Algebra homework 1
Set theory, equivalence relations
Due September 18th, 2019

Please hand in your homework stapled, with your name written on it. All answers have to be justified.

Exercise 1. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be the map \(f : x \mapsto (x + 1)^2 \). Compute the inverse image sets \(f^{-1}(A) \) of the following sets \(A \):

(a) \(\{ -9 \} \)

Solution. This is empty, as \(-9\) is never a square.

(b) \(\{ -1, 0, 4 \} \)

Solution. We have
\[
\begin{align*}
f^{-1}(\{ -1, 0, 4 \}) &= \{ x \in \mathbb{R} : (x + 1)^2 = -1, 0 \text{ or } 4 \} \\
&= \{ x \in \mathbb{R} : x + 1 = 0, 2 \text{ or } -2 \} \\
&= \{-1, 1, -3\}.
\end{align*}
\]

(c) \([0, +\infty) = \{ x \in \mathbb{R} : x \geq 0 \} \)

Solution. \(f^{-1}([0, +\infty)) = \{ x \in \mathbb{R}, (x + 1)^2 \geq 0 \} = \mathbb{R} \).

Exercise 2. Let \(f : X \rightarrow Y \) be a map between sets.

1. For any two subsets \(A, B \) of \(Y \), show that
\[
\begin{align*}
f^{-1}(A) \cup f^{-1}(B) &= f^{-1}(A \cup B) \quad \text{and} \quad f^{-1}(A) \cap f^{-1}(B) &= f^{-1}(A \cap B).
\end{align*}
\]

Solution.
\[
\begin{align*}
f^{-1}(A) \cup f^{-1}(B) &= \{ x \in X \text{ such that } x \in f^{-1}(A) \text{ or } x \in f^{-1}(B) \} \\
&= \{ x \in X \text{ such that } f(x) \in A \text{ or } f(x) \in B \} \\
&= \{ x \in X \text{ such that } f(x) \in A \cup B \} \\
&= f^{-1}(A \cup B).
\end{align*}
\]

In exactly the same way,
\[
\begin{align*}
f^{-1}(A) \cap f^{-1}(B) &= \{ x \in X \text{ such that } x \in f^{-1}(A) \text{ and } x \in f^{-1}(B) \} \\
&= \{ x \in X \text{ such that } f(x) \in A \text{ and } f(x) \in B \} \\
&= \{ x \in X \text{ such that } f(x) \in A \cap B \} \\
&= f^{-1}(A \cap B).
\end{align*}
\]

1
2. For any two subsets A, B of X, show that

$$f(A) \cup f(B) = f(A \cup B).$$

Solution. Let $y \in Y$. We have $y \in f(A) \cup f(B)$ if and only if y is of the form $f(x)$ where $x \in A$ or $x \in B$. This is the case if and only if $y = f(x)$ with $x \in A \cup B$, that is, if and only if $y \in f(A \cup B)$, whence the result.

3. (a) Show that in general

$$f(A) \cap f(B) \neq f(A \cap B)$$

by giving a counterexample. (Hint: draw a picture)

Solution. The following picture shows that if $X = \{a, b\}$ is a set with two elements, $Y = \{y\}$ is a singleton (that is, a set with one element), and f is defined to be the constant map, we have, putting $A = \{a\}$ and $B = \{b\}$, that

$$f(A) \cap f(B) = \{y\}$$

whereas

$$f(A \cap B) = f(\emptyset) = \emptyset.$$

Note that the inclusion

$$f(A) \cap f(B) \supseteq f(A \cap B)$$

is nevertheless always true. Indeed, if $y \in f(A \cap B)$, then we can write $y = f(x)$ with $x \in A \cap B$ (that is, $x \in A$ and $x \in B$), which means in particular that $y \in f(A)$ and $y \in f(B)$, that is, $y \in f(A) \cap f(B)$.

(b) Show that we do get equality in (1) if we furthermore assume that f is injective.
Solution. The answer to the previous question illustrates the fact that non-injectivity makes the equality go wrong. Assume that \(f \) is injective. We already know that
\[
f(A) \cap f(B) \supseteq f(A \cap B)
\]
so it suffices to prove that
\[
f(A) \cap f(B) \subseteq f(A \cap B).
\]
If \(y \in f(A) \cap f(B) \) then \(y \in f(A) \) and \(y \in f(B) \), that is, \(y = f(a) = f(b) \) for some \(a \in A \) and some \(b \in B \). Since \(f \) is injective, we have \(a = b \). Thus, \(a \in B \), and so \(a \in A \cap B \), which implies that \(y \in f(A \cap B) \).

Exercise 3. Let \(f : X \to Y \) and \(g : Y \to Z \) be maps between sets.

1. Show that if \(g \circ f \) is injective, then \(f \) is injective.

 Solution. Assume that \(g \circ f \) is injective. Let \(x, y \in X \) be such that \(f(x) = f(y) \). Apply \(g \) to both sides of the equation, to get \(g(f(x)) = g(f(y)) \). By injectivity of \(g \circ f \), we then get \(x = y \). This proves \(f \) is injective.

2. Show that if \(g \circ f \) is surjective, then \(g \) is surjective.

 Solution. Assume \(g \circ f \) is surjective. Let \(z \in Z \). By surjectivity of \(g \circ f \), we have an element \(x \in X \) such that \(g(f(x)) = z \). Then \(y = f(x) \) gives us an element of \(Y \) such that \(g(y) = z \), so \(g \) is surjective.

Exercise 4. For an element \(x = (x_1, x_2) \) of the plane \(\mathbb{R}^2 \), we denote by \(\|x\| = \sqrt{x_1^2 + x_2^2} \) its Euclidean norm. Let \(\sim \) be the relation on the plane \(\mathbb{R}^2 \) given by
\[
x \sim y \quad \text{if} \quad \|x\| = \|y\|.
\]
Show that \(\sim \) is an equivalence relation and describe its equivalence classes.

Solution. For any \(x \in \mathbb{R}^2 \), we have \(\|x\| = \|x\| \), so \(x \sim x \), so \(\sim \) is reflexive. For any \(x, y \in \mathbb{R}^2 \), if we have \(\|x\| = \|y\| \) then we have \(\|y\| = \|x\| \), and therefore \(x \sim y \) implies \(y \sim x \), which means that \(\sim \) is symmetric. Finally, for any \(x, y, z \in \mathbb{R}^2 \), if \(x \sim y \) and \(y \sim z \), then we have \(\|x\| = \|y\| \) and \(\|y\| = \|z\| \), and therefore \(\|x\| = \|z\| \), that is, \(x \sim z \), so that \(\sim \) is transitive.

Let \(x \in \mathbb{R}^2 \), and put \(r = \|x\| \). Then the equivalence class of \(x \) is the set
\[
\{ y \in \mathbb{R}^2; \|y\| = r \}
\]
of all elements with norm \(r \). If \(r > 0 \) this is the circle \(C_r \) of radius \(r \) centered in the origin. For \(r = 0 \), the only point of norm zero is the origin, so the corresponding equivalence class is just the singleton \(\{(0, 0)\} \).

Exercise 5. We define a relation \(R \) on \(\mathbb{Z} \) by \(aRb \) if \(a \) divides \(2b \).
1. Is R reflexive?

 Solution. Yes, since for every $a \in \mathbb{Z}$, we do have $a|2a$.

2. Is it symmetric?

 Solution. No: we have $2R8$, but we do not have $8R2$.

3. Is it transitive?

 Solution. If the relation were transitive, we would have that if a divides $2b$ and b divides $2c$, then a divides $2c$. Intuitively, this seems wrong as the assumption should a priori just imply that a divides $4c$, not $2c$. Let us build a counterexample based on this intuition, by trying c to be as small as possible while a is divisible by 4, so that we really need the factor 4. Thus, $a = 4$, $b = 2$, $c = 1$ gives us a counterexample.