π)n =

∞∑
k=0

sin(k+1)(π)

(k + 1)!
(z − π)k.
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Since, sin′(π) = cos(π) = −1, this last power series equals −1 = f(π) when z = π.
So we conclude that, for any z ∈ C,

f(z) =

∞∑
k=0

sin(k+1)(π)

(k + 1)!
(z − π)k.

In particular, by proving this formula, we showed that this last series is convergent
for any z ∈ C that is its radius of convergence is infinite. By the theorem of Sec.
71, this power series is analytic on C and therefore f is entire.

Note that we did not need to calculate all the coefficients of the series (even if
we could have). This means that we can replace sin(z) by any entire function g(z)
such that g(π) = 0 and g′(π) = −1 and the result would have been true as well.

Exercise 4. [4 points] Recall Log z =
∑∞

n=1
(−1)n+1

n (z − 1)n, for |z − 1| < 1. For
|z− 1| < 1, let Cz be a contour from 1 to z included in the open disk centered at 1
with radius 1. Write the following quantity as a power series in z around 1:∫

C

Log(w) dw.

Justify your answer.

Solution. We have, for |z − 1| < 1,

Log z =

∞∑
n=1

(−1)n+1

n
(z − 1)n.

Since this power series is convergent on the whole open disk centered at 1 with
radius 1 and the contour Cz is included in this disk, we can integrate it term by
term (by the theorem of Sec. 71) and we get∫

Cz

Log(w) dw =

∞∑
n=1

(−1)n+1

n

∫
Cz

(w − 1)n dw.

Now, note that (w−1)n is continuous and has antiderivative (w−1)n+1

n+1 on the whole
complex plane, so we have∫

Cz

(w − 1)n dw =

[
(w − 1)n+1

n+ 1

]z
1

=
(z − 1)n+1

n+ 1
− 0.

Therefore, we get∫
Cz

Log(w) dw =

∞∑
n=1

(−1)n+1

n(n+ 1)
(z − 1)n+1 =

∞∑
k=2

(−1)k

(k − 1)k
(z − 1)k.


