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Introduction

What is the probability that the Brownian motion oscillates rapidly con-
ditionally on the fact that it is small in uniform norm? More precisely,
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what is the probability that the α-Hölder norm of the Brownian motion is
large conditionally on the fact that its uniform norm (or more generally its
β-Hölder norm with β < α) is small?

This is the kind of question that naturally appears if one wants to extend
the Stroock-Varadhan characterization of the support of the law of diffusion
processes [S-V] to sharper topologies than the one induced by the uniform
norm.

We deal with this question in §1 and show that those tails are much
smaller than the gaussian tails one would get without the conditioning. This
gives a family of examples where the conjecture (stated in [DG-E-...]) that
two convex symmetric bodies are positively correlated (for gaussian mea-
sures) is true.

Our proofs are based on the Ciesielski isomorphism [C] (see [B-R] for
other applications of this theorem) and on the correlation inequality. We
give in appendix a proof which avoids these tools.

This enables us to control in §3 the probability that a Brownian stochastic
integral oscillates rapidly conditionally on the fact that the Brownian motion
is small in uniform norm. This is the tool to extend the Stroock-Varadhan
support theorem to α-Hölder norms.

1. Conditional tails for oscillations of the Brownian motion

If x is a continuous real function on [0, 1], vanishing at zero, we define
the sequence ( ξm(x) )m≥1 by the formula:

ξm(x) = ξ2n+k(x) = 2
n
2

(
2x

(
2k − 1

2n+1

)
− x

(
k

2n

)
− x

(
k − 1

2n

))
,

for n ≥ 0 and k = 1, . . . , 2n. Denote

(1.1) ‖x‖0 = sup
0≤t≤1

|xt| ,

(1.2) ‖x‖α = sup
0≤s 6=t≤1

|xt − xs|
|t− s|α

, α ∈ ]0, 1] ,

(1.3) ‖x‖′α = sup
m≥1

|mα− 1
2 ξm(x)| , α ∈ [0, 1] .

It is now classical that, for α ∈ ]0, 1[, the norms ‖ · ‖α and ‖ · ‖α′ are
equivalent (see [C]):
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(1.4) 2α−1 ‖x‖′α ≤ ‖x‖α ≤ 2−
1
2 kα ‖x‖′α , α ∈ ]0, 1[ ,

where

kα =
2

(2α − 1)(21−α − 1)
,

and

(1.5) 2−2 ‖x‖′0 ≤ ‖x‖0 .

Let w be a liniar Brownian motion started from zero. We want to esti-
mate the probability that ‖w.‖α is large conditionally on the fact that ‖w.‖β

is small. We shall first tackle the same problem with the norms ‖ · ‖′.

(1.6) Theorem. Let (r, R) be a couple of real positive numbers, v =(
Rb

ra

) 1
b−a and denote

(1.7) Λα,β(r, R) =
ϕ(v)

v
+

1

a
R− 1

a

∫ ∞

v
ϕ(t) t

1
a
−2 dt ,

where ϕ(t) =
e−

t2

2

√
2π

, a =
1

2
− α , b =

1

2
− β. Then,

(1.8) P ( ‖w.‖′α > R | ‖w.‖′β < r ) ≤ 1∫ v
0 ϕ(t) dt

Λα,β(r, R) ;

(1.9) P ( ‖w.‖′α > R | ‖w.‖β ≤ r ) ≤ Λα,β(pβr, R) ,

where pβ = 21−β, if β > 0 and p0 = 4;

(1.10) P ( ‖w.‖α > R | ‖w.‖β ≤ r ) ≤ Λα,β(pβr, 2
1
2k−1

α R) .

To prove the theorem we need the following:

(1.11) Lemma. Let us denote n0 =
[ (

R
r

) 1
b−a

]
. Then
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(1.12)
∑

n≥n0+1

∫ ∞

Rna
ϕ(t) dt ≤ Λα,β(r, R) .

Proof. By the classical bound:∫ ∞

t
ϕ(s) ds ≤ ϕ(t)

t
≡ ψ(t) , t > 0 ,

and the fact that ψ is decreasing, we get:

∑
n≥n0+1

∫ ∞

Rna
ϕ(t) dt ≤

∑
n≥n0+1

ψ(Rna) =

ψ(R(n0 + 1)a) +
∑

n≥n0+2

ψ(Rna) ≤ ψ(v) +
∫ ∞

n0+1
ψ(Rta) dt =

ϕ(v)

v
+

1

a
R− 1

a

∫ ∞

R(n0+1)a
ψ(t) t

1
a
−1 dt .

From this the conclusion follows.
q.e.d.

We make another essential observation. If C , C ′ are two symmetric con-
vex sets in IRd, a general conjecture stated in [DG-E-...] predicts that they
are positively correlated for the canonical Gaussian measure γd, that is,

(1.13) γd(C ∩ C ′) ≥ γd(C) γd(C
′) .

This is true for d = 2 (see [P]), and for arbitrary d provided C ′ is a symmetric
strip (see [Sc] or [Si]). The general case is stil open.

Proof of the Theorem (1.6).
Proof of (1.8). We note that gn = ξn(w) is a sequence of independent

identically distributed standard Gaussian random variables. Then,

P ( ‖w.‖′α > R | ‖w.‖′β < r ) = P ( sup
n≥1

|n−agn| > R | sup
m≥1

|m−bgm| < r ) =

P (∪n≥1( |gn| > Rna) ∩ ∩m≥1( |gm| < rmb))

P (∩m≥1|gm| < rmb)
≤
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∑
n≥1 P ((Rna < |gn| < rnb) ∩ ∩m≥1,m 6=n( |gm| < rmb))∏

m≥1 P ( |gm| < rmb)
=

∑
n≥1

P (Rna < |gn| < rnb)

P ( |gn| < rnb)
· 1( Rna < rnb ) =

∑
n≥1

2
∫ rnb

Rna
e−

s2

2√
2π
ds

2
∫ rnb

0
e−

s2
2√

2π
ds
· 1( Rna <rnb ) =

∑
n≥n0+1

∫ rnb

Rna
ϕ(t) dt∫ rnb

0 ϕ(t) dt
≤ 1∫ v

0 ϕ(t) dt

∑
n≥n0+1

∫ ∞

Rna
ϕ(t) dt .

Clearly rnb ≥ r(n0 + 1)b ≥ v so the last inequality is true. Then (1.8) is a
consequence of the Lemma (1.11).

Proof of (1.9). We can write again

P ( ‖w.‖′α > R | ‖w.‖β ≤ r ) = P ( sup
n≥1

|n−agn| > R | ‖w.‖β ≤ r ) =

P (∪n≥1( |gn| > Rna) | ‖w.‖β ≤ r ) ≤
∑
n≥1

P ( |gn| > Rna | ‖w.‖β ≤ r ) .

But for ‖w.‖β ≤ r, by (1.4) or (1.5) we get

|gn| ≤ 21−βrnb , if β > 0

or
|gn| ≤ 4rn

1
2 , if β = 0 .

So, the preceding sum is taken over all integer n ≥ 1 such that 21−βrnb ≥
Rna, if β > 0, or 4rn

1
2 ≥ Rna, if β = 0, that is,

n ≥ 2
β−1
α−β

(
R

r

) 1
b−a

or n ≥ 2−
2
α

(
R

r

) 1
α

.

On the other hand, gn = ξn(w) is a linear form on the Wiener space. By
the correlation inequality with one of sets a symmetric strip and by a simple
finite dimensional approximation (see also [S-Z]), we obtain

P ( |gn| > Rna , ‖w.‖β ≤ r ) ≥ P ( |gn| > Rna )P ( ‖w.‖β ≤ r )
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or
P ( |gn| > Rna | ‖w.‖β ≤ r ) ≤ P ( |gn| > Rna ) .

Therefore

P ( ‖w.‖′α > R | ‖w.‖β ≤ r ) ≤
∑

n≥n1+1

P ( |gn| > Rna ) =
∑

n≥n1+1

∫ ∞

Rna
ϕ(t) dt ,

where n1 =
[
p

1
b−a

β

(
R
r

) 1
b−a

]
. By the Lemma (1.11) we get (1.9).

Proof of (1.10). It is a consequence of (1.4) or (1.5) and (1.9).
q.e.d.

We shall estimate Λα,β(r, R):

(1.14) Lemma. With the notations of the Theorem (1.6), there exists
a polynomial function Ψa, increasing on ]0,∞[, such that

(1.15) Λα,β(r, R) ≤ ϕ(v)

v

(
1 +

1

a
R− 1

a v
1
a
−2 Ψa

(
1

v

))
.

Proof. We shall simply give an upper bound for
∫∞
v ϕ(t) t

1
a
−2 dt. Noting

that ϕ′(t) = −t ϕ(t) and integrating by parts, we get∫ ∞

v
ϕ(t) t

1
a
−2 dt = −

∫ ∞

v
ϕ′(t) t

1
a
−3 dt = ϕ(v) v

1
a
−3+

(
1

a
− 3

) ∫ ∞

v
ϕ(t) t

1
a
−4 dt .

If a ≥ 1
3
, ∫ ∞

v
ϕ(t) t

1
a
−2 dt ≤ ϕ(v) v

1
a
−3 ,

which gives (1.14) with Ψa(x) ≡ 1. If a < 1
3
, similarly,∫ ∞

v
ϕ(t) t

1
a
−4 dt = ϕ(v) v

1
a
−5 +

(
1

a
− 5

) ∫ ∞

v
ϕ(t) t

1
a
−6 dt .

So, if 1
5
≤ a < 1

3
,∫ ∞

v
ϕ(t) t

1
a
−2 dt ≤ ϕ(v) v

1
a
−3 +

(
1

a
− 3

)
ϕ(v) v

1
a
−5 ,
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which is exactly (1.14) with p = 1 in the following expression:

Ψa(x) = 1 +
(

1

a
− 3

)
x2 + . . .+

(
1

a
− 3

) (
1

a
− 5

)
. . .
(

1

a
− 2p− 1

)
x2p .

Repeating the same reasoning the result is easily obtained for any p and any
a such that 1

2p+3
≤ a < 1

2p+1
. Ψa has positive coefficients, it is therefore

increasing on ]0,∞[.
q.e.d.

Combining this result with the Theorem (1.6) we obtain the following:

(1.16) Corollary. Let (R, r) be such that v ≥ ε > 0. Then,

(1.17) P ( ‖w.‖′α > R | ‖w.‖′β < r ) ≤ c(ε)
ϕ(v)

ε

1 + Ψa

(
1

ε

)(
Rβ

rα

) 2
α−β

 ;

(1.18) P ( ‖w.‖′α > R | ‖w.‖β < r ) ≤ ϕ(qβv)

qβε

1 + q
1
a
−2

β Ψa

(
1

ε

)(
Rβ

rα

) 2
α−β

 ;

(1.19) P ( ‖w.‖α > R | ‖w.‖β < r ) ≤ ϕ(cα,βv)

cα,βε
(1 + (2

1
2k−1

α )−
1
a c

1
a
−2

α,β ·

. Ψa

(
1

ε

)(
Rβ

rα

) 2
α−β

) .

Here qβ = p
− a

b−a

β , cα,β = qβ (2
1
2k−1

α )
b

b−a and c(ε) =
1∫ ε

0 ϕ(t) dt
. Note that

if ε→∞ then c(ε) → 2 and Ψa(
1
ε
) → 1.

We prove now a stronger result:

(1.20) Theorem. Let α , β be two real numbers such that 0 ≤ β < α < 1
2
.

There exists a positive number uα,β = 1−2α
1−2β

, such that, for every u ∈ [0, uα,β[,

there exists M0(α, β, u) and positive constants ki(α, β, u) , i = 1, 2, such that,
for every M ≥M0,
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(1.21) sup
0<δ≤1

P ( ‖w.‖α > Mδu | ‖w.‖β < δ) ≤ k1M
2β

α−β exp
(
−k2M

1−2β
α−β

)
.

Proof. First of all we take in the Corollary (1.16), R = Mδu and r = δ.
So, for every δ ∈]0, 1],

P ( ‖w.‖α > Mδu | ‖w.‖β < δ) ≤ cα,β M
1−2b
b−a δ

u(1−2b)−(1−2a)
b−a ·

exp
(
−c′α,β M

2b
b−a δ2ub−a

b−a

)
.

It is clear that, when M ≥
(

2
c′
α,β
· u(1−2b)−(1−2a)

b−a
· b−a

a−ub

) b−a
2b

the right hand side

of the last inequality is an increasing function of δ, for δ ∈]0, 1]. So,

sup
0<δ≤1

P ( ‖w.‖α > Mδu | ‖w.‖β < δ) ≤ cα,β M
1−2b
b−a exp

(
−c′α,β M

2b
b−a

)
,

namely the conclusion.
q.e.d.

2. Hölder balls of different exponent positively correlated

We show here that the conjecture on the correlation inequality is true for
Hölder balls. We denote Bα(ρ) = { ‖w.‖α ≤ ρ } and B′

α(ρ) = { ‖w.‖′α ≤ ρ }.

(2.1) Theorem. If R is sufficient large and if r is fixed, then Bα(R) and
Bβ(r) are positively correlated.

Proof. We proved in Corollary (1.16), for example when r = 1, that, for
large R,

(2.2) P (Bα(R)c |Bβ(1) ) ≤ cα,β exp
(
−c′α,β R

1−2β
α−β

)
,

for every 0 ≤ β < α < 1
2
. We can compare this estimate with the clas-

sical gaussian estimate, for large R,

(2.3) P ( ‖w.‖α > R ) ≤ exp (−cαR2)

(see [BA-Le] or [B-BA-K] for other consequences of this inequality).
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By large deviations principle we obtain in fact,

P (Bα(R)c) ∼ e−cα R2

,

provided R is sufficiently large. Therefore, by (2.2), for large R,

(2.4) P (Bα(R) | Bβ(1)) ≥ P (Bα(R)) .

So, in this particular case, the general conjecture is valid: the two symmetric
convex sets Bα(R) and Bβ(1) are positively correlated, for large R.

q.e.d.

Remark. We can also show that, for any R, r > 0, the pairs of balls
(B′

α(R), B′
β(r)) and (B′

α(R), Bβ(r)) are positively correlated. Indeed, by
(1.3),

B′
α(R) = ∩m≥1

(
|gm| ≤ Rm

1
2
−α
)

= ∩m≥1Sm ,

so, it is an intersection of independent symmetric strips. Then, with the
same argument as in the proof of (1.9), we get, for any convex symmetric C,

P (C ∩B′
α(R)) = P (C ∩ ∩m≥1Sm) ≥

P (C ∩ ∩m≥2Sm) P (S1) ≥ . . . ≥ P (C)
∏

m≥1

P (Sm) =

P (C)P (∩m≥1Sm) = P (C)P (B′
α(R)) .

Here we used the independence of Sm. The conclusion is obtained taking
C = B′

β(r) or C = Bβ(r).

3. Conditional tails for oscillations of stochastic integrals

We shall estimate the Hölder norm of some stochastic integrals. Let
Xj(t, x), j = 1, . . . ,m, X0(t, x) be smooth vector fields on IRd+1 and denote
(B1, . . . , Bm) a m-dimensional Brownian motion. Let Px be the law of the
diffusion (xt), the solution of the Stratonovich equation

(3.1) dxt =
m∑

j=1

Xj(t, xt) ◦ dBj
t +X0(t, xt) dt , x0 = x .

9



Let us introduce the following class of stochastic processes:

(3.2) Definition. For α , β ∈ [0, 1
2
[ and u ∈ [0, 1], we shall denote by

Mα , β
u the set of stochastic processes Y , such that

(3.3) lim
M↑∞

sup
0<δ≤1

P ( ‖Y.‖α > Mδu | ‖B.‖β < δ ) = 0 .

Here and elsewhere ‖B.‖α = max1≤i≤m ‖B.i‖α. We collect our results in
the following:

(3.4) Lemma. Let f : IRd −→ IR be a smooth function and, for i, j ∈
{1, . . . , r}, denote

(3.5) ηij
t =

1

2

∫ t

0
(Bi

s dB
j
s −Bj

s dB
i
s) , ξ

ij
t =

∫ t

0
Bi

s ◦ dBj
s .

Then,

(i) B.i ∈Mα , β
u , for 0 ≤ β < α < 1

2
and u ∈

[
0, 1−2α

1−2β

[
.

(ii) η.ij ∈ Mα , 0
u , for α ∈ [0, 1

2
[ and u ∈ [0, 1] .

(iii) ξ.ij ∈ Mα , 0
u , for α ∈ [0, 1

2
[ and u ∈ [0, 1] .

(iv)
∫ ·
0 f(xs) dξ

ij
s ∈ Mα , 0

u , for α ∈ [0, 1
2
[ and u ∈ [0, 1] .

(v)
∫ ·
0 f(xs) ◦ dBi

s ∈ Mα , 0
u , for α ∈ [ 0 , 1

2
[ and u ∈ [0, 1− 2α[.

Proof. Clearly, (i) is proved in the Theorem (1.20).

(ii) We proceed as in [S-V]. There exists a one dimensional Brownian
motion w, such that, when i 6= j,

ηij
t = w(a(t)) , a(t) =

1

4

∫ t

0
((Bi

s)
2 + (Bj

s)
2) ds ,

where w is independent of the process (Bi
t)

2 + (Bj
t )

2 and so, independent of
‖B.‖0. There exists a positive constant c, such that ‖a‖0 , ‖a‖1 are bounded
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by c ‖B.‖0. Then we can write

P ( ‖η.ij‖α > Mδu | ‖B.‖0 < δ ) =

P ( ‖B.‖0 < δ )−1 · P ( ‖w(a(·))‖α > Mδu , ‖B.‖0 < δ ) .

If z is α-Hölder, z̃ is β-Hölder then z ◦ z̃ is αβ-Hölder and

‖z ◦ z̃‖αβ ≤ ‖z‖α , ‖z̃‖0 · ‖z̃‖α
β .

Here and elsewhere ‖ · ‖α,T denotes the Hölder norm on [0, T ].
So,

‖w(a(·))‖α ≤ ‖w‖α , ‖a‖0 · ‖a‖α
1 .

Therefore
P ( ‖w(a(·))‖α > Mδu , ‖B.‖0 < δ ) ≤

P ( ‖w‖α , c ‖B.‖20 c ‖B.‖
2α
0 > Mδu , ‖B.‖0 < δ ) .

A scaling in Hölder norm shows that ‖w‖α,τ2 and τ 1−2α ‖w‖α,1 have the
same law. Then we can write

P ( ‖η.ij‖α > Mδu | ‖B.‖0 < δ ) ≤

P ( ‖B.‖0 < δ )−1 · P ( ‖w.‖α c ‖B.‖1−2α
0 ‖B.‖2α

0 > Mδu , ‖B.‖0 < δ ) .

Finally,

P ( ‖η.ij‖α > Mδu | ‖B.‖0 < δ ) ≤ P ( ‖w.‖α c δ > Mδu) ≤ exp

(
− cαM

2

δ2(1−u)

)
,

by the independence of w and ‖B.‖0, and by the gaussian inequality (2.3).

(iii) We note another trivial inequality: if z , z̃ are α-Hölder then z z̃ is
α-Hölder and

‖z z̃‖α ≤ ‖z‖α ‖z̃‖0 + ‖z‖0 ‖z̃‖α .

In particular
‖B.iB.j‖α ≤ 2 ‖B.‖0 ‖B.‖α .

But

P ( ‖B.‖0 ‖B.‖α > Mδu | ‖B.‖0 < δ ) = P ( ‖B.‖α > Mδu−1 | ‖B.‖0 < δ ) .
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The conclusion follows at once from (i), (ii) and

‖ξ.ij‖α ≤ ‖η.ij‖α +
1

2
‖B.iB.j‖α ≤ ‖η.ij‖α + ‖B.‖0 ‖B.‖α .

(iv) We apply Ito’s formula several times (using the usual convention that
repeated indices are summed):∫ t

0
f(xs) dξ

ij
s = f(xt) ξ

ij
t −

∫ t

0
fl(xs)X

l
k(xs) ξ

ij
s dB

k
s−

∫ t

0
(Lsf) (xs) ξ

ij
s ds−

∫ t

0
fl(xs)X

l
j(xs)B

i
s ds = I1 + I2 + I3 + I4 .

Here Lt is the generator of the diffusion (xt) and X l
j denotes the l component

of Xj. It is sufficient to verify (iv) for each Ii , i = 1, 2, 3, 4. We readily see
that

(a) I3 , I4 ∈ Mα , 0
u ,

because
‖I4‖ ≤ c ‖B.‖0 and ‖I3‖ ≤ c ‖ξ.ij‖0 ,

so, we consider only I1 and I2.
Firstly,

I1 = f(x) ξij
t +

(∫ t

0
(Lsf) (xs) ds

)
ξij
t +

(∫ t

0
fl(xs)X

l
k(xs) ξ

ij
s dB

k
s

)
ξij
t =

I10 + I11 + I12 .

Again

(b) I10 , I11 ∈ Mα , 0
u ,

because
‖I10‖α = c ‖ξ.ij‖α , ‖I11‖α ≤ c ‖ξ.ij‖α .

Setting αk = −fl X
l
k, αk,m = ∂αk

∂xm we can write

I12 = −αk(xt)B
k
t ξ

ij
t −

(∫ t

0
Bk

s (Lsαk) (xs) ds
)
ξij
t −
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(∫ t

0
Bk

s αk,m(xs)X
m
n (xs) dB

n
s

)
ξij
t +

(∫ t

0
(αk,p)

2(xs) (Xp
k)2(xs) ds

)
ξij
t =

I121 + I122 + I123 + I124 .

There is no problem to see that

‖I122‖α ≤ c ‖B.‖0 ‖ξ.ij‖α and ‖I124‖α ≤ c ‖ξ.ij‖α

and so,

(c) I122 , I124 ∈ Mα , 0
u .

There exists a one-dimensional Brownian motion w, such that

I123 = w(a(t)) ξij
t , a(t) =

∫ t

0
(αk,mαk′,m′amm′

)(xs)B
k
sB

k′

s ds ,

where aij =
∑m

k=1X
i
k X

j
k. We obtain

P ( ‖I123‖α > Mδu | ‖B.‖0 < δ ) ≤ P ( ‖ξ.ij‖α > M
1
2 δ | ‖B.‖0 < δ )+

P ( ‖w.‖α , c ‖B.‖20 c ‖B.‖
2α
0 ‖ξ.ij‖α > Mδu , ‖ξ.ij‖α ≤M

1
2 δ | ‖B.‖0 < δ ) .

By (iii), we have to consider only the second term:

P ( ‖w.‖α > cM
1
2 δu−2) · P ( ‖B.‖0 < δ )−1 ≤ exp

(
− cαM

δ2(2−u)
+

c

δ2

)
.

This yields

(d) I123 ∈ Mα , 0
u .

Then,

I2 =
∫ t

0
αk(xs) ξ

ij
s dB

k
s =

αk(xt) ξ
ij
t B

k
t −

∫ t

0
αk,l(xs) (X l

m)(xs) ξ
ij
s B

k
s dB

m
s −

∫ t

0
(Lsαk) (xs) ξ

ij
s B

k
s ds

−
∫ t

0
αk(xs)B

k
s dξ

ij
s −

∫ t

0
αj(xs)B

i
s ds−

∫ t

0
ξij
s αk,l(xs)X

l
m(xs) δ

km ds−

13



∫ t

0
Bk

s αk,l(xs)X
l
j(xs)B

i
s ds = J1 + · · ·+ J7 .

Clearly,

(e) I121 + J1 = 0

and
‖J3‖α ≤ c ‖B.‖0 ‖ξ.ij‖0 , ‖J5‖α ≤ c ‖B.‖0 ,

‖J6‖α ≤ c ‖ξ.ij‖0 , ‖J7‖α ≤ c ‖B.‖2
0 .

So,

(f) J3 , J5 , J6 , J7 ∈ Mα , 0
u .

By the same reasoning,

J2 = w(a(t)) , a(t) =
∫ t

0
(ξij

s )2(αk,l αk′,l′ a
ll′)(xs)B

k
s B

k′

s ds ,

so, it suffices to estimate

P ( ‖J2‖α > Mδu , ‖ξ.ij‖0 ≤M
1
2 δ | ‖B.‖0 < δ ) ≤

P ( ‖w.‖α , c ‖ξ.ij‖20 ‖B.‖20 c ‖ξ.
ij‖2α

0 ‖B.‖2α
0 > Mδu , ‖ξ.ij‖0 < M

1
2 δ | ‖B.‖0 < δ )

≤ P ( ‖w.‖α > cM
1
2 δu−2) · P ( ‖B.‖0 < δ )−1 ≤ exp

(
− cαM

δ2(2−u)
+

c

δ2

)
.

Again

(g) J2 ∈ Mα , 0
u .

Finally we have to study the martingale part of J4, the bounded variation
being obviously controlled. We can write as above,∫ t

0
αk(xs)B

k
s B

i
s dB

j
s = w(a(t)) , a(t) =

∫ t

0
α2

k(xs) (Bk
s B

i
s)

2 ds .

Obviously,

P ( ‖
∫ ·

0
αk(xs)B

k
s B

i
s dB

j
s‖α > Mδu | ‖B.‖0 < δ ) ≤

14



P ( ‖w.‖α > cMδu−2) · P ( ‖B.‖0 < δ )−1 ≤ exp (− cαM
2

δ2(2−u)
+

c

δ2
) .

So,

(h) J4 ∈ Mα , 0
u .

Using formulas (a)-(h) we can conclude that
∫ ·
0 f(xs) dξ

ij
s ∈ Mα , 0

u .

(v) We use the same idea, namely we shall apply Ito’s formula several
times. Firstly, denoting ∂f

∂xl = fl,∫ t

0
f(xs) dB

i
s = f(x)Bi

t +
∫ t

0
dBi

s

∫ s

0
(Luf)(xu) du+

∫ t

0
dBi

s

∫ s

0
fl(xu)X

l
j(xu) dB

j
u = S1 + S2 + S3 .

But ‖S1‖α ≤ c ‖B.‖α and

S2 = Bi
t

∫ t

0
(Lsf)(xs) ds−

∫ t

0
Bi

s (Lsf)(xs) ds = S21 + S22 ,

where ‖S21‖α ≤ c ‖B.‖α and ‖S22‖α ≤ c ‖B.‖0.
Clearly,

S1 , S21 , S22 ∈Mα , 0
u .

Then, with the same notation as in (iv),

S3 = −Bi
t

∫ t

0
αj(xs) dB

j
s +

∫ t

0
Bi

s αj(xs) dB
j
s +

∫ t

0
αj(xs) ds =

S31 + S32 + S33 .

By (iv), it is clear that

S32 =
∫ t

0
αj(xs) dξ

ij
s ∈ Mα , 0

u , if i 6= j .

For i = j we get a term with the same form as S33, terms which are bounded
in Hölder norm by a constant. To prove (v), it is sufficient to prove that
S31 ∈ Mα , 0

u . Note that

S31 = −Bi
t B

j
t αj(x)−Bi

t

∫ t

0
dBj

s

∫ s

0
(Luαj)(xu) du−

15



Bi
t

∫ t

0
dBj

s

∫ s

0
αj,l(xu)X

l
k(xu) dB

k
u = S311 + S312 + S313 .

But ‖S311‖α ≤ c ‖B.‖0 ‖B.‖α and

S312 = Bi
t B

j
t

∫ t

0
(Lsαj)(xs) ds−Bi

t

∫ t

0
Bj

s (Lsαj)(xs) ds = S3121 + S3122 ,

where ‖S3121‖α ≤ c ‖B.‖α ‖B.‖0 and ‖S3122‖α ≤ c ‖B.‖α ‖B.‖0.
Again

S311 , S3121 , S3122 ∈Mα , 0
u .

We denote βk(x) = −αj,l(x)X
l
k(x). Then,

S313 = Bi
t B

j
t

∫ t

0
βk(xs) dB

k
s −Bi

t

∫ t

0
Bj

s βk(xs) dB
k
s −Bi

t

∫ t

0
βk(xs) ds =

S3131 + S3132 + S3133 .

Arguing as for S32 , S33 we see that S3132 = −Bi
t

∫ t
0 βk(xs) dξ

jk
s , j 6= k and

S3133 are in Mα , 0
u . We repeat with S3131 the computations which we already

performed for S31 and we see that (with clear notations)

S31311 , S313121 , S313122 , S313133 ∈Mα , 0
u .

Then S313132 = Bi
tB

j
t

∫ t
0 γl(xs) dξ

kl
s , l 6= k, where γl = βm(x)Xm

l (x), so
S313132 satisfies (v) as above.

To control the Hölder norm of S313131 we can write

S313131 = Bi
tB

j
tB

k
t

∫ t

0
γl(xs) dB

l
s = Bi

tB
j
tB

k
t w(a(t)) , a(t) =

∫ t

0
γ2

l (xs) ds ,

where w is a one-dimensional Brownian motion. So,

P ( ‖S313131‖α > Mδu | ‖B.‖0 < δ ) ≤ P ( ‖B.‖α > M
1
2 δu− 1

2 | ‖B.‖0 < δ )+

P ( ‖w.‖α c ‖B.‖α ‖B.‖2
0 > Mδu , ‖B.‖α ≤M

1
2 δu− 1

2 | ‖B.‖0 < δ ) ≤

P ( ‖B.‖α > M
1
2 δu− 1

2 | ‖B.‖0 < δ ) + exp
(
−cαM

δ3
+

c

δ2

)
.

From this we can conclude that S313131 satisfies (v).
The proof of the lemma is complete.
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q.e.d.

4. Support theorem in Hölder norm

Now we are able to extend the support theorem of Stroock-Varadhan for
α-Hölder topology. Let us denote by Φx the mapping which associates to
h ∈ L2 = L2([0, 1], IRm) the solution of the differential equation

(4.1) dyt =
m∑

j=1

Xj(t, yt)h
j
t dt+X0(t, yt) dt , y0 = x .

(4.2) Theorem. Let α ∈ [0, 1
2
[. For the ‖ · ‖α-topology, the support

of the probability Px coincide with the closure of Φx(L
2) , that is,

(4.3) suppα(Px) = Φx(L2)
α
.

Proof. To begin with, we note that, for every ε > 0 and δ = (
ε

2n
)

1
u ,

u ∈]0, 1− 2α[, n > 0 integer,

P
( ∥∥∥∥∫ ·

0
Xk(s, xs) ◦ dBk

s

∥∥∥∥
α
> ε | ‖B.‖0 < δ

)
=

P
( ∥∥∥∥∫ ·

0
Xk(s, xs) ◦ dBk

s

∥∥∥∥
α
> 2nδu | ‖B.‖0 < δ

)
≤

sup
0<η≤1

P
( ∥∥∥∥∫ ·

0
Xk(s, xs) ◦ dBk

s

∥∥∥∥
α
> 2nηu | ‖B.‖0 < η

)
.

Letting n ↑ ∞, by (v) of the Lemma (3.4), we obtain, for every ε > 0,

(4.4) lim
δ↓0

P
( ∥∥∥∥∫ ·

0
Xk(s, xs) ◦ dBk

s

∥∥∥∥
α
> ε | ‖B.‖0 < δ

)
= 0 .

Then we prove that, for every ε > 0,

(4.5) lim
δ↓0

P ( ‖x.− Φx(0)‖α < ε | ‖B.‖0 < δ) = 1 ,

using (4.4) and the following variant of Gronwall’s lemma:
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(4.6) Lemma. For m and l two functions, put

zt = z +m(t) +
∫ t

0
l(zs) ds , z̃t = z +

∫ t

0
l(z̃s) ds .

Suppose that ‖m‖α ≤ η , m(0) = 0 and that l is a Lipschitz continuous
function with constant L. Then

‖z − z̃‖α ≤ (1 + L) eL η .

Proof. By Gronwall’s lemma we can immediately write

‖z − z̃‖0 ≤ η eL .

Then,

‖z − z̃‖α , t ≤ η + ‖
∫ ·

0
(l(zu)− l(z̃u)) du‖α , t ≤

η + max
0≤ p < q≤ t

L

|p− q|α
|
∫ p

q
|zu − z̃u| du | ≤

η + max
0≤ p < q≤ t

L

|p− q|α
∣∣∣∣∫ p

q
( |zq − z̃q|+ |u− q|α‖z − z̃‖α , u ) du

∣∣∣∣ ≤
η + L ‖z − z̃‖0 + L

∫ t

0
‖z − z̃‖α , u du .

Gronwall’s lemma ends up the proof of the Lemma (4.6).
q.e.d.

We apply this with z = Φx(B.), z̃ = Φx(0), m(t) =
∫ t
0 Xk(s, xs)◦dBk

s and
l(xs) = X0(s, xs). So, there exists a positive constant K, such that

‖Φx(B.)− Φx(0) ‖α < K ε ,

provided ∥∥∥∥∫ ·

0
Xk(s, xs) ◦ dBk

s

∥∥∥∥
α
≤ ε .

Thus we obtain

P ( ‖x.− Φx(0)‖α > ε | ‖B.‖0 < δ ) =

18



P
(

( ‖x.− Φx(0)‖α > ε ) ∩
(
‖
∫ ·

0
Xk(s, xs) ◦ dBk

s ‖α >
ε

K

)
| ‖B.‖0 < δ

)
≤

P
((

‖
∫ ·

0
Xk(s, xs) ◦ dBk

s ‖α >
ε

K

)
| ‖B.‖0 < δ

)
.

Now (4.5) is a clear consequence of (4.4).
Finally, Girsanov’s formula gives, for any h ∈ L2 and ε > 0,

(4.7) lim
δ↓0

P ( ‖Φx(B.)− Φx(h.) ‖α < ε | ‖B.− h.‖0 < δ ) = 1

(as in [S-V], p. 353). But, (4.7) implies

(4.8) P ( ‖Φx(B.)− Φx(h.) ‖α < ε) > 0 , for every ε > 0 .

and, consequently, we obtain the inclusion

(4.9) suppα(Px) ⊇ Φx(L2)
α
.

The converse inclusion is easily obtained using the polygonal approxima-
tion of the Brownian motion. For each n ≥ 0 and t ≥ 0, we consider

tn =
[2n]

2n
, t+n =

[2n] + 1

2n
, Ḃ

(n)
t = 2n(Bt+n

−Btn) .

Let (x
(n)
t ) be the solution of the equation (4.1) with Ḃ

(n)k
t instead hk

t . If we
denote P (n)

x the law of this solution, it is obvious that

x.(n) ∈ Φx(L
2) and P (n)

x ( Φx(L2)
α

) = 1 .

It suffices to show that Px is the weak limit of (P (n)
x ) or, that (P (n)

x )
is relatively weakly compact with respect to ‖ · ‖α-topology. By classical
estimates, for every p ≥ 0, there exists a positive constant cp, such that, for
every positive integer n and for every s, t ∈ [ 0 , 1 ],

E|x(n)
t − x(n)

s |2p ≤ cp|t− s|p

(see for instance [Bi], p. 40). It is easy to see that

sup
n
E( ‖x.(n)‖2p

α′ ) < c , if α′ <
p− 1

2p
.
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If we choose p large enough so that α < p−1
2p

, and if α′ ∈ ]α, p−1
2p

[, it is then

clear that the set K(c) = { z : ‖z‖α′ < c } is compact in ‖ · ‖α-topology, and
that, for every ε > 0, there exists a positive constant cε, such that,

sup
n
P (n)

x (K(cε) ) < ε .

So, (P (n)
x ) is tight.

The proof of the Theorem (4.2) is complete.
q.e.d.

Appendix

We give now another proof of a variant of (1.10) (or (1.19)), when β = 0,
which does not require the use of Ciesielski’s theorem (that is (1.4) and (1.5))
nor the correlation inequality.

(A.1) Theorem. Let (r, R) be a couple of real positive numbers. For

every a′ < a and b′ > b, there exists a constant c, such that, if Ra′

rb′ > c, then

(A.2) P ( ( ‖w‖α > R ) ∩ ( ‖w‖β < r ) ) ≤ exp

−1

2

R
1−2β
α−β

r
1−2α
α−β

 ,

for 0 ≤ β < α < 1
2
.

Proof. Put

η =
(
r

R

) 1
α−β

.

Then, if ‖w‖β < r,

sup
s<t,t−s>η

|wt − ws|
|t− s|α

≤ R .

Thus we obtain
( ( ‖w‖α > R ) ∩ ( ‖w‖β < r ) ) ⊂((

sup
s<t≤s+η

|wt − ws|
|t− s|α

≥ R

)
∩ ( sup

t
|wt| < r )

)
⊂

(
sup

s<t≤s+η

|wt − ws|
|t− s|α

≥ R

)
= ( sup

v∈D
|Xα

v | ≥ R ) .
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Here v = (s, t) , D = {v : s < t ≤ s+ η} and Xα
v = wt−ws

|t−s|α is a two-parameter
gaussian variable.

Now, we can estimate

P ( ( ‖w‖α > R ) ∩ ( ‖w‖β < r ) ) ≤

P ( sup
v∈D

|Xα
v | ≥ R ) ≤ exp

(
−(R−Mα)2

2X2
α

)
,

where the last inequality is valid when R ≥Mα (see [L-T], p. 57). Here

0 < Mα = E( sup
v∈D

|Xα
v | ) ≤ E( ‖w‖α ) <∞

and
X2

α = sup
v∈D

E( (Xα
v )2 ) = η1−2α .

So, we get
P ( ( ‖w‖α > R ) ∩ ( ‖w‖β < r ) ) ≤

exp

(
− R2

2η1−2α

)
= exp

−1

2

R
1−2β
α−β

r
1−2α
α−β

 , β ≥ 0 .

The restriction R ≥ Mα may be weakened as follows. Take α′ > α and
write(

sup
s<t≤s+η

|wt − ws|
|t− s|α

≥ R

)
=

(
sup

s<t≤s+η

|wt − ws|
|t− s|α′

· |t− s|α′−α ≥ R

)
⊂

(
sup

s<t≤s+η

|wt − ws|
|t− s|α′

≥ Rηα−α′
)

=

 sup
s<t≤s+η

|wt − ws|
|t− s|α′

≥ R
α′−β
α−β

r
α′−α
α−β

 .

Now, we need only

R
α′−β
α−β

r
α′−α
α−β

> E( ‖w‖α′ ) = Mα′ ,

and the proof of the theorem is complete.
q.e.d.
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Clearly, the Theorem (A.1) implies that

P ( ‖w.‖α > R | ‖w.‖0 < r ) =
P ( ( ‖w‖α > R )

⋂
( ‖w‖0 < r ))

P ( ‖w‖0 < r )
≤

exp

−1

2

R
1
α

r
1
α
−2

 exp

(
π2

8
· 1

r2

)
.

If r is small we need the condition α < 1
4

for an interesting estimate.
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