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An Accuracy Test of a Cartesian Grid Method for 
Steady Flow in Complex Geometries* 

Marsha Berger! John Melton! 

Abstract 
We describe a. method to solve the inviscid compressible Euler equations using non-body-fitted Cartesian 

grids. We briefly survey the geometric procedures needed for the "grid generation" in this approach and 
show some Cartesian grids for three dimensional configurations. The major source of error in these methods 
is at the irregular boundary cells. This has motivated us to study various improvements in the numerical 
scheme (a Godunov method) on a model problem with smooth flow in two spa.ce dimensions. 

1 Introduction 

We describe a Cartesian mesh method for solving the steady inviscid Euler equations for complicated geome-
tries. This approach uses a regular Cartesian grid , with the solid boundaries carved out of the underlying 
grid in an essentially arbitrary way (see Figure 2.) This technique is sometimes called the "cookie cutter" 
approach. It leaves a border of irregular cells along the edge of a solid boundary, where special difference 
schemes are needed. However the rest of the grid is completely regular, allowing us to use highly efficient and 
accurate finite difference schemes over most of the domain. All the overhead for the geometry complexity is 
at the boundary. This is not the case for body-fitted or unstructured grids - the other popular ways to deal 
with complex geometry. 

Until recently, Cartesian grid methods have received relatively less attention than the alternative ap-
proaches. Previous work includes [13], [7], [11] and [10], and of course TRANAIR [22] (using Cartesian grids 
for potential flow), a production workhorse at Boeing. In the time dependent case methods have been de-
veloped in [5], [6], [19], [20]. Lockheed-Ft.Worth [15] now uses a Cartesian grid method as one of their CFD 
tools, and a commercial package for "under the hood" automotive calculations is now available as well. Clearly, 
interest in these methods is growing. 

The purpose of this talk is two-fold. We first give an overview of the types of geometric calculations used in 
generating a Cartesian grid, and present some results from these algorithms for 3D configurations. Secondly, 
we address the important question of accuracy. Just because we can generate a grid doesn't mean we can 
compute a good flow solution on it. We start with the simplest method on a 2D model problem, and measure 
the error in the computation. We then modify various pieces of the algorithm to try to isolate the sources of 
error, and improve the overall quality of the solution. 

Since Cartesian grids are completely irregular at the boundaries of the domain, (where the grid intersects 
the body), it is not even clear what accuracy and convergence rate to expect. (There is beginning to be some 
literature on the question of accuracy on non-smooth grids [16], [21]). Cartesian mesh methods are usually 
applied to such complex problems that the sources of error may never be known in a quantitative way. We 
feel it is important to study model problems to gain an understanding of the behavior of these methods. 

Our test problem was first used by [2] in a comparative study of the accuracy of quadrilateral vs. triangular 
body-fitted grids. We will compare our results with the corresponding body-fitted results in that work. Since 
for aerodynamic flows we are especially interested in the solution at the boundary, we will measure the accuracy 
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along the boundary as well as over the entire fl ow field. A previous study of accuracy was also done in [8] for 
a slightly different method . We obtain similar results to theirs in this work. 

In the next section we give an overview of the Cartesian mesh method . We list the quantities needed for 
the flow solver, and the geometric calculations needed to provide those quantities. In section 3 we describe 
our numerical algorithm. Section 4 presents the computational results for steady supersonic flow in a circular 
channel. We try several modifications of the basic algorithm to improve its convergence rate at the boundary. 
This work is still in progress, so instead of definitive conclusions we have a brief discussion of the current state 
of affairs in section 5. 

2 A Cartesian Grid Mesh Generator 

In this section we describe the geometric operations necessary to defin e the flowfield geometry to the flow 
solver. We present this specifically in the context of solving the compressible Euler equat ions in integral form , 

where U = (p , pu , pv , pw , pEJT and 

J J in U dx dydz = - L f . n dS 

pq·n 1 puq · n+ pn. 
pvq· n + pny , 
pwq· n + pn, 
(pE + p)q. n 

(I) 

where q = (u, v, w). These equations place no restrictions on the shape of an individual control volume. Over 
most of the domain the volumes will be the usual Cartesian cubical cell (although since mesh refinement will 
be used in computing the solution, the volumes of these cells will depend on the level of refinement). Only 
the body-intersecting cells will be irregular. For these cells special information will be required to accurately 
compute the flow and impose the solid wall boundary conditions q . n = 0 , where n is the unit normal to the 
surface. 

This normal vector can be approximated in a cell using the divergence theorem : the sum of the surface 
areas multiplied by the normal vector over all sides of the volume sum to zero. Since the other sides of the cell 
are portions of a Cartesian cell, this computation is rather simple, and the area of the solid surface intersecting 
the cell does not need to be directly computed. A similar application of the divergence theorem simplifies the 
calculation of the volume centroid as well . In two dimensions, this amounts to approximating the boundary 
of the solid body by a piecewise linear segment in each cell. Note that in three dimensions , even if the body 
intersects each face in a straight line, it may still be impossible to find a plane that gives those straight line 
intersections. 

For our numerical scheme (described completely in the next section in two space dimensions), the infor-
mation needed by the flow solver is: 

• area of each cell face (exterior to the solid body), 

• face centroid for each face, 

• volume centroid for each irregular cell, 

• surface normal for the body surface in each cell at the boundary. 

This information is found , for the most part, by intersecting Cartesian cells with the description of the 
body. For the computations here , the body is described by a list of triangles defining the surface. Other 
representations are possible however, and we have also investigated generating the Cartesian mesh directly 
from a CAD/CAM system using a NURBS description of the geometry [18]. The operations themselves are 
conceptually simple though unfortun ately not simple to program. We illustrate them pictorially here. More 
details are found in [17]. 
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Figure 1: Illustration of some of the steps in Cartesian grid generation. 

We first examine each cell to determine whether it is body-intersecting. This is illustrated in Figure l. 
This step amounts to computing the intersections of lines and planes. If a cell is not body-intersecting, we 
determine whether it is inside or outside the flow field domain by casting a ray from the cell center out to 
the far-field and counting the number of intersections it makes with the surface. This is shown in Figure 
lb. For cells that intersect the body, the face polygon is 'clipped' (see e.g. [12]) with the co-planar surface 
cross-section, using the Sutherland-Hodgman polygon clipping algorithm (illustrated in Figure Ie). The area 
and centroid of the resulting planar polygon is easily calculated. Applying the divergence theorem with the 
calculated areas of the 6 planar faces of each cell gives the integrated surface normal and area for the body 
surface in that cell. This is shown in Figure 1d. At present, the cell intersection information is computed 
for all cells at a pre-determined finest level of refinement. This is saved in what we call the "database grid". 
However, not all these cells need to be present in the flow solution. Using curvature criteria, also described in 
[17], the appropriate level of refinement to describe the body geometry is determined, before the flow solver is 
applied. (This is as opposed to the dynamic refinement based on the flow solution itself that occurs at various 
times during the flow field solution process). It is likely that in future versions of the code, this will be done in 
a more efficient way. 

In Figure 2 we show several views of an F16XL Cartesian grid. It has 277657 cells in all. Of these cells, 
20%, or 56205 cells intersect the body. It took approximately 6 minutes on a C90 to generate the grid. We 
demonstrate that an actual flow solution for a complex configuration in three dimensions can be computed 
on such grids in Figure 3, which shows the Mach distribution for a supersonic transport test case. The flow 
solver in Figure 3 uses a Jameson-Schmidt-Turkel type scheme [14J. In the rest of this paper however we solve 
a two dimensional model problem with a Godunov type scheme to study the accuracy of flow computations 
on non-body-fitted grids. 

3 A Cartesian Grid Flow Solver 

In this section we describe a variation of a second order Godunov scheme for use on Cartesian non-body-fitted 
grids. The scheme is based on piecewise polynomial reconstruction in each cell. Such schemes typically give 
second order convergence for smooth flows on regular grids. For irregular grids however the usual truncation 
error analysis, based on cancellation of the leading error terms when differencing the fluxes, breaks down. We 
will study the convergence rate of our algorithm numerically in section 4. We first describe the basic method 
(in two space dimensions) applied over the regular portions of the domain. We then describe the modifications 
necessary for the irregular cells at the boundary of the domain . As much as possible the implementation 
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" 



Figure 3: !'vlach dis tribution fOl' supersonic tr a.nsport. 

proceeds in the same way: regul a r (vedo ri lia ble) ca.leu lat ions over t he en ti re Ca rtesiall g rid (i ncl Lid i ng cells in 
the "interior" o r t he body) fo llowed by a " fix-up': pass over the irregular cel ls at the so lid surface . 

The bas ic scheme we use is a high resolution GOdIlIlOV'S method: ro r eac h cell we 

• Reconstruct. the solution in each cell Ll sing a piecewi se linear run ct ion . VVe use a secoJld o rder grad ient 
based on cent ra l diAe rencing in each direc t io ll . 

• Predict a left a nd right s tate at the midpoint of each ce ll edge, llsing t he grad ient info rm ation. 

• Solve a Riemann problem to determ ille a unique stat.e a t, the m id poin t. or each edge. T he Riem a nn solver 
we use is based on [9]. 

• Evaluate the integra l o r the fl uxes in ( 1) using t he midpoint rule. 

• Advance t he solu t. ion to stea dy state us ing a three st.age Runge Ku LLa met hod wil,h local time step ping. 

These steps need to be modified for use a t. t he ir regul a r cells . POI' examp le, t.he midpoint. o r t he cell edge 
fo r a n irregul ar cell (cent roid in :30) needs t.o be calcu lated during the mesh generat ion ph ase described in 
Section 2. T he aduallengt h (i n 20 ) 0 1' race a rea (in 3D) needs t.o be ca.lcu la ted t hen as well. PO I' stea.dy s tate 
calculat. ions, the volullw of t he cut. ce ll is not needed. For the loca l t.i me s tep ro r the irregular cells we take 

t;, = _-: ___ cf,-' _' _ie'! 1,-",,<1';.-_,-,-_ 
lIl i:l..,\(u + c) V + c) * Lel1yth IJlCl.J" 

where A jlJ/I = D. x x D.!J is t he a rea o r a regul ar (fu ll ) ce ll , a nd Len[ll hmaJ· is the length or t he max imum side 
o r a cut cell. Fo r t. he bo rder of cells lI f J:1 to t he irregul ar celis, we use a one-sided second o rder deri vati ve 
a.pp roximation ins t.ea.d o f a central d ifl'e re ll ce. 

The 1110St. d iffi cult modifi cation concerns the recons truct ion o r t he solut ion at t.he irreg ul a.r cells t hemselves. 
Sin ce t he cell cent,ro ids genera lly do II Ot line up in neighboring Clli, ce lls, we ca n no longe r determi ne t he 



differences separately in each direction. We use a least squares procedure to determine the gradient in the 
following way. For a given cell Uo we try to fit a linear polynomial so that 

"0 + (Xj - xo)uo, + (Yj - yo)uoy = "j, (2) 

where the centroid of cell 0 is (xo, YO) with cell average "0, and the subscript j refers to the same quantities of 
a neighboring cell . For linear reconstruction, we use neighboring cells that share an edge wi th the given cell , 
(unless there are not enough , for example, in the triangular cell case, where we also include diagonal neighbors 
that share a node). This formulation is automatically conservative} since a linear function through fio at the 
centroid automatically preserves the cell average. However, for quadratic reconstruction this is not the case, 
and considerably more work must be done. In our tests with quadratic reconstruction, (the results of which 
are described in Section 4) , we set up a linear system for a polynomial P in cell 0 

In (3), the unknowns are the coefficients Cl through C5, and the quantities 5 zz = Jeello{ z - x O)2, 5zy and Syy 

are pre-computed to maintain conservation, 

j p(x, y) = "oAo. 
eello 

(4) 

This is necessary because, unlike the linear case, p(xo, YO) # " 0. Given this definition of p, the reconstruction 
proceeds again in a least squares sense using 

j p(Xj,Yj) ="j ,· 
cellj 

(5) 

where the neighboring cells j now include two rings of cells that share edges, starting from the given cell . 
To compute the integral of the quadratic polynomial , both for (4) and (5) , we use a third order accurate 
approximation. Specifically, the integral over a triangle is approximately the average of the function values 
at the midpoints of the sides multiplied by the area of the triangle. In two dimensions this is somewhat less 
work than using the divergence theorem to reduce the computation to an integral around the boundary of the 
cell. More in depth discussions of high order polynomial reconst ruction can be found in [4,3 ,IJ . 

Despite all the care to accurately compute quadratic reconstructions with the correct cell average properties, 
we found virtually no difference in the results between using (3) and simply treating the cell averages as 
pointwise values. Since the former is much more expensive computationally, we would probably not do this 
again for steady state computations. However, in all the numerical examples, we compare the computed 
solution uiJ which is an approximation to the integral average over cell j , with the "exact" integral average 
over the cell (computed to third order using the approximation mentioned above). 

One final point concerns the use of limiters. Since our test problem is smooth, and our goal is to test 
the accuracy of our reconstruction procedures, we did not use a limiter. When it is necessary, we limit the 
reconstructed solution over the entire cell so that it does not exceed any neighboring solution value at the cell 
edge. We note that [2J reports better results using a face based limiter, where the reconstructed solution has 
a different limiter applied at each face (in 2D, each edge is limited separately) . 

4 Numerical Results 

The two dimensional test problem for our numerical convergence study is found in [2J . We solve the inviscid 
compressible Euler equations for a supersonic vortex in a channel formed by concentric circular arcs. The 
boundaries of the channel form one quarter of a circle, with inner radius rj and outer radius ro o A smooth 
analytic solution exists for this problem, so the errors in the computation can be evaluated. The density is: 

, -I 2 ri . p(r) = Pi[1 + - 2-M,{I- (-;:-)-}J'. , (6) 

and the velocity varies inversely with the radius. We use the same geometry and test parameters as [2], Pi = I , 
ri = I , r. = 1.384, Mi = 2.25, and Pi = Ih. For all test cases, the program is run until the residuals have 
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Mesh Size Second Order First Order 
Reg. Quad Distorted Reg. Quad Distorted 

31 x 6 .40 .97 16.04 15 .77 
61 x 11 .10 .43 7.39 7. 31 

121 x 21 .03 .19 3.65 3.79 
Rate 2.08 l.21 1.10 1.07 

Table 1: 1st and 2nd order results of Aftosmis et al. 

h Linear Constant 
All cells Ratio Bndry. Cells Ratio All cells Ratio Bndry. Cells Ratio 

.0533 9.68(-2) 2.6 1 (- 1) 5.28 (0) 7.65(0) 

.0266 2.54(-2) 3.81 9.5 1 (-2) 2.74 2.75 (0) 1.92 4.34(0) l.76 

.0 133 6.23(-3) 4.07 3.71 (-2) 2.56 1.45 (0) 1.89 2.38(0) l. 82 

Table 2: 1st and 2nd order Cartesian results for entire fiowfield and boundary cells only. 

converged four or fiv e orders of magnitude. We measure the ac tual global error in the foll owing tables. The 
relevant results of [2J for structured quadrilateral grids are given here as well for comparison purposes. In all 
cases the error in the density field is measured. Starting from the basic algorithm outlined in the prev ious 
section , we will exp eriment with the reconstruct ion algorithm, the flu x evaluations , and the representation of 
the boundary itself to try to improve the accuracy of the results at the solid walls. 

The first numeri cal study exam ines the errors using piecewise linear reconstruction of the solution. Table 
1 summarizes the percent relative errors from [2L and includes their linear reconstruction (second order) and 
piecewise constant (first order) results. Also included are their results using randomly distorted quadrilateral 
meshes as an interest ing as ide. In their results, the 11 and 12 norms gave the same convergence rates and 
approximate error, so we only repeat the form er. The quantity measured in [2J is 

E '" I q"", , - q, IA rror = L- k 
k q exacl 

(7) 

where the sum is over a ll cells k . We will use t he same definition in Table 2 to present the Cartesian results. 
Later we will also use the following measure of relat ive error in the II norm , 

lIq exact - qcompu tedl l l 

IIq"",, II , 
L, Iq"",, - q,IA, 

L, Iq,,",ciA, (8) 

where At is the area of the kth cell. This is a direct discret ization of the continuous LJ norm. We also measure 
the error at the boundary only, defined as 

IIq"",, - q,omp"',dlh = L'E8 Iq"",, - q, II, 
IIq"",,II, L'E8Iq,,",tl l, 

(9) 

In (9) the su m is taken only over the cut cells, and the cell error is multiplied by a lengt h rather t han t he 
cell a rea. Here we take" to be the length of the boundary segment in that cell. Note however t hat a large 
cell could have a small boundary segment. We have also tried using in the boundary norm with similar 
though less clean results. Although the use of a piecewise linear boundary representation in each cell is second 
order the convergence is not smooth , since the intersection of the boundary with the Cartesian mesh is not 
regular . We expect the error to be bounded by const x h2 , but we do not expect an asymptotic expansion. 
Since the norm itself is not smooth , this increases the difficulty in measuring the accuracy of the ap proximation 
at the boundary cells. 

In our Cartes ian non-body fitted grid we use a regu lar grid spacing for our convergence study starting with 
h = .0533 in each direction. There a re 294 cells in the fl ow field on t his coarsest grid , 206 full cells and 88 
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h 2nd Order Ratio Match Errors Ratio Quad at Ratio Quad at Ratio 
Linear Recan cut cells 2 rings 

.0533 2.41 (-1) 2.31 (-1) 2.25 (-1) 1.83 (-1) 

.0266 9.37 (-2) 2.57 9.17 (-2) 2.52 8.88 (-2) 2.53 6.45 (-2) 2.83 

.0133 4.01 (-2) 2.34 4.31 (-2) 2.13 3.98 (-2) 2.23 2.80 (-2) 2.30 

Table 3: Various types of quadratic reconstruction at boundary cells. 

cut cells. In the body-fitted case a grid with 31 x 6 nodes has 186 degrees of freedom. Thus the first entry in 
Table 2 corresponds to resolution sligbtly better than the first row of Table I. 

There are several tbings to note from Tables 1 and 2. The solution using regular quadrilaterals is slightly 
worse than the corresponding Cartesian solution, even with the flow alignment of the body- fitted grid. In 
fact, the extra accuracy of using regular Cartesian grids is apparent even in the first order results. Tbe quality 
of the results for distorted quadrilaterals (wbere the nodes of the body-fitted grid are randomly perturbed 
a small amount) deteriorate quite a bit. In the Cartesian results, where one can view tbe perturbation as 
restricted to the boundary of the mesh, the boundary cells have similar accuracy, but tbe overall flowfield 
results do not suffer. 

Table 2 also sbows that tbe errors at the boundary are significantly worse tban in tbe interior. Although 
the overall accuracy remains second order I often the ercors at the boundaries are the most important in terms 
of measurable quantities such as lift and drag. The following experiments focus strictly on improving the 
errors at the boundary. 

Next we try to improve the results from linear reconstruction by using quadratic reconstruction in four 
ways, shown in Table 3. First, we use a second order linear reconstruction instead of first order in the cut cells. 
To do this, we compute a quadratic in the cut cells, but only use the linear part of it to predict the edge states. 
This makes it more compatible with the interior scheme, which also uses second order gradient information. 
Secondly, we do quadratic reconstruction in the cut cells, but at edges of regular cells, we match the form of 
the error in the neighboring reconstructed edge state. This means that the cells bordering the cut cells will not 
suffer the loss of accuracy from the changing stencil, nor lose the local truncation error cancellation property. 
To use a ID example, a Taylor series approximation to the edge state is 

If u%' is computed to second order, the leading term in the error for the edge state using linear reconstruction 
IS 

(10) 

To match the error at edges between cut cells and full cells, the cut cell edge state is approximated using 
the full quadratic polynomial, and then an error term of the form (10) is explicitly added in (either Un or 
u •• depending on the edge orientation. Note however that the coefficients in 10 do not vary with cut cell 
size). This approach explicitly forces the first full cell to retain locally third order truncation error , since when 
differencing the edge states the second order errors cancel. This comes however with the penalty of reducing 
the locally third order accuracy of the cut cells. 

Thus, in the third column we use the full quadratic reconstruction at all edges of the cut cells. In the 
fourth column we use quadratic reconstruction in both the cut cells and their neighbors. In all cases we only 
use the midpoint rule for a single flux evaluation at the cell edges. We measure only the percent relative error 
along the boundary using (9). The ratio between the errors in successive approximations is in the adjacent 
column. In all cases the convergence rate of the entire flowfield continues to be second order, as in Table 2. 

Although in all cases the magnitude of the error decreases a bit over that of Table 2, the rate of convergence 
still falls below second order. Thus, for the next test we improve on the results in Table 3 by using 2 point 
Gaussian quadrature to do the flux evaluations, along with quadratic reconstruction at all edges of the cut 
cells. This result is summarized in the first two columns of Table 4, showing first the error over the entire flow 
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h Quad+2pt.at cut cells Quad+2pt.for whole FF 
FF Error Ratio Bndry.Er. Ratio FF Error Ratio Bndry.Er. Ratio 

.0533 9,45(-2) 1.44(-1) 6.62(-2) 1.19(-1) 

.0266 2.59(-2) 3.65 4.31(-2) 3.34 1.09(-2) 6.07 2.73(-2) 4.35 

.0133 6.53(-3) 3.96 1.39(-2) 3.1 1.59(-3) 6.86 6.77(-3) 4.03 

Table 4: Quadratic reconstruction with 2 pt. Gauss quadrature at cut cell edges (first 2 columns) and over 
the whole flow field (last 2 columns). 

h FF Error Ratio Bndry. Er . Ratio FF Error Ratio Bndry. Er. Rat io 
.0533 4.94(-2) 1.24(-1) 6.59(-2) 1.19(-1) 
.0266 1.34(-2) 3.68 3.84(-2) 3.23 1.08(-2) 6. 10 2.73(-2) 4.35 
.0133 3.98(-3) 3.37 1.57(-2) 2.95 1.56(-3) 6.9 6.70(-3) 4.07 

Table 5: Flowfield and boundary errors using multiple line segments per cell to represent the boundary. The 
first half of the Table uses quadratic reconstruction at the boundary; the second half uses it over the entire 
flowfield along with 2 pt. Gauss quadrature. 

field, then the boundary errors. For comparison, we also use quadratic reconstruction with two point Gaussian 
quadrature over the entire flow field ; this is summarized in the last two columns. There is improvement both 
in the actual level of the error as well as the convergence rate. (We would have hoped however that this rate 
would be closer to third order) . 

The final experiment in this series looks at the error coming from the boundary representation itself. A 
piecewise linear segment in each cell incurs an error of 0(h3) in the area of the cell. A logical next step is to try 
a higher order representation of the boundary, although for 3D calculations this might be impractical unless 
working directly with a NURBS representation of the surface . We test the hypothesis that a large portion 
of the error comes from the boundary representation by using a subcell resolution of the boundary. We use 
multiple line segments in each cell taken from a grid that is four times finer in each direction. Everything 
else is as above: quadratic reconstruction with two point Gaussian quadrature at all edges of the cut cells. 
Other cells use linear reconstruction with a midpoint rule for the flux evaluations. The results are in Table 5. 
(For comparison, the last columns use quadratic reconstruction for the whole flowfield , along with the subcell 
boundary resolution). 

Again, the actual error magnitude decreases, but it is not showing a second order rate. Hypotheses for this 
include the mismatch between the boundary scheme and the interior scheme, perhaps the boundary layer of 
error is a growing function of ii, perhaps this mesh spacing is not in the asymptotic regime, or possibly a bug. 

5 Discussion 

This study is not complete, since we have not yet definitely isolated the major sources of error. However we 
have reduced the magnitude of the error by a factor of 5. Mesh refinement would have required the mesh 
spacing to be reduced by more than a factor of 2 in each direction I leading to more than 4 times the work. 
More investigation is needed to understand the accuracy tradeoffs in finding the most effective method for 
efficiently computing flows for complex configurations. This will be especially important in three dimension , 
when mesh refinement alone will not be an efficient way to improve accuracy (since a single cell division leads 
to 8 times the number of cells). 
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