Complex analysis, homework 11, solutions.

Exercise 1. [9 points] Give three Laurent expansions in powers of z for the function

$$
f(z)=\frac{i-3}{(z-i)(z-3)}=\frac{1}{z-i}-\frac{1}{z-3}
$$

and specify the annular domains in which those expansions are valid.
Solution. The function f is analytic on $\mathbb{C} \backslash\{i, 3\}$. So it is analytic on the following annular domains centered at 0

$$
D_{1}=\{z:|z|<1\}, \quad D_{2}=\{z: 1<|z|<3\}, \quad D_{3}=\{z: 3<|z|\}
$$

Note that in D_{1} we can actually include 0 , because f is analytic at 0 , so we actually know that f can be expanded as a Taylor series on D_{1}.

If $|z|<1$, then $|z / i|<1$ and therefore

$$
\frac{1}{z-i}=\frac{1}{(-i)} \cdot \frac{1}{1-(z / i)}=-\frac{1}{i} \sum_{n=0}^{\infty}(z / i)^{n}=-\sum_{n=0}^{\infty} \frac{z^{n}}{i^{n+1}}
$$

On the other hand, if $|z|>1$, then $|i / z|<1$ and therefore

$$
\frac{1}{z-i}=\frac{1}{z} \cdot \frac{1}{1-(i / z)}=\frac{1}{z} \sum_{n=0}^{\infty}(i / z)^{n}=\sum_{n=0}^{\infty} \frac{i^{n}}{z^{n+1}}=\sum_{n=1}^{\infty} \frac{i^{n-1}}{z^{n}}
$$

We proceed similarly to get

$$
\begin{aligned}
& \frac{1}{z-3}=-\sum_{n=0}^{\infty} \frac{z^{n}}{3^{n+1}} \quad \text { if }|z|<3 \\
& \frac{1}{z-3}=\sum_{n=1}^{\infty} \frac{3^{n-1}}{z^{n}} \quad \text { if }|z|>3
\end{aligned}
$$

Combining this we get

$$
\begin{aligned}
& f(z)=\sum_{n=0}^{\infty}\left(\frac{1}{3^{n+1}}-\frac{1}{i^{n+1}}\right) z^{n} \quad \text { if } z \in D_{1} \\
& f(z)=\sum_{n=0}^{\infty} \frac{1}{3^{n+1} z^{n}+\sum_{n=1}^{\infty} \frac{i^{n-1}}{z^{n}} \quad \text { if } z \in D_{1}} \begin{array}{l}
f(z)=\sum_{n=1}^{\infty}\left(i^{n-1}-3^{n-1}\right) \frac{1}{z^{n}} \quad \text { if } z \in D_{3} .
\end{array}, \quad .
\end{aligned}
$$

Exercise 2. [12 points] Find the radius of convergence of the following power series. Explain your answer.
(1) $\sum_{n=0}^{\infty}(n+1)^{2 n} z^{n}$;
(2) $\sum_{n=0}^{\infty}\left(n 2^{n}+3^{n}\right) z^{n}$;
(3) $\sum_{\substack{n=0 \\ \rho>0}}^{\infty}\left(\rho e^{i \theta} z\right)^{n}$, for some $\theta \in \mathbb{R}$ and
(4) $\sum_{n=0}^{\infty} \frac{n z^{2 n}}{(4 i)^{n}}$;

Solution.

(1) We have $a_{n}=(n+1)^{2 n}$. Let $r>0$. Then $\left|a_{n} r^{n}\right|=\left((n+1)^{2} r\right)^{n} \geq 2^{n}$ for $n \geq \sqrt{2 / r}$. Since $2^{n} \rightarrow+\infty$ as $n \rightarrow+\infty$, by comparison we get that $\left|a_{n} r^{n}\right| \rightarrow+\infty$. In particular $\left(a_{n} r^{n}\right)$ is not a bounded sequence for any $r>0$. So the radius of convergence is 0 .
(2) We have $a_{n}=\left(n 2^{n}+3^{n}\right)$.

- Let $r>1 / 3$. Then $\left|a_{n} r^{n}\right|=n(2 r)^{n}+(3 r)^{n} \geq(3 r)^{n}+\infty$ as $n \rightarrow+\infty$ because $3 r>1$. So the sequence $\left(a_{n} r^{n}\right)$ is not bounded for any $r>1 / 3$.
- Let $r<1 / 3$. Then $(3 r)^{n} \rightarrow 0$ as $n \rightarrow+\infty$ because $3 r<1$. Moreover $n(2 r)^{n} \rightarrow 0$ as $n \rightarrow+\infty$ because $2 r<1$ and geometric sequences "dominate" polynomial sequences. Therefore $\left|a_{n} r^{n}\right|=$ $n(2 r)^{n}+(3 r)^{n} \rightarrow 0$ as $n \rightarrow+\infty$. So the sequence $\left(a_{n} r^{n}\right)$ is bounded for any $r<1 / 3$.
So the radius of convergence is $1 / 3$.
Note that we don't need to study the behavior of the sequence when $r=$ $1 / 3$ to conclude.
(3) We have $a_{n}=\left(\rho e^{i \theta}\right)^{n}$. Therefore $\left|a_{n} r^{n}\right|=(\rho r)^{n}$ so the sequence $\left(a_{n} r^{n}\right)$ is bounded if and only if $r \leq 1 / \rho$. So the radius of convergence is $1 / \rho$.
(4) We have $a_{2 n}=\frac{n}{(4 i)^{n}}$ and $a_{2 n+1}=0$ for $n \geq 0$. The sequence $\left(a_{2 n+1} r^{2 n+1}\right)$ is bounded for any $r \geq 0$ (because it is constant equal to 0). So the sequence $\left(a_{n} r^{n}\right)$ is bounded whenever the sequence $\left(a_{2 n} r^{2 n}\right)$ is bounded. But we have $\left|a_{2 n} r^{2 n}\right|=n(r / 2)^{2 n}$. If $r<2$, this sequence converges to 0 and therefore is bounded. If $r>2$, this sequence tends to $+\infty$ and therefore is not bounded. So the radius of convergence is 2 .

Exercise 3. [5 points] Show that the following function is entire

$$
f(z)= \begin{cases}\frac{\sin (z)}{z-\pi} & \text { if } z \neq \pi \\ -1 & \text { if } z=\pi\end{cases}
$$

Solution. The function \sin is analytic on \mathbb{C}, so by Taylor's theorem, it is equal to its Taylor series at π on the whole complex plane:

$$
\sin (z)=\sum_{n=0}^{\infty} \frac{\sin ^{(n)}(\pi)}{n!}(z-\pi)^{n}, \quad z \in \mathbb{C}
$$

Note that $\sin (\pi)=0$ so the first term is 0 . Therefore, for any $z \neq 0$,

$$
f(z)=\frac{1}{z-\pi} \sum_{n=1}^{\infty} \frac{\sin ^{(n)}(\pi)}{n!}(z-\pi)^{n}=\sum_{k=0}^{\infty} \frac{\sin ^{(k+1)}(\pi)}{(k+1)!}(z-\pi)^{k}
$$

Since, $\sin ^{\prime}(\pi)=\cos (\pi)=-1$, this last power series equals $-1=f(\pi)$ when $z=\pi$. So we conclude that, for any $z \in \mathbb{C}$,

$$
f(z)=\sum_{k=0}^{\infty} \frac{\sin ^{(k+1)}(\pi)}{(k+1)!}(z-\pi)^{k}
$$

In particular, by proving this formula, we showed that this last series is convergent for any $z \in \mathbb{C}$ that is its radius of convergence is infinite. By the theorem of Sec. 71 , this power series is analytic on \mathbb{C} and therefore f is entire.

Note that we did not need to calculate all the coefficients of the series (even if we could have). This means that we can replace $\sin (z)$ by any entire function $g(z)$ such that $g(\pi)=0$ and $g^{\prime}(\pi)=-1$ and the result would have been true as well.
Exercise 4. [4 points] Recall $\log z=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(z-1)^{n}$, for $|z-1|<1$. For $|z-1|<1$, let C_{z} be a contour from 1 to z included in the open disk centered at 1 with radius 1 . Write the following quantity as a power series in z around 1:

$$
\int_{C} \log (w) \mathrm{d} w
$$

Justify your answer.
Solution. We have, for $|z-1|<1$,

$$
\log z=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(z-1)^{n}
$$

Since this power series is convergent on the whole open disk centered at 1 with radius 1 and the contour C_{z} is included in this disk, we can integrate it term by term (by the theorem of Sec. 71) and we get

$$
\int_{C_{z}} \log (w) \mathrm{d} w=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \int_{C_{z}}(w-1)^{n} \mathrm{~d} w
$$

Now, note that $(w-1)^{n}$ is continuous and has antiderivative $\frac{(w-1)^{n+1}}{n+1}$ on the whole complex plane, so we have

$$
\int_{C_{z}}(w-1)^{n} \mathrm{~d} w=\left[\frac{(w-1)^{n+1}}{n+1}\right]_{1}^{z}=\frac{(z-1)^{n+1}}{n+1}-0
$$

Therefore, we get

$$
\int_{C_{z}} \log (w) \mathrm{d} w=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)}(z-1)^{n+1}=\sum_{k=2}^{\infty} \frac{(-1)^{k}}{(k-1) k}(z-1)^{k}
$$

