Complex analysis, homework 10, solutions.

Exercise 1. [8 points] For $n \geq 0$, let

$$
z_{n}=\frac{(n+i)^{2}-2 i n^{2}}{n^{2}}
$$

Prove that $\lim _{n \rightarrow \infty} z_{n}=1-2 i$ using the definition of the limit.
Solution. First note that for any $n \geq 1$,

$$
\frac{(n+i)^{2}-2 i n^{2}}{n^{2}}=\frac{n^{2}+2 i n-1-2 i n^{2}}{n^{2}}=1-\frac{1}{n^{2}}-2 i+\frac{2 i}{n} .
$$

Let $\varepsilon>0$. Let n_{0} be the first integer larger than $\sqrt{5} / \varepsilon$. For any $n \geq n_{0}$, we have

$$
\left|z_{n}-(1-2 i)\right|=\left|-\frac{1}{n^{2}}+\frac{2 i}{n}\right|=\sqrt{\frac{1}{n^{4}}+\frac{4}{n^{2}}} \leq \sqrt{\frac{1}{n^{2}}+\frac{4}{n^{2}}}=\frac{\sqrt{5}}{n}
$$

where we used that $n^{-4} \leq n^{-2}$ for $n \geq 1$. Since $n \geq n_{0}>\sqrt{5} / \varepsilon$, we get

$$
\left|z_{n}-(1-2 i)\right|<\varepsilon
$$

This proves $\lim _{n \rightarrow \infty} z_{n}=1-2 i$.
Exercise 2. [6 points] Let $\left(z_{n}\right)_{n \geq 0}$ be a sequence of complex numbers. Let $S \in \mathbb{C}$. Prove that

$$
\sum_{n=0}^{\infty} z_{n}=S \quad \Rightarrow \quad \sum_{n=0}^{\infty} \overline{z_{n}}=\bar{S}
$$

Solution. We write $z_{n}=x_{n}+i y_{n}$ and $S=X+i Y$. Since $\sum_{n=0}^{\infty} z_{n}=S$, by the theorem of Section 61, we know that

$$
\sum_{n=0}^{\infty} x_{n}=X \quad \text { and } \quad \sum_{n=0}^{\infty} y_{n}=Y
$$

Therefore, we have

$$
\sum_{n=0}^{\infty} x_{n}=X \quad \text { and } \quad \sum_{n=0}^{\infty}\left(-y_{n}\right)=-Y
$$

Note that $\overline{z_{n}}=x_{n}+i\left(-y_{n}\right)$. Hence, applying again the theorem of Section 61 (but in the other direction), we get that

$$
\sum_{n=0}^{\infty} \overline{z_{n}}=X+i(-Y)=\bar{S}
$$

Exercise 3. [10 points] Prove that the Taylor series of Log at i is

$$
\log (z)=\frac{i \pi}{2}+\sum_{k=1}^{\infty} \frac{-i^{k}}{k}(z-i)^{k}
$$

Precise the complex numbers z for which this formula applies.

Solution. The function \log is analytic on $\mathbb{C} \backslash \mathbb{R}_{-}$, so the largest open disk centered at i on which Log is analytic has radius 1. So Taylor's theorem tells us that, for any $|z-i|<1$,

$$
\log (z)=\sum_{k=0}^{\infty} \frac{\log ^{(k)}(i)}{k!}(z-i)^{k}
$$

We prove by induction on $n \geq 1$ that, for any $z \in \mathbb{C} \backslash \mathbb{R}_{-}, \log ^{(n)}(z)=(-1)^{n+1}(n-$ 1)! z^{-n}

- Basis step: For any $z \in \mathbb{C} \backslash \mathbb{R}_{-}, \log ^{\prime}(z)=z^{-1}=(-1)^{n+1}(n-1)!z^{-n}$ with $n=1$.
- Inductive step: Let $k \geq 1$, assume the formula is known for $n=k$. Then we have
$\log ^{(k+1)}(z)=\frac{\mathrm{d}}{\mathrm{d} z}(-1)^{k+1}(k-1)!z^{-k}=(-1)^{k+1}(k-1)!\cdot(-k) z^{-k-1}=(-1)^{k+2} k!z^{-(k+1)}$, which proves the formula for $n=k+1$.
Hence the formula is proved by induction and, noting that $\log (i)=i \pi / 2$, we get, for any $|z-i|<1$,

$$
\log (z)=\frac{i \pi}{2}+\sum_{k=1}^{\infty} \frac{(-1)^{k+1}(k-1)!i^{-k}}{k!}(z-i)^{k}=\frac{i \pi}{2}+\sum_{k=1}^{\infty} \frac{-i^{2 k} i^{-k}}{k}(z-i)^{k}
$$

so finally

$$
\log (z)=\frac{i \pi}{2}+\sum_{k=1}^{\infty} \frac{-i^{k}}{k}(z-i)^{k}
$$

Exercise 4. [6 points] Find the Taylor series at 0 of

$$
f(z)=\frac{\sin (z)-z}{z^{2}}
$$

Solution. Using the Taylor series of $\sin z$, for any $z \neq 0$, we have

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}-z\right) \\
& =\frac{1}{z^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n-1} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+3)!} z^{2 k+1}
\end{aligned}
$$

setting $k=n-1$.

