
H-BOX METHODS FOR THE APPROXIMATION OF HYPERBOLICCONSERVATION LAWS ON IRREGULAR GRIDSMARSHA J. BERGER�, CHRISTIANE HELZEL�, AND RANDALL J. LEVEQUEyAbstra
t. We study generalizations of the high-resolution wave propagation algorithm for theapproximation of hyperboli
 
onservation laws on irregular grids that have a time step restri
tionbased on a referen
e grid 
ell length that 
an be orders of magnitude larger than the smallest grid
ell arising in the dis
retization. This Godunov-type s
heme 
al
ulates 
uxes at 
ell interfa
es bysolving Riemann problems de�ned over boxes of a referen
e grid 
ell length h.We dis
uss stability and a

ura
y of the resulting so-
alled h-box methods for one-dimensionalsystems of 
onservation laws. An extension of the method for the two-dimensional 
ase, that is basedon the multidimensional wave propagation algorithm, is also des
ribed.Key words. �nite volume methods, 
onservation laws, non-uniform grids, stability, a

ura
yAMS subje
t 
lassi�
ations. 35L65, 65M121. Introdu
tion. We 
onsider the numeri
al approximation of hyperboli
 sys-tems of 
onservation laws using �nite volume s
hemes on irregular grids. We mainlyrestri
t our 
onsiderations to the 
ase of one spatial dimension, although an extensionto the two dimensional 
ase will also be 
onsidered. Under appropriate smoothnessassumptions the equations 
an be formulated in the di�erential form��tq(x; t) + ��xf(q(x; t)) = 0; (1.1)where q(x; t) is a ve
tor of 
onserved quantities and f(q(x; t)) is a ve
tor of 
uxfun
tions. For the numeri
al approximation we want to use a �nite volume method.On an unstru
tured grid su
h a s
heme 
an be written in the general formQn+1i = Qni � 4t4xi �Fi+ 12 � Fi� 12� ; (1.2)where Qni is an approximation of the 
ell average of the 
onserved quantity over thegrid 
ell [xi� 12 ; xi+ 12 ℄ at time t = tn. The ve
tor valued quantities Fi� 12 and Fi+ 12 arethe numeri
al 
ux fun
tions at the 
ell interfa
es. We denote the time step by 4tand the length of the i-th grid 
ell by 4xi = xi+ 12 � xi� 12 .We are in parti
ular interested in the 
onstru
tion of high-resolution s
hemes fora grid whi
h 
ontains one small grid 
ell, while all other grid 
ells have the samelength that will be denoted by h = 4x. This situation is motivated by a two-dimensional appli
ation, namely the 
onstru
tion of Cartesian grid methods withembedded irregular geometry. Away from the boundary one may want to use aregular Cartesian grid. Near the boundary one then obtains irregular 
ut-
ells, whi
hmay be orders of magnitude smaller than the regular grid 
ells. Our aim in su
h asituation is to 
onstru
t a s
heme that is stable based on time steps adequate for the�Courant Institute of Mathemati
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2 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEregular grid. Su
h methods were developed by Berger and LeVeque in [4℄, [5℄, [6℄. Thebasi
 idea of these so-
alled h-box methods is to approximate the numeri
al 
uxes atthe interfa
es of a small 
ell based on initial values spe
i�ed over regions of length h,i.e. of the length of a regular grid 
ell. If this is done in an appropriate way then theresulting method remains stable for time steps based on a CFL number appropriatefor the regular part of the grid. See also [8℄, [9℄, [10℄, [23℄, [21℄ and [25℄ for otherembedded boundary Cartesian grid methods that have this same stability property.Beside this 2D appli
ation, h-box s
hemes 
an also o�er interesting alternativesto existing irregular grid methods. An extension of h-box methods to a 
ompletelyirregular grid was 
onsidered by Berger et. al [7℄, see also Stern [28℄. We will 
onsidersu
h 
al
ulations in Se
tion 5. In Se
tion 7, we 
onstru
t a multidimensional h-boxmethod. Other potential appli
ations are the 
onstru
tion of moving mesh or front-tra
king algorithms. Stern [28℄ used an h-box method to 
onstru
t a 
onservative�nite volume algorithm for a Cartesian grid with an embedded 
urvilinear grid.Unsurprisingly, the a

ura
y of an h-box method depends strongly on the de�-nition of the h-box values. In this paper we develop a one-dimensional as well as atwo-dimensional high-resolution h-box method. Our goal here is a systemati
 study ofh-box methods in a relatively simple 
ontext to provide fundamental understandingfor the more 
omplex appli
ations mentioned above. For the adve
tion equation weshow that the 1D s
heme leads to a se
ond order a

urate approximation of smoothsolutions on non-uniform grids (without any restri
tions on the grid). We also ver-ify that the resulting method leads to high-resolution approximations for the Eulerequations on non-uniform meshes. The approximation of transoni
 rarefa
tion wavesturns out to require a spe
ial treatment. Throughout this paper we will dis
uss the
onstru
tion of h-box methods based on LeVeque's high-resolution wave propagationalgorithm [18℄. This method is implemented in the 
lawpa
k software pa
kage [13℄,whi
h provided the basi
 tool for our test 
al
ulations.The large time step Godunov method of LeVeque des
ribed in [14℄, [15℄, [16℄ isrelated to the h-box method. This s
heme allows larger time steps in the approxima-tion of nonlinear systems of 
onservation laws by in
reasing the domain of in
uen
e ofthe numeri
al s
heme. This is done in a wave propagation approa
h, in whi
h wavesare allowed to move through more than one mesh 
ell. The intera
tion of waves isapproximated by linear superposition. At a re
e
ting boundary this method be
omesmore diÆ
ult than an h-box method espe
ially in higher dimensions, sin
e the re
e
-tion of waves at the boundary has to be 
onsidered for waves generated by Riemannproblems away from the boundary, see [3℄. In [22℄, Lemma 3.5, Morton showed thathigh-resolution versions of su
h a large time step method lead to a se
ond order a

u-rate approximation of the one-dimensional adve
tion equation on a non-uniform gridonly if the grid varies smoothly. The high-resolution h-box method des
ribed in thispaper does not require this smoothness assumption.2. The wave propagation algorithm. In this se
tion we des
ribe the basi

on
ept of the high-resolution wave propagation algorithm applied to irregular Carte-sian grids; a more general des
ription 
an be found in LeVeque [18℄ or [19℄. Thenumeri
al method for solving (1.1) is a Godunov-type method, i.e. the 
uxes at 
ellinterfa
es are 
al
ulated by solving Riemann problems de�ned from 
ell averages ofthe 
onserved quantities. This is done by 
al
ulating waves that are moving into ea
hgrid 
ell. The �rst order update of the wave propagation algorithm has the formQn+1i = Qni � 4t4xi �A+4Qi� 12 +A�4Qi+ 12 � :



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 3Here the 
hange of the 
onserved quantities is 
al
ulated by taking all waves intoa

ount that are moving into the grid 
ell from the left respe
tively right 
ell interfa
e.The solution of Riemann problems at 
ell interfa
es provides a de
omposition of thejump Qni+1 �Qni into waves Wpi+ 12 that are moving with speed spi+ 12 for 1 � p �Mw,4Qni+ 12 = Qni+1 �Qni = MwXp=1Wpi+ 12 :The left- and right-going 
u
tuations are 
al
ulated asA+4Qi�12 = MwXp=1max(spi� 12 ; 0)Wpi� 12 ; A�4Qi+ 12 = MwXp=1min(spi+ 12 ; 0)Wpi+ 12 :This 
an be written as a �nite volume s
heme of the form (1.2) using the relationsFi+ 12 = f(Qi) +A�4Qi+ 12 ; (2.1)Fi� 12 = f(Qi)�A+4Qi�12 : (2.2)Appropriate waves and speeds for systems of 
onservation laws 
an sometimes be 
al-
ulated by using an exa
t Riemann solver but more often an approximative Riemannsolver, for instan
e a Roe-Riemann solver [26℄, is used.In the wave propagation algorithm se
ond order 
orre
tion terms are in
luded byextending the �rst order method into the formQn+1i = Qni � 4t4xi �A+4Qi� 12 +A�4Qi+ 12�� 4t4xi � ~F 2i+ 12 � ~F 2i� 12� : (2.3)On an irregular grid, the se
ond order 
orre
tion terms have the form~F 2i+ 12 = 12 MwXp=1 jspi+ 12 j� 4xi(4xi +4xi+1)=2 � 4t(4xi +4xi+1)=2 jspi+ 12 j� ~Wpi+ 12 : (2.4)In (2.4) the waves ~Wp are limited waves - this limiting is ne
essary in order to avoidos
illations near dis
ontinuities.The resulting s
heme is stable for the approximation of systems of 
onservationlaws (1.1) as long as time steps are restri
ted su
h that waves move through at mostone mesh 
ell, whi
h means the Courant number is no larger than one, i.e.CFL = 4tmaxi  max(maxp(spi� 12 ; 0); jminp(spi+ 12 ; 0)j)4xi ! � 1: (2.5)The h-box method 
hanges this time step restri
tion by repla
ing 4xi in the denom-inator of (2.5) by h, the width of a referen
e grid 
ell. We will use the notation CFLhif we want to indi
ate that the Courant number is based on grid 
ells of width h.We want to note that some 
are is ne
essary in the 
onstru
tion of se
ond ordera

urate algorithms for irregular grids. There exist versions of the one-dimensionalLax-Wendro� method whi
h lead to se
ond order a

urate approximations of theadve
tion equation only if the grid is suÆ
iently smooth, i.e. if4xi=4xi�1 = 1+O(h),(h = maxi4xi), see for instan
e Wendro� and White [30℄, [31℄ and Pike [24℄. See alsoMorton [22℄ for 
onvergen
e results of �nite volume methods for the approximationof the adve
tion equation on non-uniform grids.



4 M.J. BERGER, C. HELZEL AND R.J. LEVEQUE3. The one dimensional h-box method. First we want to approximate equa-tion (1.1) on an almost uniform grid that 
ontains one small grid 
ell in the middle.This example allows simple analyti
al studies. However, we will show that the resultsobtained for this simple test 
ase 
an be extended to more general appli
ations.We denote the length of a regular grid 
ell by h = 4x. The small 
ell has thelength �h, with 0 < � � 1. For the small 
ell the numeri
al method has to be modi�edin order to obtain a stable s
heme for time steps4t that satisfy the stability 
onditionin the regular part of the grid. The h-box method introdu
ed by Berger and LeVeque[5℄ de�nes new left and right states at the edges of the small 
ell that represent the
onserved quantities at these interfa
es over boxes of length h, see Figure 3.1. Thisguarantees that the domain of dependen
e of the numeri
al solution has the size of aregular mesh 
ell, whi
h is a ne
essary stability 
ondition.3.1. First order a

urate h-box methods. As a �rst step we 
ompare theperforman
e of two di�erent h-box s
hemes applied to the adve
tion equation qt(x; t)+aqx(x; t) = 0. We will assume that a > 0, although analogous 
onsiderations 
an of
ourse be made for the 
ase a < 0. In the following we assume that k is the index ofthe small 
ell. In order to 
al
ulate numeri
al 
uxes at the small 
ell interfa
es newvalues of the 
onserved quantity q that represent pie
ewise 
onstant initial values overboxes of length h will be de�ned. For the left 
ell interfa
e of the small 
ell, thesevalues are denoted by QLk� 12 and QRk� 12 . At the right 
ell interfa
e of the small 
ellwe have to de�ne values QLk+ 12 and QRk+ 12 . This is indi
ated by the shaded boxes atea
h interfa
e in Figure 3.1.
(a) xk+ 12 xk+1+ 12xk�1� 12 xk� 12Qnk�1 Qnk Qnk+1QRk� 12QLk� 12 (b) xk+ 12 xk+1+ 12xk�1� 12 xk� 12Qnk�1 Qnk Qnk+1QRk+ 12QLk+ 12Fig. 3.1. S
hemati
 des
ription of h-box values assigned to the left small 
ell interfa
e (see(a)) respe
tively the right small 
ell interfa
e (see (b)).The most obvious 
hoi
e is to de�ne the h-box values via 
ell averaging over thepie
ewise 
onstant initial values. (To keep the notation simple we sometimes suppressthe time index, if it is 
lear that we mean the values at time tn.) We obtain:QLk� 12 = Qk�1; QRk� 12 = �Qk + (1� �)Qk+1QLk+ 12 = �Qk + (1� �)Qk�1; QRk+ 12 = Qk+1 (3.1)Su
h h-box values were used in Berger and LeVeque [5℄ as well as by Forrer andJelts
h [10℄. For the adve
tion equation the update of the small 
ell value 
an now



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 5be 
al
ulated using the upwind method. We obtainQn+1k = Qnk � 4t�h �aQLk+ 12 � aQLk� 12 �= Qnk � a4t�h ��Qnk + (1� �)Qnk�1 �Qnk�1�= Qnk � a4th (Qnk �Qnk�1): (3.2)Note that the small denominator (that may 
ause a stability problem) has been re-moved. One 
an indeed show TVD stability for this method assuming CFLh � 1,see Se
tion 4. However, it is 
lear that this 
an not be a very a

urate formula. Thetrun
ation error of the s
heme (3.2) has the formLq = qn+1k � qnk4t + aqnk � qnk�1h= qt(xk ; tn) + a2(�+ 1)qx(xk ; tn) +O(4t; h)= a2(�� 1)qx(xk; tn) +O(4t; h)Only for � = 1 is the trun
ation error in 
ell k of the order O(4t; h). Note thatgrid fun
tions for the exa
t solution q are expressed with lower 
ase letters, whereasnumeri
al approximations are written in 
apital letters.In spite of the apparent in
onsisten
y of the s
heme, numeri
al tests suggestthat this h-box method 
onverges with �rst order. For the adve
tion equation we 
anindeed prove that under appropriate smoothness assumptions the s
heme is �rst ordera

urate in the small 
ell. This so-
alled supra-
onvergen
e property 
an be shownusing an idea developed for 
onservation laws by Wendro� and White [30℄, [31℄. Seealso [12℄, [20℄ where these ideas were introdu
ed for boundary value problems forODEs.Proposition 1. We 
onsider the approximation of the adve
tion equation on analmost uniform grid with mesh width h that 
ontains one small mesh 
ell of length �h,with � � 1. The 1D h-box method (3.2), based on an upwind dis
retization with h-boxvalues 
al
ulated by averaging over pie
ewise 
onstant 
ell average values, leads to a�rst order a

urate approximation for suÆ
iently smooth solutions of the adve
tionequation in spite of the fa
t that the trun
ation error indi
ates in
onsisten
y.Proof: The basi
 step of the proof is to 
al
ulate the lo
al trun
ation error for agrid fun
tion w, whi
h must be an a

urate enough approximation of the grid fun
tionof the exa
t solution q. We want to show that the trun
ation error for w is �rst order,i.e. Lw = O(h). In order to do this we spe
ify the grid fun
tion to have the formwni = qni + 12(1� �i)hqx(xi; tn):Here we assume that 4xi = �ih, i.e. �i = 1 for i 6= k and �k = �. The distan
ebetween xk and xk�1 is 12h(1 + �). In the simple situation of only one small grid 
ellwe have wni = qni for i 6= k and wnk = qnk + 12 (1� �)hqx(xk; tn). The trun
ation error



6 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEof the grid fun
tion w for the s
heme (3.2) has in the small 
ell the form:Lw = wn+1k � wnk4t + awnk � wnk�1h= qn+1k + 12 (1� �)hqx(xk ; tn+1)� qnk � 12 (1� �)hqx(xk ; tn)4t+ aqnk + 12 (1� �)hqx(xk; tn)� qnk�1h +O(4t; h)= qnk +4tqt(xk; tn) + 12 (1� �)hqx(xk; tn)� qnk � 12 (1� �)hqx(xk; tn)4t+ a qnk + 12 (1� �)hqx(xk ; tn)� qnk + 12 (1 + �)hqx(xk ; tn)h +O(4t; h)= qt(xk ; tn) + aqx(xk ; tn) +O(4t; h) = O(4t; h)From the trun
ation error of w and the stability of the method for CFLh � 1 it followsthat jwk �Qkj = O(4t; h). Sin
e w = q +O(h) we obtain the estimatejqk �Qkj = O(h);i.e. the h-box method (3.2) leads to a �rst order a

urate approximation of the adve
-tion equation in the small 
ell k, in spite of the fa
t that the s
heme is in
onsistent inthe small 
ell. Using the same grid funktion w one 
an also show that the trun
ationerror Lw in 
ell k+1 is of the order O(h). In all other regularly spa
ed grid 
ells, themethod agrees with the upwind s
heme for whi
h the trun
ation error is also O(h).Therefore, we obtain �rst order 
onvergen
e in the whole domain. �In order to obtain a more a

urate small 
ell s
heme, we will now 
onsider the
onstru
tion of h-box values based on linear interpolation using again grid 
ell valuesthat are overlapped by the h-boxes. Su
h h-box values have the general formQLk� 12 = Qk�1; QRk� 12 = �Qk + (1� �)Qk+1QLk+ 12 = �Qk + (1� �)Qk�1; QRk+ 12 = Qk+1:We want to determine � so that we obtain a 
onsistent h-box s
heme, i.e. for whi
hLq = O(h;4t). By again using Taylor series expansion we �nd that only � = 2�1+�leads to an upwind method that satis�es this 
ondition. This suggests that the h-boxvalues should have the form:QLk� 12 = Qk�1; QRk� 12 = 2 � Qk + (1� �) Qk+11 + �QLk+ 12 = 2 � Qk + (1� �) Qk�11 + � ; QRk+ 12 = Qk+1: (3.3)Note that this interpolation formula was already given in [4℄, but not further investi-gated there. In [7℄, [28℄ h-box values were de�ned in a similar way and the resultings
heme was shown to give good results for adve
tion and Burgers' equation.One time step of the h-box method based on the interpolation formula (3.3) againfor a > 0 has in the small 
ell the formQn+1k = Qnk � a4th � Qnk �Qnk�1(1 + �)=2 : (3.4)



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 7We 
an derive the same method as a �nite di�eren
e s
heme, by repla
ing qx(xk ; tn)in the Taylor series expansion ofq(xk; tn +4t) = q(xk ; tn) +4tqt(xk ; tn) +O(4t2)= q(xk ; tn)�4t � a qx(xk ; tn) +O(4t2) (3.5)by an appropriate �rst order a

urate �nite di�eren
e formula. The h-box method(3.4) 
an be interpreted as a �nite di�eren
e s
heme that approximates the qx(xk)terms by one sided �nite di�eren
es. This h-box method leads to a �rst order a

uratemethod that approximates linear fun
tions exa
tly. One 
an also show that an upwinds
heme based on the h-box values (3.3) also leads to a 
onsistent �rst order a

urateupdate in the two neighboring grid 
ells of the small 
ell.If we use the wave propagation algorithm then the �rst order update in the small
ell 
an be written in the formQn+1k = Qnk � 4t�h �A+4Q̂k� 12 � f(QRk� 12 ) +A�4Q̂k+ 12 + f(QLk+ 12 )� ; (3.6)with 4Q̂k� 12 = QRk� 12 �QLk� 12 and 4Q̂k+ 12 = QRk+ 12 �QLk+ 12 . In the limit 
ase � = 1we have QRk� 12 = QLk+ 12 and (3.6) redu
es to the �rst order a

urate wave propagationalgorithm that is valid in the regular parts of the grid. This formula remains validfor nonlinear equations as well as systems of 
onservation laws, assuming we have aRiemann solver that provides us a de
omposition of QR�QL as des
ribed in Se
tion2. We indi
ate quantities that are 
al
ulated from h-box values by the ^ symbol.Numeri
al results shown in Se
tion 5 will demonstrate the superior properties ofan h-box method with h-boxes obtained by linear interpolation.3.2. A se
ond order a

urate h-box method. In order to obtain a high-resolution s
heme we want to in
lude se
ond order 
orre
tion terms. This means wewant to obtain an update of the small 
ell that 
an be written asQn+1k = Qnk � 4t�h �A+4Q̂k� 12 � f(QRk� 12 ) +A�4Q̂k+ 12 + f(QLk+ 12 )�� 4t�h �F̂ 2k+ 12 � F̂ 2k� 12� ;here F̂ 2 denotes the se
ond order 
orre
tion terms that are implemented in 
ux di�er-en
ing form. By analogy to the standard wave propagation algorithm, these se
ondorder 
orre
tion terms should also be 
al
ulated by using the waves and speeds ob-tained from solving Riemann problems at the 
ell interfa
es. For the small 
ell weagain use the waves and speeds from Riemann problems de�ned by the same h-boxvalues used to obtain the �rst order update. We will restri
t our 
onsideration toh-box values that are 
al
ulated using the interpolation formula (3.3).The formula (2.4) for the se
ond order 
orre
tion 
ux on irregular grids suggestsusing 
orre
tion terms of the formF̂ 2i+ 12 = 12 MwXp=1� 1(1 + �)=2 � 4t(1 + �)h=2 jŝpi+ 12 j��jŝpi+ 12 j�Ŵpi+ 12 (i = k�1; k) (3.7)in the small 
ell. The waves Ŵpi+ 12 and the speeds ŝpi+ 12 
an be obtained by solvingRiemann problems de�ned by the h-box values at the small 
ell interfa
es. One 
an



8 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEshow that the trun
ation error in the small 
ell that results from su
h a high-resolutionwave propagation s
heme is Lqk = O(h2;4t2), i.e. assuming the s
heme is stable wewould obtain a se
ond order a

urate approximation in the small 
ell. However,numeri
al tests showed that su
h an approa
h is not stable for time steps satisfyingCFLh � 1.Instead we use se
ond order 
orre
tion terms of the form:F̂ 2i+ 12 = 12 MwXp=1�1� 4th jŝpi+ 12 j� � jŝpi+ 12 jŴpi+ 12 (i = k � 1; k) (3.8)The waves are again 
al
ulated from Riemann problems de�ned by the h-box values.The di�eren
e from (3.7) is that we don't take the size of the small 
ell into a

ountin the 
al
ulation of the 
orre
tion 
uxes. This re
e
ts the general 
on
ept of theh-box method where 
uxes are 
al
ulated from values de�ned over regions of lengthh. Although the trun
ation error for the grid 
ell k now 
ontains �rst order termswhi
h don't 
an
el out, the numeri
al results are very satisfying and indi
ate se
ondorder 
onvergen
e as well as stability for CFLh � 1. Assuming that the solution issuÆ
iently smooth we 
an indeed prove that the resulting method leads to a se
ondorder a

urate approximation for the adve
tion equation.Proposition 2. We 
onsider the approximation of the adve
tion equation on analmost uniform grid with mesh width h that 
ontains one small mesh 
ell of length�h, with � � 1. The h-box method 
onsisting of the �rst order update (3.4) and these
ond order 
orre
tion terms (3.8) (without limiters) leads to a se
ond order a

urateapproximation for suÆ
iently smooth solutions of the adve
tion equation.Proof: We again use the idea of Wendro� and White and 
onsider the trun
ationerror Lw for a grid fun
tion of the form wni = qni + 18h2(�i+1)(�i�1)qxx(xi; tn). Herewe assume that4xi = �ih. We have �i = 1 for i 6= k and �k = �. In regular grid 
ellsi 6= k the grid fun
tion w agrees with the exa
t solution. We only want to show se
ondorder 
onvergen
e in the small 
ell as well as in the two neighboring 
ells k � 1 andk + 1, sin
e the method redu
es to the high-resolution wave propagation algorithmin the other regular grid 
ells. In the 
ase 
onsidered here, the wave propagationalgorithm on the regular part of the grid is equivalent to the Lax-Wendro� s
heme.The trun
ation error for the grid fun
tion w has the formLw = wn+1k � wnk4t + 2a (wnk � wnk�1)h(1 + �) +�1� a4th � awnk+1 � 2wnk + wnk�1h(1 + �)= qt(xk; tn) + 4t2 qtt(xk ; tn) + aqx(xk ; tn) + 14h(�� 1)aqxx(xk ; tn)�14h(1 + �)aqxx(xk ; tn)+�1� a4th � a 14h2(1 + �)2qxx(xk ; tn)� 14h2(�2 � 1)qxx(xk ; tn)h(1 + �) +O(4t2; h2)Here we use hk+ 12 = hk� 12 = 12h(1 + �) for the distan
e from the 
ell 
enter ofthe small 
ell k to the 
ell 
enters of the neighboring 
ells. By using the relationsqt(xk ; tn) = �aqx(xk; tn) and qtt(xk; tn) = a2qxx(xk ; tn) all lower order terms in theabove equation 
an
el and we obtain Lw = O(4t2; h2). This shows that jwk �Qkj =O(4t2; h2). Sin
e the grid fun
tion was 
hosen to satisfy w = q+O(h2), we 
on
lude
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ond order a

urate s
heme will be shown in the Appendix.Using the same grid fun
tion w, one 
an also show that Lw = O(4t2; h2) in theneighboring grid 
ells k � 1 and k + 1. Therefore, the numeri
al solution 
onvergeswith se
ond order a

ura
y in the whole domain. �Figure 3.2 shows a s
hemati
 des
ription of the �rst order update and the high-resolution 
orre
tion for 
ell k+1. The dotted lines depi
t the initial values, i.e. QLk+ 12and QRk+ 12 = Qk+1. In a �rst step the pie
ewise 
onstant values are propagated overa distan
e a4t as shown in Figure 3.2 (a). In order to in
rease the a

ura
y, thepie
ewise 
onstant initial values are repla
ed by pie
ewise linear fun
tions. In Figure3.2 (b), we show the pie
ewise linear re
onstru
ted fun
tion QLk+1(x; tn) that has theslope � = (QRk+ 12 � QLk+ 12 )=h. Sin
e we already 
al
ulated the �rst order update,the se
ond order 
orre
tion terms, 
al
ulated by propagating pie
ewise linear initialvalues QLk+ 12 (x; tn) instead of the pie
ewise 
onstant value QLk+ 12 , only take the shadedregion shown in Figure 3.2 (b) into a

ount. Compare with LeVeque [17℄, where su
hse
ond order 
orre
tion terms were des
ribed for the approximation of the adve
tionequation on a uniform grid.
(a) xk+ 12xk+ 12 � h xk+ 32 (b) xk+ 12xk+ 12 � h xk+ 32Fig. 3.2. h-box values at the interfa
e xk+ 12 , dotted lines depi
t the initial values, solid linesthe solution after one time step. (a) �rst order update by h-box method, (b) se
ond order 
orre
tionwave of QLi+ 12 .3.3. Limiters for the h-box method. In order to have 
ontrol over unphysi
alos
illations near dis
ontinuities some kind of limiters must be used in the se
ond order
orre
tion terms (2.4). In the wave propagation algorithm this is done by using wavelimiters that modify the magnitude of the waves Wp (p = 1; : : : ;Mw) in the 
uxesthat model the se
ond order 
orre
tion terms. A limited p-waveWpi+ 12 is obtained by
omparison of this wave with the neighboring p-waves Wpi� 12 or Wpi+ 32 , depending onthe dire
tion of 
ow, see LeVeque [18℄ or [19℄ for details.In our high-resolution h-box method we 
an use the same limiting pro
ess in orderto obtain limited versions of the waves that were 
al
ulated from h-box values. Theselimited waves 
an then be used in the se
ond order 
orre
tion 
uxes (3.8). In orderto obtain the limiter for waves at a small 
ell interfa
e, we 
ompare those waves withwaves arising from Riemann problems at a distan
e h away from the 
ell interfa
e.This 
an be done by 
onstru
ting two additional h-boxes at the small 
ell interfa
e.The waves resulting from the solution of Riemann problems de�ned by these newh-box values to the left and right hand side of a small 
ell interfa
e 
an then be used



10 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEin order to estimate the wave limiter for the waves at the small 
ell interfa
e. Thisrequires the solution of two additional Riemann problems for ea
h small 
ell interfa
e,see Figure 3.3. We used su
h a limiting pro
ess in order to approximate a sho
k wavesolution on an irregular grid shown in Se
tion 5.
xk� 12Qnk�1 Qnk Qnk+1QRk� 12QLk� 12Qnk�2 Qnk+2

QRRk� 12QLLk� 12 Ŵk� 12Ŵk� 12 ;�h Ŵk� 12 ;+hxk� 52 xk� 32 xk+ 12 xk+ 32 xk+ 52
Fig. 3.3. S
hemati
 des
ription of h-box values assigned to the left small 
ell interfa
e. Twoadditional h-box values are needed to estimate the wave limiter for the se
ond order 
orre
tion terms.In addition to the wave limiting pro
ess we also in
lude a limiter into the approx-imation of the h-box values. Note that the h-box values (3.3) 
an also be obtained byre
onstru
ting a pie
ewise linear fun
tion Q(x) from the 
ell averages Qi for all i and
al
ulating the average value of this pie
ewise linear fun
tion over the same boxes oflength h as indi
ated in Figure 3.1. If the re
onstru
ted fun
tion has the formQk�1(x) = Qk�1 + Qk �Qk�112h(1 + �) (x� xk�1) for x 2 [xk� 32 ; xk� 12 ); (3.9)Qk+1(x) = Qk+1 + Qk+1 �Qk12h(1 + �) (x � xk+1) for x 2 [xk+ 12 ; xk+ 32 ); (3.10)then averaging over boxes of length h leads to h-box values that have the form (3.3).The slopes of the pie
ewise linear initial values are�k�1 = Qk �Qk�1h(1 + �)=2 and �k+1 = Qk+1 �Qkh(1 + �)=2 :Near dis
ontinuities su
h pie
ewise linear values may not represent a good approxi-mation of the solution. We 
an use standard slope limiters in order to obtain betterapproximations there. We 
an for instan
e use a slope limiter proposed by van Leer[29℄. Here the slopes are repla
ed by limited versions that have the form �̂i = �i�ifor i 2 fk � 1; k + 1g. For our appli
ation the limiter has the form�i(�i) = min�1; j�ij+ �i1 + j�ij �with �k�1 = Qk�1 �Qk�2Qk �Qk�1 and �k+1 = Qk+2 �Qk+1Qk+1 �Qk :It may be repla
ed by other limiter fun
tions. Note that we do not want to use asteeper slope than �k�1 respe
tively �k+1 for the 
onstru
tion of h-box values, be
ause
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ond order approximation in smooth regions. However,near dis
ontinuities we want to limit these slopes. The resulting limited h-box values
an be 
al
ulated using the formulasQLk+ 12 = �Qk + (1� �)�Qk�1 + �1 + � (Qk �Qk�1)�k�1�QRk� 12 = �Qk + (1� �)�Qk+1 + �1 + � (Qk �Qk+1)�k+1� :4. On the stability of the h-box method. The h-box method retains stabilityby 
onstru
ting a �nite volume s
heme for whi
h the 
ux di�eren
e is of the order ofthe size of the grid 
ell. For a small grid 
ell this requires Fk+ 12 � Fk� 12 = O(�h). Inthis 
ase the term �h arising in the denominator of the �nite volume s
heme shouldnot 
ause a stability problem. In regions where the solution of the 
onservation lawis smooth, the h-box values are 
onstru
ted to satisfy an analogous property, namelyQL;Rk+ 12 � QL;Rk� 12 = O(�h). Sin
e in our appli
ations the 
ux fun
tion is a Lips
hitz
ontinuous fun
tion of QL and QR, the 
ux di�eren
e has the required 
an
ellationproperty, see [5℄.For the adve
tion equation Stern [28℄ proved that the �rst order a

urate h-boxmethods are total variation diminishing. Here we will brie
y outline this proof whi
hfollows the general 
on
ept des
ribed above. The �rst order h-box method 
an (fora > 0) be rewritten in the formQn+1i = Qni � a4t�ih (QLi+ 12 �QLi� 12 )= Qni � a4t�ih ��iQni � �i 1�ih Z xi� 12�h+�ihxi� 12�h Qni�1(x)dx| {z }~Qni �:Here we assume that ea
h grid 
ell has the size hi = �ih with 0 < �i � 1. Qni�1(x) isthe pie
ewise linear re
onstru
ted fun
tion (3.9). The stability result also holds on anirregular grid with more than one small 
ell. See also Se
tion 5 for a slightly di�erentgeneralization of the pie
ewise linear fun
tion that has to be used in the 
onstru
tionof h-box values for a 
ompletely irregular grid.Using this notation we now 
onsider the di�eren
e jQn+1i+1 �Qn+1i j and sum overall grid 
ells. This sum 
an be estimated as:TV (Qn+1) =Xi jQn+1i+1 �Qn+1i j� �1� a4th �Xi jQni+1 �Qni j+ a4th Xi j ~Qni+1 � ~Qni jWe obtain the TVD property TV (Qn+1) � TV (Qn) for time steps CFLh � 1, ifXi j ~Qni+1 � ~Qni j � TV (Qn): (4.1)For the h-box method (3.2) using h-box values that were 
al
ulated by averaging overpie
ewise 
onstant values, (4.1) is always satis�ed, sin
e ~Qni = Qni . For the more
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urate �rst order h-box method (3.4), the TVD property 
an be shown if a TVDslope limiter is used in the 
onstru
tion of the h-box values, as dis
ussed in Se
tion3.3. Note that for the approximation of the adve
tion equation, the �rst order h-boxmethod based on h-box values (3.1), i.e. de�ned by averaging over pie
ewise 
onstantvalues of the 
onserved quantities is also monotone. This property does not 
arryover to the �rst order h-box method with h-box values 
al
ulated by the interpolationformula (3.3). Note also that none of these two �rst order a

urate h-box methodsapplied to Burgers' equation leads to a monotone method.In the Appendix we show stability for the se
ond order a

urate h-box methodapplied to the adve
tion equation. This proof is based on the stability theory ofGustafsson, Kreiss and Sundstrom [11℄.5. Irregular grid 
al
ulation. In order to demonstrate the robustness of thehigh-resolution h-box method we now apply the s
heme to a 
ompletely arbitrarygrid. By again assigning values to boxes of length h, we obtain a s
heme that remainsstable for time steps appropriate for a uniform grid with grid 
ells of length h. Inthis more general situation more than two grid 
ells may be overlapped by an h-box.We assume that grid 
ells have the length hi = �ih with �i � 1 for all indi
es i.We will show that a generalization of the h-box method based on averaging overpie
ewise linear values of the 
onserved quantities gives a

urate results also in thismore diÆ
ult situation. We will need to use pie
ewise linear re
onstru
ted valuesh
QLk+ 12 QRk+ 12QRk� 12QLk� 12

m l k s t
Fig. 5.1. S
hemati
 des
ription of the h-box method on a 
ompletely irregular grid.Qi(x) = Qi + Qi+1 �Qih(�i + �i+1)=2(x� xi) for x 2 [xi� 12 ; xi+ 12 ); i 2 fm; lg (5.1)Qj(x) = Qj + Qj �Qj�1h(�j + �j�1)=2(x� xj) for x 2 [xj� 12 ; xj+ 12 ); j 2 fs; tg:(5.2)The indi
es m; l and s; t indi
ate the grid 
ells that are only partly 
overed by theleft- respe
tively right-going h-boxes that are 
onstru
ted at the 
ell interfa
es of grid
ell k. Slopes are needed only in these four 
ells be
ause averaging over an entire 
ellgives a value that is independent of the slope. Averaging over these pie
ewise linear
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tions leads to the h-box valuesQLk� 12 = k�1Xi=m+1�iQi + �1� k�1Xi=m+1�i� � hQm + Qm+1 �Qm�m + �m+1 � k�1Xi=m�i � 1�iQRk� 12 = s�1Xi=k �iQi + �1� s�1Xi=k �i� � hQs + Qs �Qs�1�s + �s�1 �1� sXi=k �i�iQLk+ 12 = kXi=l+1�iQi + �1� kXi=l+1�i� � hQl + Ql+1 �Ql�l + �l+1 � kXi=l �i � 1�iQRk+ 12 = t�1Xi=k+1�iQi + �1� t�1Xi=k+1�i� � hQt + Qt �Qt�1�t + �t�1 �1� tXi=k+1�i�i
(5.3)

5.1. Approximation of the adve
tion equation on irregular grids. We
an show that these h-box values used in an upwind s
heme (whi
h is equivalent tothe �rst order wave propagation algorithm) lead to a 
onsistent approximation of theadve
tion equation.Proposition 3. The h-box method Qn+1i = Qni �a 4t�ih(QLi+ 12 �QLi� 12 ) with h-boxvalues de�ned by (5.3) leads to a �rst order a

urate approximation of the adve
tionequation (with adve
tion speed a > 0) on an irregular grid.The proof is based on Taylor series expansion and may be found in the preprintversion of this paper [2℄. Together with the stability result mentioned in Se
tion 4,we obtain �rst order 
onvergen
e of this h-box method on irregular grids using timesteps that satisfy CFLh � 1.On
e the h-box values are de�ned we 
an apply the same se
ond order 
orre
tionterms (3.8) at the 
ell interfa
es of a 
ompletely irregular grid. With su
h an approa
hwe 
an expe
t se
ond order 
onvergen
e. Figure 5.2 shows numeri
al results for theapproximation of the adve
tion equation on a sequen
e of irregular grids. The initial
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Fig. 5.2. Approximation of the adve
tion equation on an irregular grid using the high-resolutionh-box method with h-box values 
al
ulated by linear interpolation. (a) numeri
al results on anirregular grid with h = 0:04, (b) log-log-plot of h versus L1-norm as well as maximum-norm errorshows se
ond order 
onvergen
e.values are set to q(x; 0) = sin(2�x) on the interval [0; 1℄. Periodi
 boundary 
onditionsare imposed. A 
onvergen
e study shows that our new high-resolution h-box method
onverges with se
ond order a

ura
y both in the L1 as well as the maximum norm.The a

ura
y of this 
al
ulation 
ompares well with the a

ura
y of the standard wavepropagation algorithm that was brie
y des
ribed in Se
tion 2. However, here we 
ould
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Fig. 5.3. Approximation of the adve
tion equation on an irregular grid using an h-box methodwith se
ond order 
orre
tion terms, were h-box values are 
al
ulated by averaging over pie
ewise
onstant values of the 
onserved quantity. (a) numeri
al results on an irregular grid with h =0:04, (b) log-log-plot of h versus L1 norm error as well as maximum norm error shows �rst order
onvergen
e.use mu
h larger time steps. In Figure 5.3, we show results for the same test 
ase, buthere the h-box values were 
onstru
ted by averaging over pie
ewise 
onstant valuesof the 
onserved quantity, i.e. the formally in
onsistent method des
ribed in Se
tion3.1. Although we add se
ond order 
orre
tion terms (whi
h in
reases the a

ura
y)the resulting method is only �rst order a

urate. This is analogous to our analyti
alresults for the simpler situation with only one small 
ell.5.2. Approximation of the Euler equations on irregular grids. In this se
-tion we study the performan
e of the high-resolution h-box method for one-dimensionalEuler equations. The equations 
an be written in the form (1.1) withq = (�; �u;E); f(q) = (�u; �u2 + p; u(E + p));where �; p; E and u des
ribe the density, pressure, total energy and the velo
ity re-spe
tively. The equation of state has the formE = p
 � 1 + 12�u2:First we 
onsider the approximation of a test problem de�ned in Example 5.1 on anirregular grid.Example 5.1. We 
onsider the numeri
al approximation of the 1D Euler equa-tions on an irregular grid. The grid 
ells vary in size between h=10 and h. The initialvalues are suÆ
iently smooth so that the solution does not develop sho
ks over thetime interval 
onsidered. Re
e
ting boundary 
onditions are imposed on the left andright boundary. The 
omputational domain is the interval [0; 1℄. Our initial valuesare �(x; 0) = 1 + 0:4 sin��2 + x�� ; u(x; 0) = 0:25� (x � 0:5)2; p(x; 0) = 1The ratio of spe
i�
 heats is set to 
 = 1:4.In Figure 5.4 we show numeri
al results for the approximation of Example 5.1using our new high-resolution h-box method. A 
onvergen
e study for density atdi�erent time steps is shown in Table 5.1. Here we 
ompare the numeri
al solutionfor density on a sequen
e of irregular grids to a highly resolved referen
e solution
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Fig. 5.4. Numeri
al results of density and pressure for Example 5.1 on an irregular grid(h = 0:02). The solid line shows a highly resolved referen
e solution 
al
ulated on a regular grid.t=0.2 t = 0.4 t = 0.6 t = 0.8 t = 1h/EOC L1 error of density (unlimited method)0.02 1.1229d-4 1.544d-4 3.4573d-4 5.9017d-4 0.00140.01 2.9567d-5 4.2550d-5 9.4628d-5 1.7825d-4 4.2628d-4EOC 1.92 1.86 1.87 1.73 1.720.005 7.7282d-6 1.1786d-5 2.5092d-5 5.1242d-5 1.3381d-4EOC 1.94 1.89 1.91 1.80 1.67h/EOC L1 error of density (using minmod limiter)0.02 1.6893d-4 2.0212d-4 3.1620d-4 5.2083d-4 0.00120.01 5.6937d-5 6.5761d-5 1.1105d-4 1.9282d-4 3.6960d-4EOC 1.57 1.62 1.51 1.46 1.700.005 1.6357d-5 2.1260d-5 4.5036d-5 7.6802d-5 1.2018d-4EOC 1.80 1.63 1.30 1.33 1.62Table 5.1Convergen
e study for Example 5.1. L1-error of density at di�erent times as well as theexperimental order of 
onvergen
e (EOC) are shown. For this smooth test problem, we show resultsfor the unlimited se
ond order h-box method as well as the limited h-box method using a minmodlimiter.that was 
al
ulated on a regular spa
ed grid. We show results for both the unlimitedse
ond order h-box method and a version using the minmod limiter. Next we 
onsiderthe approximation of a sho
k wave with the Euler equations.Example 5.2. We 
onsider the 1D Euler equations with initial values on theinterval [0; 1℄ that have 
onstant density � = 1 and 
onstant pressure p = 1. Thevelo
ity is set to u = 1 for x < 0:5 and u = �1 for x > 0:5. The ratio of spe
i�
 heatsis 
 = 1:05. The exa
t solution of this problem 
onsists of two symmetri
 sho
k wavesthat are propagating outwards. We use an irregular grid with grid 
ells that may besmaller than h = 0:01 on the left half of the interval. For x > 0:5 the grid is regularwith mesh length 4x = 0:01. We use time steps that 
orrespond to CFLh � 0:9.Figure 5.5 shows numeri
al results of Example 5.2 for the high-resolution h-boxmethod based on the linear interpolation formula. Our numeri
al results in (a) showthat the limiters des
ribed in Se
tion 3.3 
an suppress spurious os
illations near thedis
ontinuity. The approximation of the sho
k wave that is moving into the region ofthe irregular grid is in good agreement with the symmetri
 sho
k wave that is movinginto the regular part of the grid. On the irregular grid the sho
k is smeared out over
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ells than on the regular grid. The reason for this more smeared out sho
kpro�le is that a jump in the 
onserved quantities 
an in
uen
e several h-box values.In Figure 5.5 (b) we show the results obtained by the se
ond order method withoutlimiters.
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Fig. 5.5. Approximation of Example 5.2 on a grid that is irregular for x < 0:5 and regularfor x > 0:5. (a) plot of density with limiters, (b) plot of density without limiters. The solid lineindi
ates the exa
t solution.6. Approximation of transoni
 rarefa
tion waves. In this se
tion we pointout that h-box methods 
an 
ause numeri
al diÆ
ulties in the approximation of tran-soni
 rarefa
tion waves that do not appear for standard Godunov-type methods onregular or irregular spa
ed grids. To see this we �rst 
onsider the approximation ofBurgers' equation ��tq + ��x �12q2� = 0 (6.1)with initial values q(x; 0) = � �0:5 : x � 0:50:5 : x > 0:5on an irregular grid. The �rst order a

urate 
uxes at 
ell interfa
es 
an be 
al
ulatedby using the exa
t formula, i.e.Fi� 12 = 8<: minQLi� 12�q�QRi� 12 f(q) : QLi� 12 � QRi� 12maxQRi� 12�q�QLi� 12 f(q) : QRi� 12 � QLi� 12 ;with the 
ux f(q) = 12q2. Figure 6.1 (a) demonstrates that this method produ
esunphysi
al os
illations around the soni
 point. Note that in this se
tion we onlyuse �rst order a

urate methods, to isolate this phenomena from the 
ux limitingpro
edure. The numeri
al problem 
an be avoided by using the Lax-Friedri
hs 
ux,whi
h has at the interfa
e xk� 12 the formFk� 12 = 12�f(QLk� 12 ) + f(QRk� 12 )�+ h24t�QLk� 12 �QRk� 12 �:See Figure 6.1 (b) for numeri
al results. The same e�e
t 
an also be observed in theapproximation of a transoni
 rarefa
tion wave for the Euler equations. To see this
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Fig. 6.1. Approximation of a transoni
 rarefa
tion wave solution for Burgers' equation on anirregular grid. (a) h-box method based on Godunov 
ux, (b) h-box method based on Lax-Friedri
hs
ux.we 
onsider a typi
al sho
k tube problem for whi
h the solution 
onsists of a rightmoving sho
k wave, a 
onta
t dis
ontinuity and a left moving transoni
 rarefa
tionwave. For the numeri
al approximation we used a Roe Riemann solver with standardentropy �x for transoni
 rarefa
tion waves. The results of this 
al
ulation are shownin Figure 6.2. The numeri
al solution shows some os
illations around the soni
 point,see Figure 6.2 (b) for a 
loser view of the region around the soni
 point. If the 
uxesat the 
ell interfa
es are again 
al
ulated by the Lax-Friedri
hs method this numeri
alproblem does not arise, see Figure 6.3.
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Fig. 6.2. Approximation of a sho
k tube problem for the Euler equations. (a) plot of densityobtained by �rst order Roe solver with entropy �x, (b) zoom of density around soni
 point.
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Fig. 6.3. Approximation of a sho
k tube problem for the Euler equations. (a) plot of densityobtained by Lax-Friedri
hs method, (b) zoom of density around soni
 point.



18 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEIn the preprint [2℄ of this paper, we studied the entropy 
onsisten
y of the h-box method for the approximation of Burgers' equation. For the h-box method withGodunov 
ux, we showed that a dis
rete entropy inequality is satis�ed away from soni
points. This implies that the numeri
al solution 
onverges to the entropy 
onsistentweak solution of the 
onservation law. We showed that this dis
rete entropy inequality
an be violated at a soni
 point. While this does not give us any predi
tion whetherthe method is entropy 
onsistent or not at the soni
 point, it is interesting to notethat this is exa
tly the 
ase were the h-box method leads to numeri
al diÆ
ulties.We plan to further investigate the entropy 
onsisten
y of h-box methods in order todevelop an `entropy-�x' that is less dissipative than the Lax-Friedri
hs method andthat 
an be extended to a high-resolution method.7. Higher-dimensional irregular grid 
al
ulations. Now we will 
onsidertwo dimensional systems of 
onservation laws in the form��tq(x; y; t) + ��xf(q(x; y; t)) + ��yg(q(x; y; t)) = 0: (7.1)The simplest way to extend a one dimensional method for 
onservation laws to mul-tidimensional problems is to use dimension splitting. Equation (7.1) would be ap-proximated by solving one dimensional subproblems in an alternating way. The high-resolution one-dimensional h-box method 
ould be used in ea
h substep.Instead of using a dimensional splitting approa
h, we will here develop a two-dimensional h-box method that is based on the multidimensional wave propagationalgorithm [17℄, [18℄. We assume that the reader is familiar with the two dimensionalwave propagation algorithm and with the notation used below. As a �rst step in thisapproa
h we solve one-dimensional Riemann problems normal to ea
h 
ell interfa
e.Based on formula (3.6), whi
h des
ribes the one-dimensional h-box method, we obtainQn+1ij = Qnij +4upij= Qnij � 4t4xi �A+4Q̂i�12 ;j +A�4Q̂i+ 12 ;j + f(QLi+ 12 ;j)� f(QRi� 12 ;j)�� 4t4yj �B+4Q̂i;j� 12 + B�4Q̂i;j+ 12 + g(QLi;j+ 12 )� g(QRi;j� 12 )� (7.2)The method (7.2) is stable for time steps that satisfy CFLh � 12 . Se
ond order
orre
tion terms of the form (3.8) 
an be in
luded in x as well as in y dire
tion, whi
hleads to a method of the formQn+1ij = Qnij +4upij � 4t4xi �F̂ 2i+ 12 ;j � F̂ 2i� 12 ;j�+ 4t4yj �Ĝ2i;j+ 12 � Ĝ2i;j� 12 � : (7.3)The se
ond order 
orre
tion terms are again obtained by using the waves and speeds
al
ulated from solving Riemann problems de�ned by h-box values. Limiters are usedin exa
tly the same form as des
ribed earlier for the 1D 
ase.In addition to 
uxes in the normal dire
tion, the multidimensional wave propaga-tion algorithm also 
al
ulates waves that are moving in a transverse dire
tion. For theusual wave propagation s
heme one hasQLi+ 12 ;j = QRi� 12 ;j and QLi;j+ 12 = QRi;j� 12 . In this
ase the transverse propagation of waves 
an be obtained by a de
omposition of the
ux di�eren
es A�4Q, B�4Q into transverse 
u
tuations. For the h-box method



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 19this transverse propagation has to be modi�ed. In order to explain the transversepropagation we 
onsider the 2D adve
tion equation��tq(x; y; t) + a ��xq(x; y; t) + b ��y q(x; y; t) = 0; a; b > 0:Assuming �rst that 4xi = h and 4yj � h, the 
hange of the 
ell average of the
onserved quantity q in grid 
ell (i; j) due to the �rst order update in the x dire
tionhas the form � 4t4xiA+4Qi� 12 ;j = �4th a(Qni;j �Qni�1;j): (7.4)Sin
e we assume that the adve
tion speed a in the x-dire
tion is positive, there is nowave that moves into this 
ell from the right 
ell interfa
e. Furthermore, the di�eren
ef(QLi+ 12 ;j) � f(QRi� 12 ;j) vanishes in the 
ase 4xi = h. In the 2D 
ase a part of theright-moving 
ux di�eren
e A+4Q should a�e
t other grid 
ells. This is indi
atedin Figure 7.1. The shaded regions indi
ate the in
uen
e of the jump Qij � Qi�1;j(initially lo
ated at the left 
ell interfa
e) due to the solution of the Riemann problemin the normal dire
tion. In a multidimensional method the solution of the Riemannproblem at the interfa
e xi� 12 should not only a�e
t the 
ell average of the 
onservedquantities in the grid 
ell (i�1; j) and (i; j). It should also have an e�e
t on grid 
ellsin the tangential dire
tion. In the situation shown in (a), the triangular portion of the
(a) ij

a4t
b4t(b)j i

a4t
b4t (
) ij

a4t
b4t

Fig. 7.1. Di�erent possibilities for transverse propagation of a right-moving wave for the ad-ve
tion equation on a non-uniform Cartesian grid.wave des
ribes the fra
tion that should a�e
t the grid 
ell (i; j + 1). The transversepropagation of the wave 
onsidered in Figure 7.1 (a) should 
hange the 
ell averageof the 
onserved quantity in grid 
ell (i; j) by the amount(4t)24xi4yj 12bA+4Qi�12 ;j = (4t)24xi4yj 12B+A+4Qi� 12 ;j :The 
hange of the 
ell average of the 
onserved quantity in 
ell (i; j + 1) due to thetransverse propagation of this wave has the form� (4t)24xi4yj+1 12B+A+4Qi� 12 ;j :The notation B�A�4Q was introdu
ed in [18℄ to des
ribe transverse propagations ofleft and right moving 
ux di�eren
es. For the wave propagation algorithm with time



20 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEstep restri
tion CFL � 1 the transverse propagation has always the triangular formdepi
ted in Figure 7.1 (a), even if the grid is irregular. Sin
e the transverse propa-gation approximates terms that are needed in order to obtain se
ond order a

ura
y,we in
lude those terms into the se
ond order 
orre
tion terms used in Equation (7.3).The up-going 
ux di�eren
e B+A+4Qi�12 
ontributes to the ~G term in the form ofan update Ĝ2i;j+ 12 := Ĝ2i;j+ 12 � 12 4t4xiB+A+4Qi� 12 ;jFor our h-box method we have to extend the transverse propagation to allowalso wave propagation of other forms, for instan
e those shown in (b) or (
). Forthe situation shown in Figure 7.1 (b) the update of the 
ux ~G due to the transversepropagation has the formĜ2i;j+ 12 := Ĝ2i;j+ 12 � 4t� 124yj=bb4t4xi 4yjB+A+4Qi� 12 ;j :In the situation shown in (
), the transverse propagation of A+4Qi� 12 ;j leads to anupdate of Ĝ2i;j+ 12 as well as Ĝ2i;j+ 32 , depending on the fra
tion of the wave 
onsidered.As demonstrated in these examples, simple geometri
 routines 
an be used to 
al
u-late the fra
tion of the waves that determine the 
hange of the 
ell average of the
onserved quantity due to the transverse propagation. Note that the wave speed inthe normal dire
tion (i.e. a in our example) is present in the 
u
tuations A�4Q. Inorder to 
al
ulate the transverse propagations no other information from the stru
-ture of the Riemann problem in the normal dire
tion is needed. Therefore, even for asystem of 
onservation laws, we only have to de
ompose the left and right-moving 
uxdi�eren
es, instead of de
omposing ea
h wave resulting from the Riemann problem inthe normal dire
tion separately.So far we have assumed that 4xi = h. If 4xi < h, we want to use the one-dimensional h-box method in order to 
al
ulate the 
uxes in the normal dire
tion.The transverse propagation will take a very similar form as dis
ussed above. Now we
ould interpret the grid 
ells (i; j), (i; j+1) shown in Figure 7.1 as h-boxes 
onstru
tedat the interfa
e xi� 12 . The transverse propagation of waves should again depend onthe fra
tion of the wave that moves through the h-box 
onsidered. This 
an be
al
ulated in exa
tly the same way as des
ribed above for the 
ase 4xi = h. Inorder to obtain the 
orre
t 
an
ellation property needed for a stable update, we haveto in
lude the terms f(QLi+ 12 ;j) and f(QRi� 12 ;j) that arise in Equation (7.2) into ourtransverse propagation. Motivated by equations (2.1), (2.2) we do this by applyingan update of the form A+4Qi� 12 ;j := A+4Qi� 12 ;j � f(QRi� 12 )A�4Qi� 12 ;j := A�4Qi� 12 ;j + f(QLi� 12 )before we 
al
ulate the 
hange of the 
uxes Ĝ2. For our example of the adve
tionequation with positive adve
tion speeds, this update of A�4Q has the e�e
t thatA�4Q is no longer equal to zero. Moreover, the fra
tion of the wave that is prop-agated in the transverse dire
tion only depends on the size of the grid 
ells and thespeed b. Therefore, our transverse propagation has the e�e
t that a fra
tion of theupdate used in Equation (7.3) is propagated in the transverse dire
tion. The update,
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h des
ribes the wave propagation in the x dire
tion was already 
onstru
ted tobe of the order O(4x) with 4x � h. Our transverse propagation allows that at mosta fra
tion of magnitude O(4y) (4y � h) is propagated in the transverse dire
tion.(See for instan
e Figure 7.1 (
).) Therefore, our transverse propagation satis�es the
an
ellation property. The transverse propagation of B+4Q also has to be in
ludedin an analogous way. By in
luding the transverse propagation into our 2D h-boxmethod, we obtain stability for time steps that satisfy the 
ondition CFLh � 1.A transverse propagation of the se
ond order 
orre
tion (3.8) 
an be in
ludedinto the transverse propagation in the same form as it was dis
ussed for the wavepropagation algorithm in [18℄. This further in
reases the a

ura
y of the method. Itwas used in our test 
al
ulations below.We now demonstrate the performan
e of our 2D high-resolution h-box methodfor the approximation of the adve
tion equation. We will 
ompare the numeri
alresults obtained for this h-box s
heme with results obtained using the standard high-resolution 
lawpa
k algorithm for irregular grid 
al
ulations. The latter methodrequires the time step restri
tion CFL � 1, while the h-box method is stable for timesteps that satisfy CFLh � 1. We �rst study the a

ura
y for the two dimensionaladve
tion equation.Example 7.1. We 
onsider the approximation of the adve
tion equation qt+qx+qy = 0, with initial values q(x; y; 0) = sin(2�x) 
os(2�y) on the domain [0; 1℄� [0; 1℄.We impose periodi
 boundary 
onditions. The grid 
ontains two lines as well as two
olumns of grid 
ells with height respe
tively width 0:1h and 0:9h. All other grid 
ellshave the size h� h. See Figure 7.2 (a) for a plot of a fra
tion of the grid.Test 
al
ulations for Example 7.1 
on�rm that the h-box method leads to se
ondorder a

urate approximations also in this multidimensional appli
ation. In Figure7.2 (d) we do
ument the experimental order of 
onvergen
e of the h-box methodin both the L1-norm (depi
ted by o-symbols) as well as in the maximum norm (+-symbols). For this grid, ina

ura
ies near the small 
ells would be displayed in themaximum norm rather than the L1-norm. However, in both norms the experimentalorder of 
onvergen
e is about 2. The results for the h-box method 
ompare wellwith numeri
al results obtained with the standard wave propagation algorithm withappropriate modi�
ations that allow the approximation on a nonuniform grid. Boths
hemes 
onverge with se
ond order, but the error is slightly smaller if we use theh-box method. This is due to the numeri
al vis
osity, sin
e the time step restri
tionCFL � 0:9 for the wave propagation algorithm leads away from the small 
ell to timesteps that 
orrespond to CFL � 0:1.Our two-dimensional h-box method 
an be extended to systems of 
onservationlaws in the same way as the standard wave propagation algorithm. The modi�
ationsdes
ribed above now have to be applied to ea
h wave resulting from the de
ompositionof the left- respe
tively right-going 
ux di�eren
es into up- and down-going waves.In our last example we 
onsider the approximation of a two dimensional Riemannproblem for the Euler equations, as studied in [27℄ . This same example was 
onsideredin [18℄, where results of 
lawpa
k 
al
ulations on a uniform grid are shown. Theinitial values are pie
ewise 
onstant in four quadrants and the solution of ea
h singleRiemann problem is a sho
k wave. Due to the intera
tion a 
omplex solution stru
tureis obtained. For this 
al
ulation we have, in addition to the regular grid 
ells of thesize h � h, 10 lines and 10 
olumns with height respe
tively width varying between0:1h and 0:9h. Our solution on a nonuniform grid 
al
ulated by the high-resolutionh-box method with h = 0:005 
ompares well with those obtained on a regular grid,
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Fig. 7.2. Approximation of Example 7.1. (a) The grid for a dis
retization with h = 0:02, (b)
ontour plot of the solution using the two-dimensional h-box approa
h with h = 0:01 and CFLh � 0:9,(
) 
onvergen
e study for irregular grid 
lawpa
k algorithm, CFL � 0:9, (d) 
onvergen
e study forh-box method, CFLh � 0:9. (o-symbol: error in L1-norm, +-symbol: error in maximum norm)see Figure 7.3. The sho
k waves are equally well approximated with both methods.Slight di�eren
es are only visible at the unstable 
onta
t lines, whi
h are very sensitiveto the numeri
al method, see also [18℄ were it was shown that di�erent limiters havea quite large impa
t on the approximation.
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Fig. 7.3. (a) Contour plot of density obtained by the high-resolution wave propagation algorithmon a uniform grid with h = 0:005, (b) 
ontour plot of density obtained with high-resolution h-boxmethod, h = 0:005. We used the monotonized 
entered limiter.
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lusions. We studied high-resolution h-box methods for the approximationof hyperboli
 systems of 
onservation laws on irregular grids and showed that thede�nition of the h-box values is important in order to 
onstru
t a

urate s
hemes. Inforth
oming work we will use this to 
onstru
t a new two-dimensional high-resolutionh-box s
heme for the approximation of 
onservation laws with embedded irregularboundaries. So far there is no Cartesian grid embedded boundary method that leadsto a se
ond order a

urate approximation at boundary 
ells. Further work will also
on
entrate on the entropy 
onsisten
y of h-box methods and the approximation oftransoni
 rarefa
tion waves.Appendix A. Stability of the se
ond order h-box method. In this ap-pendix we prove the stability of the se
ond order h-box s
heme for qt = qx usinglinear interpolation a

ording to the theory of Gustafsson, Kreiss and Sundstrom [11℄(hen
eforth GKS). We treat the small 
ell with mesh width �h as a boundary 
ondi-tion for the Lax-Wendro� s
heme applied on either side of the small 
ell, using thenotation of Figure A.1. Here the 
onserved quantity assigned to the right h-box at
x� 12 x 12V�2 V�1 V0U0 U1 U2

h �h
x 32x� 32V�2 V�1 W U1 U2

Fig. A.1. Notation for GKS stability, with one small 
ell in the middle.the interfa
e x� 12 is denoted by V0. The left h-box value at the interfa
e x 12 is U0.The derivation of the stability 
ondition for the update of the small 
ell is similar tothose used in Berger [1℄, where stability for s
hemes with lo
al grid re�nement wasanalyzed.Both U and V are 
omputed using the se
ond order Lax-Wendro� s
heme,Un+1j = Unj + �=2(Unj+1 � Unj�1) + �2=2(Unj+1 � 2Unj + Unj�1); j � 1;V n+1j = V nj + �=2(V nj+1 � V nj�1) + �2=2(V nj+1 � 2V nj + V nj�1); j � �1; (A.1)with � = 4th . Using the approa
h of [1℄, we look for solutions of the formUnj = ��jzn; j�j � 1 j = 1; 2; : : :V nj = �� jzn; j� j � 1 j = �1;�2; : : : : (A.2)With this numbering, for l2 solutions the root � of the 
hara
teristi
 equation forU on the right side has magnitude less than 1, and � has magnitude greater than 1.Roughly speaking, the s
heme is unstable if and only if there are l2 solutions satisfyingthe interpolation 
onditions with growth in time jzj > 1.



24 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEThe linear interpolation 
onditions (3.3) give usU0 = 1� �1 + � V�1 + 2�1 + �W; V0 = 1� �1 + � U1 + 2�1 + �W (A.3)where the small 
ell, labeled W above, satis�es the \small-
ell" version of Lax-Wendro�,Wn+1 =Wn + �t�h �U0 + U12 + �t2h (U1 � U0)� V0 + V�12 � �t2h (V0 � V�1)� : (A.4)The 
hara
teristi
 equation forW isWn = ŵzn. We normalize the equations and takeŵ = 1. Substituting the 
hara
teristi
 roots for U; V into the interpolation 
onditions(A.3) gives � = 1� �1 + ����1 + 2�1 + �; � = 1� �1 + ��� + 2�1 + �: (A.5)Equation (A.5) is easily solved for � and �, giving� = 2� �1 + �+ (1� �)��1�(1 + �)2 � (1� �)2���1 ; � = 2� (1 + �+ (1� �)�)(1 + �)2 � (1� �)2���1 : (A.6)Substitution of the resolvent equations for U and V into (A.4) givesz = 1 + �2� ��(1 + �) + ��(�� 1)� �(1 + ��1)� ��(1� ��1)� : (A.7)We use (A.5) to repla
e � and � in terms of ���1 and ��. Also, for a given meshwidth h on both the left and right, it is easily seen that the produ
t of the roots �and � are �� = ��1�+1 , so ��1 
an be repla
ed using �. Thus, (A.7) simpli�es toz = 1� 2�21 + � + �(1 + �)1 + � �(�+ �) (A.8)We 
all this root 
ondition for the stability of the small 
ell s
heme with Lax-Wendro�.If there are roots z with jzj > 1 and �; ��1 with magnitude less than or equal to 1,satisfying (A.8) then by the GKS theory, the s
heme is unstable. Conversely, if thereare no su
h roots, the s
heme is stable. As in [1℄, we will use the maximum prin
ipleto redu
e the range of values we need to 
he
k for stability.To see that the maximum prin
iple applies, we will show that the right hand sideof (A.8), 
all it f(z), has no singularities for jzj � 1 and is bounded as z !1. Firstnote that f(z) = (1� 2�21+� ) + �(1+�)1+� �(� + �) has no bran
h points for jzj � 1. Thisis be
ause the roots �; � satisfy the Lax Wendro� 
hara
teristi
 equation for (A.1),z = 1 + �2 (� � ��1) + �22 (� � 2 + ��1) (A.9)whi
h lead to a quadrati
 equation for � with roots�1;2 = z � 1 + �2 �p(z � 1)2 + �2(2z � 1)�(� + 1) (A.10)One of the roots is always inside the unit 
ir
le, the other one is outside the unit
ir
le, see [11℄, Lemma 6.1. The root inside the unit 
ir
le is the root we 
all � above,� is the root that is outside the unit 
ir
le.



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 25The square root term of (A.10) is zero only for z = 1� �, whi
h being inside theunit 
ir
le is outside the region of interest, so there are no bran
h points for jzj > 1.Also, note from (A.10) that as z !1, the root � grows like 2z�2+� , so the root � growslike �(��1)2z , whi
h is 
learly bounded for large z. So the maximum prin
iple applies.Thus f(z) attains its maximum value on the 
ir
le jzj = 1. The next step thenis to examine the magnitude of f(z) for values of z on the unit 
ir
le. Sin
e we 
anonly show analyti
ally that f(z) � 1 for � > :5, we instead evaluate f(z) numeri
ally,for 0 � � � 1, and 0 < � � 1, on the unit 
ir
le for z = ei�; 0 � � � 2�. Figure A.2shows the lo
us of values of f(z), where the unit 
ir
le is also drawn. As the �gure
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Fig. A.2. Lo
us of values of f(z) for jzj = 1; all values lie inside or on the unit 
ir
le.and some algebra shows, only for z = 1; � = 0; and z = �1; � = 1, does z = f(z).Examining the �rst value z = 1 = f(z), we have � = 0, or equivalently �t = 0,so Qn+1 = Qn (with Q 2 fU; V;Wg), 
learly a stable solution. For the other 
ase,we have z = �1 = f(z), whose only solution (again using some numeri
al evaluationand some algebra) is � = 1; � = 0. But � = 0 
orresponds to the usual Lax-Wendro�s
heme without the small 
ell, and � = 1 for this 
ase is straight 
opying of thesolution (� = 0; � = �1). Again this is stable.Sin
e Lax Wendro� is a se
ond order method, the use of linear interpolation withO(h2) error on a lower dimensional set of points is reasonable. However, one might
onsider the use of quadrati
 interpolation for U0; V0. The next question is whatsten
il to use for the quadrati
 interpolant. Using the notation of Figure A.1, onemight 
onsider using the same interpolant based on V�1; W and U1 to get both U0and V0. However this 
hoi
e redu
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