Complex analysis, homework 11, solutions.

Exercise 1. [9 points] Give three Laurent expansions in powers of z for the function

$$f(z) = \frac{i-3}{(z-i)(z-3)} = \frac{1}{z-i} - \frac{1}{z-3}$$

and specify the annular domains in which those expansions are valid. Solution. The function f is analytic on $\mathbb{C} \setminus \{i, 3\}$. So it is analytic on the following annular domains centered at 0

$$D_1 = \{z : |z| < 1\}, \qquad D_2 = \{z : 1 < |z| < 3\}, \qquad D_3 = \{z : 3 < |z|\}.$$

Note that in D_1 we can actually include 0, because f is analytic at 0, so we actually know that f can be expanded as a Taylor series on D_1 .

If |z| < 1, then |z/i| < 1 and therefore

$$\frac{1}{z-i} = \frac{1}{(-i)} \cdot \frac{1}{1-(z/i)} = -\frac{1}{i} \sum_{n=0}^{\infty} (z/i)^n = -\sum_{n=0}^{\infty} \frac{z^n}{i^{n+1}}$$

On the other hand, if |z| > 1, then |i/z| < 1 and therefore

$$\frac{1}{z-i} = \frac{1}{z} \cdot \frac{1}{1-(i/z)} = \frac{1}{z} \sum_{n=0}^{\infty} (i/z)^n = \sum_{n=0}^{\infty} \frac{i^n}{z^{n+1}} = \sum_{n=1}^{\infty} \frac{i^{n-1}}{z^n}.$$

We proceed similarly to get

$$\frac{1}{z-3} = -\sum_{n=0}^{\infty} \frac{z^n}{3^{n+1}} \quad \text{if } |z| < 3,$$
$$\frac{1}{z-3} = \sum_{n=1}^{\infty} \frac{3^{n-1}}{z^n} \quad \text{if } |z| > 3.$$

Combining this we get

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{3^{n+1}} - \frac{1}{i^{n+1}}\right) z^n \quad \text{if } z \in D_1,$$

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{3^{n+1}} z^n + \sum_{n=1}^{\infty} \frac{i^{n-1}}{z^n} \quad \text{if } z \in D_1,$$

$$f(z) = \sum_{n=1}^{\infty} \left(i^{n-1} - 3^{n-1}\right) \frac{1}{z^n} \quad \text{if } z \in D_3.$$

Exercise 2. [12 points] Find the radius of convergence of the following power series. Explain your answer.

(1)
$$\sum_{n=0}^{\infty} (n+1)^{2n} z^n;$$
 (2) $\sum_{n=0}^{\infty} (n2^n+3^n) z^n;$

(3)
$$\sum_{\substack{n=0\\\rho>0};}^{\infty} (\rho e^{i\theta} z)^n$$
, for some $\theta \in \mathbb{R}$ and (4) $\sum_{n=0}^{\infty} \frac{n z^{2n}}{(4i)^n}$;

Solution.

- (1) We have $a_n = (n+1)^{2n}$. Let r > 0. Then $|a_n r^n| = ((n+1)^2 r)^n \ge 2^n$ for $n \ge \sqrt{2/r}$. Since $2^n \to +\infty$ as $n \to +\infty$, by comparison we get that $|a_n r^n| \to +\infty$. In particular $(a_n r^n)$ is not a bounded sequence for any r > 0. So the radius of convergence is 0.
- (2) We have $a_n = (n2^n + 3^n)$.
 - Let r > 1/3. Then $|a_n r^n| = n(2r)^n + (3r)^n \ge (3r)^n + \infty$ as $n \to +\infty$ because 3r > 1. So the sequence $(a_n r^n)$ is not bounded for any r > 1/3.
 - Let r < 1/3. Then $(3r)^n \to 0$ as $n \to +\infty$ because 3r < 1. Moreover $n(2r)^n \to 0$ as $n \to +\infty$ because 2r < 1 and geometric sequences "dominate" polynomial sequences. Therefore $|a_n r^n| = n(2r)^n + (3r)^n \to 0$ as $n \to +\infty$. So the sequence $(a_n r^n)$ is bounded for any r < 1/3.

So the radius of convergence is 1/3.

Note that we don't need to study the behavior of the sequence when r = 1/3 to conclude.

- (3) We have $a_n = (\rho e^{i\theta})^n$. Therefore $|a_n r^n| = (\rho r)^n$ so the sequence $(a_n r^n)$ is bounded if and only if $r \leq 1/\rho$. So the radius of convergence is $1/\rho$.
- (4) We have $a_{2n} = \frac{n}{(4i)^n}$ and $a_{2n+1} = 0$ for $n \ge 0$. The sequence $(a_{2n+1}r^{2n+1})$ is bounded for any $r \ge 0$ (because it is constant equal to 0). So the sequence $(a_n r^n)$ is bounded whenever the sequence $(a_{2n}r^{2n})$ is bounded. But we have $|a_{2n}r^{2n}| = n(r/2)^{2n}$. If r < 2, this sequence converges to 0 and therefore is bounded. If r > 2, this sequence tends to $+\infty$ and therefore is not bounded. So the radius of convergence is 2.

Exercise 3. [5 points] Show that the following function is entire

$$f(z) = \begin{cases} \frac{\sin(z)}{z - \pi} & \text{if } z \neq \pi, \\ -1 & \text{if } z = \pi. \end{cases}$$

Solution. The function sin is analytic on \mathbb{C} , so by Taylor's theorem, it is equal to its Taylor series at π on the whole complex plane:

$$\sin(z) = \sum_{n=0}^{\infty} \frac{\sin^{(n)}(\pi)}{n!} (z-\pi)^n, \qquad z \in \mathbb{C}.$$

Note that $\sin(\pi) = 0$ so the first term is 0. Therefore, for any $z \neq 0$,

$$f(z) = \frac{1}{z - \pi} \sum_{n=1}^{\infty} \frac{\sin^{(n)}(\pi)}{n!} (z - \pi)^n = \sum_{k=0}^{\infty} \frac{\sin^{(k+1)}(\pi)}{(k+1)!} (z - \pi)^k.$$

Since, $\sin'(\pi) = \cos(\pi) = -1$, this last power series equals $-1 = f(\pi)$ when $z = \pi$. So we conclude that, for any $z \in \mathbb{C}$,

$$f(z) = \sum_{k=0}^{\infty} \frac{\sin^{(k+1)}(\pi)}{(k+1)!} (z-\pi)^k$$

In particular, by proving this formula, we showed that this last series is convergent for any $z \in \mathbb{C}$ that is its radius of convergence is infinite. By the theorem of Sec. 71, this power series is analytic on \mathbb{C} and therefore f is entire.

Note that we did not need to calculate all the coefficients of the series (even if we could have). This means that we can replace $\sin(z)$ by any entire function g(z) such that $g(\pi) = 0$ and $g'(\pi) = -1$ and the result would have been true as well. **Exercise 4.** [4 points] Recall $\operatorname{Log} z = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (z-1)^n$, for |z-1| < 1. For

Exercise 4. [4 points] Recall $\text{Log } z = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (z-1)^n$, for |z-1| < 1. For |z-1| < 1, let C_z be a contour from 1 to z included in the open disk centered at 1 with radius 1. Write the following quantity as a power series in z around 1:

$$\int_C \operatorname{Log}(w) \, \mathrm{d} w$$

Justify your answer.

Solution. We have, for |z - 1| < 1,

Log
$$z = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (z-1)^n$$

Since this power series is convergent on the whole open disk centered at 1 with radius 1 and the contour C_z is included in this disk, we can integrate it term by term (by the theorem of Sec. 71) and we get

$$\int_{C_z} \operatorname{Log}(w) \, \mathrm{d}w = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \int_{C_z} (w-1)^n \, \mathrm{d}w.$$

Now, note that $(w-1)^n$ is continuous and has antiderivative $\frac{(w-1)^{n+1}}{n+1}$ on the whole complex plane, so we have

$$\int_{C_z} (w-1)^n \, \mathrm{d}w = \left[\frac{(w-1)^{n+1}}{n+1}\right]_1^z = \frac{(z-1)^{n+1}}{n+1} - 0.$$

Therefore, we get

$$\int_{C_z} \operatorname{Log}(w) \, \mathrm{d}w = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} (z-1)^{n+1} = \sum_{k=2}^{\infty} \frac{(-1)^k}{(k-1)k} (z-1)^k.$$