Complex analysis, homework 11 due April 25th.

Exercise 1. [9 points] Give three Laurent expansions in powers of z for the function

$$
f(z)=\frac{i-3}{(z-i)(z-3)}=\frac{1}{z-i}-\frac{1}{z-3}
$$

and specify the annular domains in which those expansions are valid.
Exercise 2. [12 points] Find the radius of convergence of the following power series. Explain your answer.
(1) $\sum_{n=0}^{\infty}(n+1)^{2 n} z^{n}$;
(3) $\sum_{n=0}^{\infty}\left(\rho e^{i \theta} z\right)^{n}$, for some $\theta \in \mathbb{R}$ and
(2) $\sum_{n=0}^{\infty}\left(n 2^{n}+3^{n}\right) z^{n}$;
(4) $\sum_{n=0}^{\infty} \frac{n z^{2 n}}{(4 i)^{n}}$;

Exercise 3. [5 points] Show that the following function is entire

$$
f(z)= \begin{cases}\frac{\sin (z)}{z-\pi} & \text { if } z \neq \pi \\ -1 & \text { if } z=\pi\end{cases}
$$

Exercise 4. [4 points] Recall $\log z=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(z-1)^{n}$, for $|z-1|<1$. For $|z-1|<1$, let C_{z} be a contour from 1 to z included in the open disk centered at 1 with radius 1 . Write the following quantity as a power series in z around 1:

$$
\int_{C} \log (w) \mathrm{d} w
$$

Justify your answer.

