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Abstract. We report on the recent work [3]. There, the asymptotics of the survival probabilities 
of particles in a random environment of obstacles, are computed. The model is the 
following: particles are injected at a time dependent rate at the origin of the lattice Z”. 
Once born, they diffuse among sites which are free of traps. Each trap has a random 
depth, which decreases by one each time a particle is absorbed. The logarithmic 
asymptotic decay of the probability that a particle born at some fixed time survives 
at some later time t is computed, showing the presence of three injection regimes. 
Here we report on the quenched version of these results. A key tool for proving this 
result is the method of enlargement of obstacles developed by Sznitman [9]. 0 1999 
Academic des Sciencesfiditions scientifiques et medicales Elsevier SAS 

Asymptotiques presque s&res des probabiliths de survie 

duns le processus de saturation al6atoire 

Nous presentons des resultats de [3], dormant le comportement asymptotique de la 
probabilitt? de survie d’une particule dans un milieu aleatoire. Le modele etudie’ est le 
suivant : des particules sent injectees a l’origine du reseau E” avec un taux qui depend 
du temps. Une fois &es, ces particules difSusent parmi les sites qui sent libres de pieges. 
Chaque piege a une profondeur aleatoire, qui de’croit de 1 chaque fois qu’une particule 
est absorbee. Le logarithme de la probabilite’ qu’une particule n&e a un instant don& 
survive jusqu’a un instant poste’rieur t, est calcule’pour t + WI, montrant l’existence de 
trois regimes d’injection. Ici nous presentons la version presque sure de ces rr’sultats. 
Un outil-cle dans la preuve est la methode d’agrandissement des obstacles developpee 
par Sznitman [9]. 0 1999 Academic des Science&ditions scientifiques et medicales 
Elsevier SAS 
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Version franqaise abrkgc?e 

Dans cette Note nous presentons un modele de croissance, diffusion et de piegeage, qui a comme 
motivation initiale une version simplifiee d’un probleme de gestion de dechets nucleaires. Le modele est 
construit sur le reseau 2’” et a trois proprietes principales. On definit d’une part un milieu altatoire par 
un ensemble de variables aleatoires i.i.d., r](z) indexees par le rtseau Zd. T(Z) represente la profondeur 
initiale d’un piege au site Z, avec la convention qu’il n’y a pas de piege au site :r si n(:~) = 0. D’autre 
part, des particules sont injectees a l’origine du rtseau. On notera N(t) le nombre de particules nees 
avant le temps t. Enfin, le milieu aleatoire et les particules interagissent : quand une particule est nee, 
elle se deplace comme une marche aleatoire simple en temps continu jusqu’a ce qu’elle tombe sur 
un piitge non encore saturt. A cet instant, la particule s’arrete et reste dans le piege, et la profondeur 
du piege diminue d’une unite. Lorsque la profondeur atteint zero ce piege est sature et n’agit plus 
comme un piege. Notre but ici, est de presenter un resultat qui decrit le comportement asymptotique 
presque stir du logarithme de la probabilite de survie d’une particule n&e a un instant donne. Selon 
le comportement de N(t) lorsque t -+ 00, nous montrons l’existence de trois regimes principaux. 
La preuve utilise une adaptation de la dernibe version de la methode d’agrandissement des obstacles 
developpee par Sznitman [9], et une inegalite isoperimetrique pour le Laplacian discret sur 2”. 

Dans des contextes similaires, on peut titer des travaux qui comprennent quelques elements du 
moditle decrit ci-dessus. Par exemple, AS. Sznitman [9] et anterieurement Donsker et Varadhan ([5], 
[6]) (dans le contexte de la saucisse de Wiener) ont CtudiC un modele du mouvement brownien dans 
un milieu aleatoire de pieges poissonniens. Dans le cadre du modele de cette Note, ces travaux 
correspondent a un cas ou on negligerait le phtnomene de saturation des pieges. D’autre part, pour 
le modele d’ct Internal Diffusion Limited Aggregation >> (IDLA) introduit par Diaconis et Fulton [4] 
(en temps discret), Lawler, Bramson et Griffeath [S] ont demontre un theoreme pour la forme de 
l’ensemble des pieges satures. 

1. Introduction 

In this Note we present a model of growth, diffusion and trapping in a random environment, having 
as initial motivation a simplified version of a problem in nuclear waste management of confinement 
of heavy nucleotides by high-performance clay barriers. The model is constructed beginning from the 
lattice Z” and has three main features: there is a random environment given by a collection of i.i.d. 
random variables r)(z) at each site CC of the lattice Z”. ~(2) represents the initial depth of the trap at 
site .‘c, with the convention that there is no trap if rl(:r;.) = 0; at the origin of Zd particles are injected 
at a time dependent rate given by the number N(t) of born particles up to time t; finally, there is an 
interaction between the medium (~1) and the particles: when born, particles perform continuous time 
simple random walks until they find a trap of depth greater than zero. At this point the particle stops 
and stays forever in the trap, and the depth of the trap is decreased by one. Our aim here, is to present 
a result describing the quenched logarithmic asymptotics of the survival probability (the probability 
of not getting trapped) of a particle born at a given time. Depending on the long time behaviour of 
N(t), we show the existence of three main regimes. 

There have been related works encompassing some aspects of the model described above. For 
instance, A.S. Sznitman [9] and previously Donsker and Varadhan ([5], [6]) (in the context of the 
Wiener sausage) have studied a model of Brownian motion on a random environment of Poissonian 
traps. In the context of the model of this Note, this corresponds to the absence of saturation of the 
traps. On the other hand, there is the Internal Diffusion Limited Aggregation (IDLA) model introduced 
by Diaconis and Fulton [4] in a discrete time setting and studied in a continuous time setting by 
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Lawler, Bramson and Griffeath [X] which prove a shape theorem for the cluster of saturated traps. 
The continuous version corresponds to the model of this note where initially every site of the lattice 
is an obstacle of depth one. In another related work in the context of IDLA, Gravner and Quastel [7] 
prove among other things that, when d = 2 and the injection rate is constant, under an hydrodynamic 
scaling limit, the profile of live particles converges weakly to the solution of the one phase Stefan 
problem with a source at the origin. 

2. Notation and results 

Firstly, let m be some natural number and define Z := {n E N : 0 5 n 5 m}. The state space 
representing the obstacle configuration endowed with the natural topology will be denoted by l? := Zzd . 
Let B be the corresponding Bore1 a-algebra. Define for each finite set F E Z the continuous projections 
TF from I to IF. Given 71 E I we define its z-th coordinate by n(z) := 7rtzln. A site x such that 
n(z) 2 1 represents a site with an obstacle present, while n(z) = 0 means that there is no obstacle. 
Let {T, E [0, oo) : n E N} be a sequence of strictly increasing times which will represent the times at 

which random walks are introduced at the origin. Let N(t) := E lla,,l(T,), where ln is the indicator 
n=l 

function of B C W, This represents the total number of random walks that have been born at time t. 
We can now describe the dynamics of the random saturation process. At time T,, a random walk 

2, is introduced at the origin 0 of Zd. Then, 2, moves as a simple random walk of total jump rate 
equal to 1 until the first time it jumps to some site x which has received less than r/(z) visits. After 
this moment it remains at site x forever. A rigorous definition of the dynamics of the empirical density 

cc 
of particles C lo, of the random saturation process can be given as a Markov process on 

i=l 

the space D([O,co),l&), endowed with its Borel-a field. However, a richer construction is possible 

on the space R := D([O,CX),Z~)~, endowed with its Borel-a field 2), i.e. in the space describing 
the dynamics of each random walk 2,. In [3] we present such a construction. As it turns out, it 
defines a probability measure QN,~ on the space (0, D) such that the canonical coordinate process 
2 := (2, : n E N} has the dynamics described above. Also, the construction explicitly shows a 
coupling between each 2, and a free random walk Y, such that with probability one under QN,~, 
one has &(t) = Yn(t) for t < TV, where ~~ is the first hitting time of 2, to a trap, i.e. to a site z 
which has received less than q(z). In the sequel we will say that 2 under QN,~, is a random saturation 
process on an obstacle configuration q and driven by an injection N. 

Now we endow the obstacle state space (I’, a) with a product probability measure p given by 

#477(x) = a) = Pa* where agrpa = 1. Let St := {z E Zd : <(z,t) > r)(z) > O}, where for A C Zd, 

we define 1~ : Zd -+ (0, l} as the indicator function of the set A. This set corresponds to the sites .X 
of the cubic lattice Zd which have an obstacle, and which been visited at least q(z) times. We will call 
it the set of saturated obstacles at time t. Let k(t) : [0, 03 --+ N be an increasing function of time and ) 
let g(t) := Tkct) be the birth time of the random walk Zk(,). We will be interested in understanding the 
asymptotic behaviour of the survival probability of the random walk Zkct) with law given by QN,~,, 
both when k(t) is fixed as time goes to infinity, and when k(t) goes to infinity together with time. Let 
Ad be the principal Dirichlet eigenvalue of the Laplacian operator divided 2d on the ball of unit radius 
of Rd and wd its volume. Define p := p(r/(z) > 0), a := p(n(z)), 8 := max{n E A} and denote by 
p,(d) the critical probability of site percolation on Z d. In the sequel we assume that p > 0. 

THEOREM 1. - Consider a random saturation process on an obstacle configuration 7 and driven by 
an injection N. Assume that 0 < N(t) << td/2-E for some E E (O! l), that lim sup k(t) > a and that 

t+m 
t - g(t) >> 1. Then: 
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(i) assume that 1 << N(t) << (t - !l(t)) ‘Ii2 1’ln(t - c/(t)) << N(t) or p > p.(d) then, . 

bvhere h,tr(k,t) := X,1 (c~w~~)~/” &,, & ; 

(ii) if N(t) << ln(t - g(t)) and p < p,-(d) then, 

Let us briefly discuss the meaning of the above result. For the sake of clarity, let us consider the 
case in which k(t) is some constant grater than a. When p < p,., we know that Ir-a.s. there exists a 
unique obstacle free cluster on the lattice Z’“. The above theorem shows that when N(t) << t-‘+“/‘, 
for some E > 0, there appear to be two different injection regimes when p < yc. There is a regime 
which we will denote by quenched low regime, when N(t) << 111 t , given by part (ii). The subscript 
L in hL stands for low. The survival strategy for random walks in this regime consists essentially in 
travelling fast to a distance of order t/( In t) *irl to some region of the lattice free of obstacles and of 
radius of the order of (ln t) ‘id This is exactly the survival strategy of a Brownian motion on R” with . 
Poissonian obstacles (see [9]) or of a simple random walk on the lattice with obstacles on sites or 
bonds distributed according to some product measure (see 121). There is a second injection regime for 
lnt << N(t) << t-=+“/*, which we call quenched medium regime, given by part (i) of Theorem 1. 
The subscript Ad in ,41,1 stands for nzediunz. Here random walks are provided with a better survival 
strategy than going far to find natural clearings, as in the low regime. In fact, it is possible to prove 
that Q1,i,,,-a.s. eventually for t large enough, the set of saturated obstacles produces a central clearing 

(without obstacles) which at time t is a ball of radius (& N(t)) l”‘. Th us, the typical survival strategy 
of a particle is to stay in this central region. When p > p,-, so that I/,-a.“. there is no infinite trap free 
cluster, Theorem 1 states that for injection rates satisfying N(t) << t-E+“/2, the decay of the survival 
probability is as in the medium regime. 

Finally, let us remark that an annealed version of Theorem 1 has been proved in 131. As above, 
one can distinguish different injection regimes. but the transition between the low and medium regime 
occurs at a higher injection rate, given by the radius of an “annealed” natural central clearing produced 
as described in Donsker and Varadhan [5]. 

3. Main elements in the proof of Theorem 1 

The following fact is central in the appearance of the two different injection regimes (low and 
medium) in Theorem 1: jr-a.s., with Q,.,v probability one, eventually in t, the set of saturated obstacles 

S, at time t is a ball of radius (& N(t)) “” intersected with the original set of traps. We will call the 
obstacle free region produced in this way, the central clearing. The proof of this shape theorem [3], 
requires a small modification of the methods used in [8] to prove the corresponding theorem for IDLA. 

There are two main survival strategies for a random walk that determine the behaviour for long 
times, of the probability to survive up to time t. The first strategy is based on the presence of a central 
clearing as described above. Then, to survive up to time t a particle tries to spend all the time in a 
ball of time dependent radius correspondin g to such a clearing. The second survival strategy is to go 
very fast to a distance of order t/(lu t) 2/d to find a natural clearing of the obstacles of size of order , 
(111 ty, and to spend the rest of the time up to time t in this clearing. We will call such clearings, 
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the natural clearings. This is precisely the survival strategy of a single random walk on the lattice with 
random obstacles on the sites having a Bernoulli product distribution [2]. 

There is a competition between these two strategies. Depending on the injection rate and on the 
value of the percolation parameter p, one dominates the other, fact which is reflected on the different 
regimes appearing in the statement of Theorem I: part (i) corresponds to a random walk following the 
survival strategy of staying in the central clearing created by the saturated obstacles, while part (ii) 
corresponds to a random walk which survives by travelling fast to a distance of order t/(lnt)2/d to 
some natural clearing of size of order (lnt)‘/“, staying there up to time t. 

To illustrate these two situations, in what follows we take a look at the case k(t) = 1, corresponding 
to the behaviour of the first particle born. For high injections, N(t) >> lnt, the central clearing 
produced by saturation dominates in size the natural clearings that can be found within a box of side 
t. Similarly, if the percolation parameter is higher than p,, there is no infinite cluster of sites free 
of obstacles, and the possibility of travelling far away to find natural clearings is denied. In both 
cases, the central clearing determines the behaviour of the decay of the survival probability up to time 
t and the hypothesis of part (i) of Theorem 1 are satisfied. More precisely, the logarithm of such 
probability diverges like - s,’ X(s) d s, where X(s) is the principal Dirichlet eigenvalue of the discrete 
Laplacian operator divided by 2d on the set of sites free of obstacles at time s. For long times, such an 
eigenvalue decays as the principal Dirichlet eigenvalue of the continuous Laplacian on a ball of radius 

(& wyd. Such an argument via an application of the shape theorem provides the lower bound 
on the asymptotics of part (i) of Theorem 1. On the other hand at low injection rates N(t) << In t and 
p < p,., it is easy to see that the probability of survival of the the first born particle is bounded below 
by the survival probability of a single simple random walk on a random environment of absorbing 
obstacles distributed according to ,u. Now, by the logarithmic asymptotics proved by Antal [l], [2], 
this provides the lower bound of part (ii) of Theorem 1. 

The proof of the upper bounds of Theorem 1 turn out to be more difficult. For part (i) (high injection 
or percolating obstacles case), the main problem is that there is no good control on the probability that 
the central clearing is a ball. Thus, the central clearing shape theorem is useless. We therefore have to 
consider all possible shapes for the saturated set of obstacles at a given time and not only “balls”. It is 
the case that the smallest possible value that one can obtain for the principal Dirichlet eigenvalue of 
the discrete Laplacian on the obstacle free sites in a box after erasing a predetermined large enough 
amount of obstacles, corresponds to erasing a sphere. Part (i) of Theorem 2 is a statement of this fact. 
To state it, we need to introduce some notation. For a given configuration of obstacle depth 7 E Zzd, 
we will denote by N,(q) the set of configurations obtained from n after deleting r~ obstacles. Thus, 

for every c E Nn(q) we have CZEZd(rl(:~) - C(X)) = n. Now consider the space Y := (0, l}zd. 
This represents a space of site configurations on the lattice: sites in state 1 have an obstacle and are 
absorbing, and those in state 0 are empty and non-absorbing. Next, given [ E T, call the subset of Z” 
without obstacles E(E) := {IC E Z” : E(X) = O}. N ow, given an open subset U of Rd, denote by X,(U) 
the principal Dirichlet eigenvalue of the discrete Laplacian on U tl E(e). We also define a mapping 

0 : ZZd + ‘I- by a(q)(z) = 1 if V(T) > 1 and cr(n)(~) = 0 if r/(x) = 0. Finally, for given 7 E ZIEd, 
and an open subset U c Rd we adopt the convention X,(U) := X,(,)(U). 

THEOREM 2. - On Zzd consider a product measure p such that ,u(q(x) 2 1) = p, where rj E Zzd and 
0 < p < 1. Let f(t) : [0, m) + [0, KJ) b e an increasing,function such that f(t) << t, wd the volume of 
a ball on Rd of unit radius and Ad the principal Dirichlet eigenvalue of the Laplacian operator on this 
ball times A. Then if a := p(q), the following statements are true: 
(i) suppose that f(t) >> (lnt)‘jd. Then, 

lim f(t)2 
t’cc 

inf A, ((-t, t)“) = Ad p-a..% ; 
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(ii) suppose that f(t) << (Int)‘/“. Then, 

Let us first explain how does Theorem 2 complete the proof of parts (i) and (ii) of Theorem 1. 
If P is the probability that a simple random walk survives up to time t in a subset G C z”, then 
P 5 c@t)“I2 + 1) e+t, where X is the principal Dirichlet eigenvalue of the discrete Laplacian on the 
set G and c is a constant. A combination of this fact with part (i) of the Theorem 2 enables us to prove 
the upper bound of the logarithmic asymptotics of part (i) of Theorem 1. For part (ii) (low injection 
regime without percolation of obstacles) the difficulty in proving the upper bound lies in showing that 
the principal Dirichlet eigenvalue of the discrete Laplacian on the obstacle free sites of a box does not 
change if we erase a low enough amount of obstacles. This is the content of part (ii) of Theorem 2, 
which is enough to prove the upper bound of part (ii) of Theorem I. 

We finally comment briefly on the proof of the eigenvalue estimate of part (i) of Theorem 2. We 
first show that Jli~ f(t)2 sun inf 

““,dfd(t)(d 
A,((-t,t)“) 5 x d Ls-a.s. This is a consequence of the fact 

that the left hand side in display (1) can essentially be bounded by X,, ((-t. t)“), where ci is such 
that <r(~) = 0 if II: is a sphere centred a the origin of volume wd, and cl(z) = 1 otherwise. The 
final step is to show that ,‘ink f(t)2 c~.i\l inf aL,,afd(t)(,l) 4 N-t, w 2 x $ /r-as. The proof of this part is 

more involved and requires an adaptation to the lattice of the second version of the enlargement of 
obstacle method of Sznitman [9]. We first suppose that the above lower bound is not satisfied. Then 
we subdivide the box (-t, t)(’ in small boxes of side o(t). The enlargement of obstacle method enables 
us to estimate the number of such boxes which have a small number of traps. An important ingredient 
here is the following isoperimetric inequality: 

LEMMA 1. - Let E > 0; for each K c EZ~ define X”(K) as the principal Dirichlet eigenvalue of 
the discrete Luplaciun divided by 2dp2 on K with Dirichlet boundary conditions. Dejine K := {x E 
Z” : Iz - y/I = E for some ?/ E K}. Then, 

2/d 
1 

1 + C&E*,V(K) ’ (2) 

where Cd := 3d2 2d-1 
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