Algebra practice problems

Exercise 1. Let G be a group and let H_1, H_2 be normal subgroups of G. Show that $H_1 \cap H_2$ is a normal subgroup of G.

Exercise 2. Let H be a subgroup of a group G. The centralizer of H in G is defined to be the set

$$C_H(G) = \{ x \in G, \ xh = hx \text{ for all } h \in H \}.$$

1. Show that $C_H(G)$ is a subgroup of G.
2. Show that if H is normal, then $C_H(G)$ is normal.

Exercise 3. 1. Find a permutation $\sigma \in S_9$ such that $\sigma(1,2)(3,4)\sigma^{-1} = (5,6)(3,1)$.

2. Does there exist $\sigma \in S_9$ such that $\sigma(1,2,3)\sigma^{-1} = (2,3)(1,6,7)$?

3. Does there exist $\sigma \in S_9$ such that $\sigma(1,2,4)\sigma^{-1} = (2,5)(1,3)$?

Exercise 4. The orthogonal group $O_n(\mathbb{R})$ is the subset of $M_n(\mathbb{R})$ given by

$$O_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}), \ M^tM = MM^t = I_n \}$$

where M^t denotes the transpose of a matrix M. We recall that for any matrix M, M and M^t have the same determinant.

1. Show that $O_n(\mathbb{R})$ is a subgroup of $(GL_n(\mathbb{R}), \cdot)$.
2. We define the special orthogonal group $SO_n(\mathbb{R})$ to be the subset of $O_n(\mathbb{R})$ of matrices with determinant 1:

$$SO_n(\mathbb{R}) = \{ M \in O_n(\mathbb{R}), \ det(M) = 1 \}.$$

Show that $SO_n(\mathbb{R})$ is a normal subgroup of $O_n(\mathbb{R})$.

3. Show that $SO_n(\mathbb{R})$ has index 2 in $O_n(\mathbb{R})$ and that $O_n(\mathbb{R})/SO_n(\mathbb{R})$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z}, +)$.

4. Check that for any real number θ, the matrix

$$M_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

is an element of $SO_2(\mathbb{R})$.

5. Check that the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is an element of $O_2(\mathbb{R})$. Is it an element of $SO_2(\mathbb{R})$?

Exercise 5. Let G be a group and let H be the commutator subgroup of G, that is, the set of all finite products of elements of the form $aba^{-1}b^{-1}$ for $a, b \in G$.

1. Show that H is a normal subgroup of G.
2. Show that the quotient G/H is abelian.
3. More generally, for any normal subgroup N of G, show that G/N is abelian if and only if N contains H.
Exercise 6. Let σ be the element of S_9 given by

$$\sigma = \left(\begin{array}{cccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 4 & 7 & 9 & 6 & 1 & 3 & 5 & 2 \end{array} \right).$$

1. Give a decomposition of σ into disjoint cycles.
2. Determine the sign of σ.
3. What is the order of σ in S_9?

Exercise 7. In S_4, consider the subset

$$H = \{ \text{id}, \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 4 & 4 & 4 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 4 & 4 & 4 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 2 & 4 & 4 \end{array} \right) \}.$$

1. Compute the inverses of the elements of H in S_4.
2. Is H a subgroup of S_4?

Exercise 8. Let $n \geq 1$ be an integer and let $H = \{ \sigma \in S_n, \sigma(1) = 1 \}$.

1. Show that H is a subgroup of S_n.
2. Write down all the elements of H when $n = 1$, $n = 2$ and $n = 3$.
3. When $n \geq 3$, show that H is not a normal subgroup of S_n.

Exercise 9. Let G be a group. Recall that the center of G is the subgroup of G given by

$$Z(G) = \{ x \in G, \; xg = gx \text{ for all } g \in G \}.$$

1. Show that $Z(G)$ is a normal subgroup of G.
2. We assume that the quotient group $G/Z(G)$ is cyclic.
 (a) Show that this implies the existence of some element $t \in G$ such that for all $a \in G$, the coset $aZ(G)$ is equal to $t^nZ(G)$ for some $n \in \mathbb{Z}$.
 (b) Show that if $aZ(G) = t^nZ(G)$, then there exists $x \in Z(G)$ such that $a = t^n x$.
 (c) Deduce from this that G is abelian.

Exercise 10. Let G be a group and let H be a subgroup of G. Recall that for all $g \in G$, gHg^{-1} is a subgroup of G. We define N to be the intersection of all these subgroups.

1. Show that it is a normal subgroup of G.
2. Show that if H is normal, then $H = N$.
3. Compute N when $G = S_3$ and $H = \{ \text{id}, (12) \}$.