Complex analysis, homework 10 due April 18th.

Exercise 1. [8 points] For $n \geq 0$, let

$$
z_{n}=\frac{(n+i)^{2}-2 i n^{2}}{n^{2}}
$$

Prove that $\lim _{n \rightarrow \infty} z_{n}=1-2 i$ using the definition of the limit.
Exercise 2. [6 points] Let $\left(z_{n}\right)_{n \geq 0}$ be a sequence of complex numbers. Let $S \in \mathbb{C}$. Prove that

$$
\sum_{n=0}^{\infty} z_{n}=S \quad \Rightarrow \quad \sum_{n=0}^{\infty} \overline{z_{n}}=\bar{S}
$$

Exercise 3. [10 points] Prove that the Taylor series of Log at i is

$$
\log (z)=\frac{i \pi}{2}+\sum_{k=1}^{\infty} \frac{-i^{k}}{k}(z-i)^{k}
$$

Precise the complex numbers z for which this formula applies.
Exercise 4. [6 points] Find the Taylor series at 0 of

$$
f(z)=\frac{\sin (z)-z}{z^{2}}
$$

