Theory of Numbers homework 1
Divisibility
Due September 17th, 2018

Exercise 1. Let $a, b, c \in \mathbb{Z}$. Show that if $a|b$ and $a|c$, then for all integers k, l, we have $a|kb + lc$.
Solution. $a|b$ implies that there exists $s \in \mathbb{Z}$ such that $sa = b$. Analogously, $a|c$ implies that there exists $t \in \mathbb{Z}$ such that $ta = c$. Multiplying these equations by k and l respectively, we find that $ksa = kb$ and $lta = lc$. Then, $ksa + lta = kb + lc$. Factoring out a from the left hand side, we have that $(ks + lt)a = kb + lc$. In particular, we have that $a|(kb + lc)$.

Exercise 2. 1. Show that any integer can be written in exactly one of the forms $4k$, $4k + 1$, $4k + 2$ or $4k + 3$ for some integer k.
Solution. Let a be an integer. Writing its Euclidean division by 4, we get that $a = 4q + r$ where q and r are unique integers such that $0 \leq r < 4$. This means that r can be equal to 0, 1, 2 or 3, so a is equal to $4q$, $4q + 1$, $4q + 2$ or $4q + 3$. Moreover, by uniqueness of q and r, a cannot be written in two of these forms.

2. Show that the square of an even integer is of the form $4k$ for some integer k, and that the square of an odd integer is of the form $4k + 1$ for some integer k.
Solution. Let $x \in \mathbb{Z}$ be an even integer. Then for some $n \in \mathbb{Z}$ we can write $x = 2n$. Then $x^2 = (2n)^2 = 4n^2$. Taking $n^2 = k$, we have that $x^2 = 4k$.

Let $x \in \mathbb{Z}$ be an odd integer. Then for some $n \in \mathbb{Z}$ we can write $x = 2n + 1$. Then
$$x^2 = (2n + 1)^2 = 4n^2 + 4n + 1 = 4(n^2 + n) + 1$$
whence it follows that $x^2 = 4k + 1$ if we set $k = n^2 + n$.

Exercise 3. Show that for all integers a, b with $b > 0$, there exist unique integers q and r such that $a = bq + r$ and $b \leq r < 2b$.
Solution. If we have $a = bq + r$ with $b \leq r < 2b$, then we have
$$a = b(q + 1) + (r - b),$$
where $0 \leq r - b < b$. Thus, $q' = q + 1$ and $r' = r - b$ are exactly the quotient and remainder in the Euclidean division of a by b. By uniqueness of q' and r', the integers q and r, given by $q = q' - 1$ and $r = r' + b$ satisfy the above conditions, and are unique.

Exercise 4. Show that if (x, y, z) is a Pythagorean triple, that is, an integral solution of the equation
$$x^2 + y^2 = z^2,$$
thn exactly one of the following holds:
1. x, y, z are all even;
2. x and z are odd and y is even;
3. y and z are odd and x is even.
Solution. First of all, note that for an integer \(x \), \(x^2 \) is even (resp. odd) if and only if \(x \) is even (resp. odd). (This follows from Exercise 2: there, we showed that a square of an even number is of the form \(4k \), so it is even, and the square of an odd integer is of the form \(4k + 1 \), so it is odd. Conversely, if for some integer \(x \), \(x^2 \) is even, then it is not of the form \(4k + 1 \), so by the result of Exercise 2, \(x \) cannot be odd and must therefore be even. The same argument proves that if \(x^2 \) is odd, then \(x \) is odd.)

Next, notice that conditions 1, 2, 3 are mutually exclusive, so that it will be sufficient to show that they are the only possibilities.

Suppose \(x \) is even. If \(y \) is also even, then \(2 | (x^2 + y^2) \) so that \(2 | z^2 \). So, \(2 | z \). That is, condition 1 holds. Suppose that \(x \) is even while \(y \) is odd. Then \(2 | x^2 \) and \(2 \nmid y^2 \). So, \(2 \nmid z^2 \). Thus, \(z \) is odd. This is condition 3.

Suppose that \(x \) is odd. If \(y \) is even, then \(x^2 + y^2 \) is odd. So, \(z^2 \) is odd, and we see that \(z \) is odd. This is condition 2. If \(x \) is odd and \(y \) is odd, then \(x^2 + y^2 = z^2 \) is even and \(z \) must be even. So, \(z = 2n \), and we write \(z^2 = 4n^2 \). Then \(4 | z^2 \). This implies that \(4 | (x^2 + y^2) \). But, \(x^2 = 4k + 1 \) and \(y^2 = 4j + 1 \), by Exercise 2. So, \(x^2 + y^2 = 4(k + j) + 2 \). Thus, \(4 \nmid (x^2 + y^2) \), which is a contradiction. So, this equation has no solutions when both \(x \) and \(y \) are odd.

In conclusion, the only possibilities are conditions 1, 2, and 3. By mutual exclusivity, exactly one of them holds for any triple \((x, y, z) \in \mathbb{Z}^3 \) satisfying \(x^2 + y^2 = z^2 \).

Exercise 5. 1. Compute \(\gcd(201, 694) \).

Solution. We apply the Euclidean algorithm:

\[
\begin{align*}
694 &= 201 \times 3 + 91 \\
201 &= 91 \times 2 + 19 \\
91 &= 19 \times 4 + 15 \\
19 &= 15 \times 1 + 4 \\
15 &= 4 \times 3 + 3 \\
4 &= 3 \times 1 + 1
\end{align*}
\]

Therefore \(\gcd(694, 201) = 1 \).

2. Find integers \(u \) and \(v \) such that \(694u + 201v = \gcd(201, 694) \).
Solution. We apply the reversed Euclidean algorithm:

\[
1 = 4 - 3 \times 1 \\
= 4 - (15 - 4 \times 3) \times 1 \\
= 4 \times 4 - 15 \times 1 \\
= (19 - 15 \times 1) \times 4 - 15 \times 1 \\
= 19 \times 4 - 15 \times 5 \\
= 19 \times 4 - (91 - 19 \times 4) \times 5 \\
= 19 \times 24 - 91 \times 5 \\
= (201 - 91 \times 2) \times 24 - 91 \times 5 \\
= 201 \times 24 - 91 \times 53 \\
= 201 \times 24 - (694 - 201 \times 3) \times 53 \\
= 201 \times 183 - 694 \times 53.
\]

Therefore, \(u = 183 \) and \(v = -53 \) work.

Exercise 6. 1. (a) Show that for any \(a, n \in \mathbb{Z} \), \(\gcd(a, a + n) \) divides \(n \).

Solution. Set \(d = \gcd(a, a + n) \). Then, \(d \mid a \) and \(d \mid (a + n) \). It follows that \(d \mid (a + n - a) \). That is, \(d \mid n \).

(b) Deduce from this that \(a \) and \(a + 1 \) are always relatively prime.

Solution. Let \(d = \gcd(a, a + 1) \). Then \(d \mid 1 \) by (a). Since \(d \) is positive, this implies \(d = 1 \). Hence, \(\gcd(a, a + 1) = 1 \).

(c) Give an example where \(\gcd(a, a + n) \) is not equal to \(n \).

Solution. Take \(a = 2, n = 4 \), so \(a + n = 6 \). Thus, \(\gcd(2, 6) = 2 \neq 4 \).

2. Let \(a \) and \(b \) be two integers such that \(\gcd(a, b) = 1 \). Show that \(\gcd(a + b, a - b) \) is equal either to 1 or to 2.

Solution. Set \(d = \gcd(a - b, a + b) \). Then \(d \mid (a + b) \) and \(d \mid (a - b) \), so \(d \) divides \((a + b) + (a - b) = 2a \) on the one hand, and \((a + b) - (a - b) = 2b \) on the other hand. Therefore, \(d \mid \gcd(2a, 2b) \) by remark 2.3.6 in the lecture notes. But \(\gcd(2a, 2b) = 2 \gcd(a, b) = 2 \), so \(d \mid 2 \). Since \(d \) is positive, \(d = 1 \) or \(d = 2 \).

3. Let \(a, b, c \) be integers such that \(\gcd(a, b) = 1 \) and \(\gcd(a, c) = 1 \). Show that \(\gcd(a, bc) = 1 \).

Solution. Because \(\gcd(a, b) = 1 \), we can find coefficients \(s, t \in \mathbb{Z} \) such that

\[
sa + tb = 1.
\]

Multiply both sides of the equation by \(c \) to get

\[
csa + tbc = c.
\]

Now, let \(d \) be such that \(d \mid a \) and \(d \mid bc \). Then by the preceding equation, we have that \(d \mid c \). Then, \(d \mid a \) and \(d \mid c \), so \(d \leq \gcd(a, c) = 1 \). Hence, \(d = 1 \). Therefore, \(\gcd(a, bc) = 1 \).