Complex analysis, homework 3 due February 9th.

Exercise 1.[4 points] Calculate $(-2+2i)^{10}$. Give your result in the form x+iy with x and y real numbers. Show you steps.

Remark: We have seen a method in class for this, do not expand directly $(-2+2i)^{10}$.

Exercise 2.[6 points]

- (1) Find the fourth roots of i. Give them in exponential forms and then represent them on a picture. Highlight the principal fourth root.
- (2) Find the third roots of $-8 + 8\sqrt{3}i$? Give them in exponential forms and then represent them on a picture. Highlight the principal third root.

Exercise 3.[4 points] We consider the following transformation $z \mapsto 2e^{i\pi/4}(z-1+i)$. Describe its effect on a point z of the complex plane in words (there should be three successive simple steps). Illustrate it with a picture in the case z=2+i (that is represent z and $2e^{i\pi/4}(z-1+i)$, as well as the results of the successive steps described earlier).

Exercise 4.[4 points] Prove that $\lim_{z\to 1-i}\frac{2z+1}{iz+1}$ exists and give its value in the form x+iy.

Exercise 5.[5 points] Let f be a function defined on \mathbb{C} . We say that f is Lipschitz on \mathbb{C} if there exists K > 0 such that, for any $z, z' \in \mathbb{C}$,

$$|f(z) - f(z')| \le K|z - z'|.$$

Prove that, if f is Lipschitz on \mathbb{C} , then f has a limit at any point in \mathbb{C} .

Exercise 6.[5 points] Prove that $\lim_{z\to -1} \operatorname{Arg}(z)$ does not exist.

Exercise 7.[8 points] Let $z_0 \in \mathbb{C}$. Prove or disprove the following statements:

(1) Let f and q be functions defined on a deleted neighborhood of z_0 .

If
$$\lim_{z \to z_0} f(z) = \infty$$
 and $\lim_{z \to z_0} g(z) = \infty$, then $\lim_{z \to z_0} (f(z) + g(z)) = \infty$.

(2) Let f and g be functions defined on a deleted neighborhood of z_0 .

If
$$\lim_{z \to z_0} f(z) = \infty$$
 and $\lim_{z \to z_0} g(z) = \infty$, then $\lim_{z \to z_0} (f(z) \times g(z)) = \infty$.

Remark: In order to disprove a result, you have to give a counterexample.