

Probability Theory II (Spring 2026)

1	Continuous-time processes and martingales	3
1.1	Continuous-time processes	3
1.2	Functions of bounded variation	7
1.3	Continuous-time martingales	13
1.4	Semimartingales	17
2	Brownian motion	20
2.1	Kolmogorov's continuity criterion	20
2.2	Definition of Brownian motion	26
2.3	Heat equation and Feynman–Kac formula	31
2.4	Strong Markov property and reflection principle	36

Primary reference: Varadhan, Stochastic Processes

Prerequisites: Varadhan, Probability Theory

Other references:

Norris, Advanced Probability

Stroock, Probability Theory, An Analytic View

Le Gall, Brownian Motion, Martingales, and Stochastic Calculus

I. Continuous-time processes & martingales

From now on, (Ω, \mathcal{F}, P) denotes a probability space on which all random variables are defined.

I.1. Continuous-time processes

Defn. Given an index set \mathbb{T} , a stochastic process $X = \{X_t : t \in \mathbb{T}\}$ is a collection of random variables $X_t = X(t, \omega)$, $t \in \mathbb{T}$, $\omega \in \Omega$, taking values in some measurable space.

- If \mathbb{T} is a countable set, X is a discrete-time stochastic process.
- If $\mathbb{T} \subseteq \mathbb{R}$ is a finite or infinite interval, X is a continuous-time stochastic process.

Careful: For \mathbb{T} uncountable, events like

$$\{\omega : X_t(\omega) \in [a, b] \ \forall t \in \mathbb{T}\}$$

or $\{\omega : t \mapsto X_t(\omega) \text{ is continuous}\}$
are not measurable in general.

Soln: Build regularity into Ω .

Defn. $C[a,b]$ is the Banach space of continuous functions $f: [a,b] \rightarrow \mathbb{R}$ with norm

$$\|f\| = \sup_{t \in [a,b]} |f(t)|.$$

Defn. $D[a,b]$ is the Polish space (complete sep metric) of left-continuous functions with right limits (càdlàg functions) $f: [a,b] \rightarrow \mathbb{R}$ with metric

$$d(f,g) = \inf \left\{ \epsilon > 0 : \exists \lambda: [a,b] \rightarrow [a,b] \text{ increasing, invertible, and continuous} \right. \\ \left. \text{s.t. } \sup_t |\lambda(t) - t| \leq \epsilon, \sup_t |f(\lambda(t)) - g(\lambda(t))| \leq \epsilon \right\}.$$

Prop. $D[a,b]$ is indeed a Polish space.

[Billingsley, Convergence of Prob. Measures, Chapter 3].

Prop. The σ -fields of Borel sets of $C[a,b]$ or $D[a,b]$ are generated by the cylinder sets, i.e., by

$$\{x \in X : \pi_t x = x(t) \in I\}, \quad I \in \mathcal{B}(\mathbb{R}), \quad t \in [a,b]$$

Sketch. Let \mathcal{F} denote the cylinder σ -field. Since $\{x \in X : x(t) \in I\}$ is a Borel set, $\mathcal{F} \subset \mathcal{B}$. Conversely,

$$\{x \in C : \|x\| \leq r\} = \bigcap_{t \in [a,b] \cap \mathbb{Q}} \pi_t^{-1}([-r, r]) \in \mathcal{F}.$$

Exercise: $X = D$

We will always use the cylinder σ -field (= Borel σ -field) on $C[a,b]$ or $D[a,b]$. The space $C[0,\infty)$ is defined by $x \in C[0,\infty)$ if $x|_{[0,T]} \in C[0,T]$ and likewise for $D[0,\infty)$ with unif. on compacts metric.

Defn. Let (Ω, \mathcal{F}) be a measurable space. Then a family $\{\mathcal{F}_t : t \geq 0\}$ of sub- σ -fields $\mathcal{F}_t \subset \mathcal{F}$ is

- a filtration if $\mathcal{F}_s \subseteq \mathcal{F}_t$ if $s \leq t$.
- a right-cont. filtration if $\mathcal{F}_t \supset \mathcal{F}_{t+} = \bigcap_{s > t} \mathcal{F}_s$

Defn. Let $(\Omega, \mathcal{F}, (\mathcal{F}_t))$ be a filtered measurable space. Then a stochastic process (X_t) is

- adapted if $\forall t : X_t \in \mathcal{F}_t$, i.e., X_t is \mathcal{F}_t -meas.
- integrable if $\forall t : X_t \in L^1$, i.e., $E|X_t| < \infty$.

Example. If Ω is a space of functions on $Tc[0,\infty)$,

$$\mathcal{F}_t = \sigma(\omega(s) : s \leq t)$$

is the canonical filtration. The canonical process $X_t(\omega) = \omega(t)$, $\omega \in \Omega$ is (\mathcal{F}_t) -adapted.

If Ω is a space of right-cont. functions, it is also adapted to (\mathcal{F}_{t+}) .

Prop. Let (X_t) be a $D[0, \infty)$ -valued adapted process. Then (X_t) is progressively measurable: $\forall T > 0$

$$(\omega, t) \mapsto X_t(\omega)$$

on $\Omega \times [0, T]$ is measurable w.r.t. $\mathcal{F}_T \otimes \mathcal{B}([0, T])$.

Sketch. By right-cont. can approximate by

$$X_t^n(\omega) = X_{2^{-n} \lceil 2^n t \rceil}(\omega)$$

For every $A \in \mathcal{B}(\mathbb{R})$,

$$\begin{aligned} & \{(w, t) \in \Omega \times [0, T] : X_t^n(\omega) \in A\} \\ &= \bigcup_{\substack{k=1 \\ 2^{-n}k < T}}^{\infty} \overline{\mathcal{F}_k} \times \overline{\mathcal{B}([0, T])} \end{aligned}$$

Thus X^n is $\mathcal{F}_T \otimes \mathcal{B}([0, T])$ -measurable. Take limits.

Sometimes it is also convenient to assume that the \mathcal{F}_t contain all null sets, i.e. is complete.

Defn. A filtration satisfies the usual conditions if it is right-continuous and complete (w.r.t. a given probability measure).

1.2. Functions of bounded variation

Defn. The total variation of $x: [a, b] \rightarrow \mathbb{R}$ is

$$V_x[a, b] = \sup \left\{ \sum_{i=1}^n |x(t_i) - x(t_{i-1})| : \begin{array}{c} a \leq t_0 < \dots < t_n \leq b \\ \text{partition of } [a, b] \end{array} \right\}.$$

The space $BV[a, b]$ of functions of bounded variation consists of $x: [a, b] \rightarrow \mathbb{R}$ with $V_x[a, b] < \infty$.

Recall: A signed measure μ on $[a, b]$ is the difference $\mu = \mu_+ - \mu_-$ (Hahn-Jordan decomposition) of two mutually singular finite positive measures μ_+ and μ_- . The total variation measure of μ is

$$|\mu| = \mu_+ + \mu_-$$

Hahn-Jordan thm: Given any finite positive measures μ_1 and μ_2 there are μ_+ and μ_- s.t. $\mu = \mu_1 - \mu_2 = \mu_+ - \mu_-$.

Prop. (i) Given a signed measure μ on $[a, b]$, its CDF $x(t) = \mu([a, t])$ is in $BV[a, b]$, càdlàg, and $V_x[a, b] = |\mu|([a, b])$.

(ii) Given $x \in BV[a, b]$ that is right-continuous, there is μ s.t. $x(t) = \mu([a, t])$.

Proof. (i) Let $\mu = \mu_+ - \mu_-$ be a signed measure and x its CDF. Let $a \leq t_0 < t_1 < \dots < t_n \leq b$. Then

$$\sum_{i=1}^n |x(t_i) - x(t_{i-1})| = \sum_{i=1}^n |\mu(t_{i-1}, t_i]| \leq |\mu|(a, b)$$

$$\Rightarrow V_x[a, b] \leq |\mu|(a, b).$$

For the other direction, let $(t_i^{(m)})_{i=0}^{n_m}$ be a sequence of nested partitions with $\max_i |t_i^{(m)} - t_{i-1}^{(m)}| \xrightarrow{m \rightarrow \infty} 0$.

It suffices to show that

$$|\mu|(a, b) = \lim_{m \rightarrow \infty} \sum_{i=1}^{n_m} |x(t_i^{(m)}) - x(t_{i-1}^{(m)})|.$$

To see this, define the probability on $(a, b]$ by

$$v(dt) = \frac{|\mu|(dt)}{|\mu|(a, b)}.$$

Let $\mathcal{F}_m = \sigma((t_{i-1}^{(m)}, t_i^{(m)}] : 1 \leq i \leq n_m) \subset \mathcal{F}_{m+1}$

$$X = \frac{d\mu}{d|\mu|} = \mathbf{1}_{\text{supp } \mu_+} - \mathbf{1}_{\text{supp } \mu_-}$$

$$X_m = E[X | \mathcal{F}_m].$$

For $s \in (t_{i-1}^{(m)}, t_i^{(m)}]$ then

$$X_m(s) = \frac{\mu((t_{i-1}^{(m)}, t_i^{(m)})]}{|\mu|((t_{i-1}^{(m)}, t_i^{(m)})]} = \frac{x(t_i^{(m)}) - x(t_{i-1}^{(m)})}{|\mu|((t_{i-1}^{(m)}, t_i^{(m)})])}$$

$$\Rightarrow E|X_m| = \frac{1}{\mu([a,b])} \sum_{i=1}^{n_m} |x(t_i^{(m)}) - x(t_{i-1}^{(m)})|$$

and the claim is $E|X_m| \rightarrow 1$. But (X_m) is a bd martingale, so there is Y s.t. $X_m \rightarrow Y$ in L^1

$$\Rightarrow E|X_m| \rightarrow E|Y|.$$

Since $\sigma(U\mathcal{F}_n) = \mathcal{B}([a,b])$ in fact $X=Y$ a.s., so

$$E|Y| = E|X| = 1.$$

(ii) Now let $x \in BV[a,b]$. Assume $x(a) = 0$ and set

$$x_{\pm}(t) = \frac{1}{2}(V_x[a,t] \pm x(t)).$$

Claim: x_{\pm} are increasing, i.e. $x_{\pm}(s) \geq x_{\pm}(t)$ if $s > t$.

Let $a \leq t_0 < \dots < t_n \leq t$ be a partition of $[0,t]$,
s.t. $a \leq t_0 < \dots < t_n \leq t \leq s$ is a partition of $[0,s]$.

$$\Rightarrow 2x_{\pm}(s) = V_x[a,s] \pm x(s)$$

$$\geq \underbrace{\sum |x(t_i) - x(t_{i-1})|}_{\geq V_x[a,t] - \varepsilon} + \underbrace{|x(s) - x(t)|}_{\geq \pm x(s)} \pm x(s)$$

$$\Rightarrow x_{\pm}(s) \geq x_{\pm}(t).$$

Claim: If x is right-continuous, so are x_{\pm} .

It suffices to show $v(t) = V_x[0, t]$ is right-continuous.
Let $\beta = v(t+) - v(t)$. Need to show $\beta = 0$. Let $h > 0$ s.t.

$$v(t+h) - v(t) < \beta + \varepsilon$$

$$|x(s) - x(t)| < \varepsilon \quad \text{for } s \in [t, t+h].$$

There is a partition of $[t, t+h]$ s.t.

$$\sum_{i=1}^n |x(t_i) - x(t_{i-1})| \geq \frac{3}{4} V_x[t, t+h] \geq \frac{3}{4} \beta$$

$$\Rightarrow \sum_{i=2}^n |x(t_i) - x(t_{i-1})| \geq \frac{3}{4} \beta - |x(t_1) - x(t_0)| \geq \frac{3}{4} \beta - \varepsilon$$

Since $\beta \leq v(t_1) - v(t_0)$ there is a part of $[t_0, t_1]$ s.t.

$$\sum |x(t'_i) - x(t'_{i-1})| \geq \frac{3}{4} \beta$$

Thus there is a partition of $[t, t+h]$ s.t.

$$V_x[t, t+h] \geq \frac{3}{2} \beta - \varepsilon$$

On the other hand,

$$V_x[t, t+h] \leq \beta + \varepsilon$$

$$\Rightarrow \beta \leq 4\varepsilon \quad \forall \varepsilon > 0 \Rightarrow \beta = 0.$$

Defn. Let $x \in BV[a, b]$ be right-continuous with associated signed measure μ . For $f \in L'(|\mu|)$ the Lebesgue-Stieltjes integral is defined by

$$\int_s^t f(u) dx(u) = \int_{(s, t]} f(u) \mu(du) \quad (a \leq s < t \leq b)$$

$$\int_s^t f(u) |dx(u)| = \int_{(s, t]} f(u) |\mu|(du)$$

and set $f \circ x(t) = \int_0^t f(u) dx(u)$.

Exercise. Let $x \in BV[a, b]$ be right-continuous. Then

$$\left| \int_a^b f(t) dx(t) \right| \leq \int_a^b |f(t)| |dx(t)|$$

and $f \circ x$ is in BV and right-cont. with signed measure $f(t) dx(t)$ and $\|f \circ x\| = \int_a^b |f(t)| |dx(t)|$.

Prop. Let $x \in BV$ be right-cont. and f bounded and left-cont. Then for any sequence of partitions $(t_i^{(m)})_{i=1}^{n_m}$ of $[a, b]$ with step size $\xrightarrow[m \rightarrow \infty]{} 0$:

$$\int_a^b f(t) dx(t) = \lim_{m \rightarrow \infty} \sum_{i=1}^{n_m} f(t_{i-1}^{(m)}) (x(t_i) - x(t_{i-1}))$$

$$\int_a^b f(t) |dx(t)| = \lim_{m \rightarrow \infty} \sum_{i=1}^{n_m} f(t_{i-1}^{(m)}) |x(t_i) - x(t_{i-1})|.$$

Proof. Let $f_m(a) = 0$, $f_m(t) = f(t^{(m)})$ if $t \in (t_{i-1}^{(m)}, t_i^{(m)})$.

$\Rightarrow f(t) = \lim_{m \rightarrow \infty} f_m(t)$ by left-continuity.

$$\Rightarrow \sum_{i=1}^{h_m} f(t_{i-1}^{(m)}) (x(t_i^{(m)}) - x(t_{i-1}^{(m)})) = \int_{(a,b)} f_m(t) dx(t)$$
$$\xrightarrow{\text{DCT}} \int f(t) dx(t).$$

The second claim is similar.

Exercise. Let $x, y \in BV[a, b]$ be right-cont. Then

$$x(b)y(b) - x(a)y(a) = \int_a^b x(t) dy(t) + \int_a^b y(t-) dx(t)$$

1.3. Continuous-time martingales

Defn. Given a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$, a martingale is a family of random variables $M_t, t \in \mathbb{T}$ such that

- (i) $(t \mapsto M_t) \in D(\mathbb{T})$, P -a.s. [if \mathbb{T} is continuous]
- (ii) $\forall t \geq 0: M_t \in \mathcal{F}_t$ and $E|M_t| < \infty$.
- (iii) $\forall 0 \leq s \leq t: E[M_t | \mathcal{F}_s] = M_s$, P -a.s.

If $(t_k) \subset \mathbb{T}$ then $(M(t_k))_k$ is a discrete-time martingale w.r.t. (\mathcal{F}_{t_k}) . By taking $t_k = 2^{-n}k$ and using right-continuity, most properties extend from discrete to continuous.

Doob's inequality. If (M_t) is a martingale and

$$E_\ell = \{ \omega: \sup_{0 \leq s \leq t} |M_s(\omega)| \geq \ell \}$$

then

$$P[E_\ell] \leq \frac{1}{\ell} E[1_{E_\ell} |M_t|] \leq \frac{1}{\ell} E[|M_t|]$$

$$P[\bar{E}_\ell] \leq \frac{1}{\ell^2} E[1_{E_\ell} |M_t|^2] \leq \frac{1}{\ell^2} E[|M_t|^2].$$

Proof. The discrete-time versions of Doob's inequalities imply the statement with E_ϵ replaced by

$$E_\epsilon^n = \left\{ \sup_{\substack{0 \leq s \leq t \\ s \in 2^{-n} \mathbb{N}}} |M_s| \geq \epsilon \right\}.$$

By right-continuity, $P(E_\epsilon^n) \uparrow P(E_\epsilon)$.

Defn. (X_t) is a submartingale if (i) & (ii) hold,

(iii') $\forall 0 \leq s \leq t: E[X_t | \mathcal{F}_s] \geq X_s$, P -a.s.

and a supermartingale if $E[X_t | \mathcal{F}_s] \leq X_s$.

Exercise. Let (X_t) be a martingale, $\phi: \mathbb{R} \rightarrow \mathbb{R}$ convex, and assume $E[\phi(X_T)]^p < \infty$. Then $\phi(X_t)$ is integrable for any $t \leq T$ and a submartingale.

Defn. A stopping time is a random variable τ with values in $[0, \infty]$ s.t.

$$\forall t \geq 0: E_t = \{ \tau \leq t \} \in \mathcal{F}_t.$$

Define $\mathcal{F}_\tau = \{ A \in \mathcal{F}: A \cap E_\tau \in \mathcal{F}_\tau \}$.

Exercise. • If τ_1, τ_2 are stopping times, so are $\tau_1 \wedge \tau_2$ and $\tau_1 \vee \tau_2$.

- If $\tau_1 \leq \tau_2$ are stopping times, $\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2}$.
- If f is a measurable function s.t. $f(t) \geq t$ for all t then $f(\tau)$ is a stopping time if τ is one. Thus $\tau_n = 2^{-n} \lceil 2^n \tau \rceil$ is a stopping time s.t. $\tau_n \geq \tau$ and $\tau_n \rightarrow \tau$.

Exercise: Let X be a random variable in L' , i.e. $E|X| < \infty$. Then the set of random variables $E[X|G]$ where $G \subset \mathcal{F}$ ranges over sub- σ -fields is uniformly integrable: $\forall \varepsilon > 0 \exists \lambda > 0$ s.t. $\forall G$:

$$E\left[|E[X|G]| 1_{|E[X|G]| > \lambda}\right] \leq \varepsilon.$$

Vitali's convergence theorem: Equivalent:

- $X_j \in L'$ and $X_j \rightarrow X$ in L'
- X_j UI and $X_j \rightarrow X$ in probability.

Thm. (OST). Let (M_t) be a martingale and $\tau_1 \leq \tau_2$ be two bounded stopping times. Then $M_{\tau_1} \in L^1$ and

$$E[M_{\tau_2} | \mathcal{F}_{\tau_1}] = M_{\tau_1} \quad \text{a.s.}$$

Proof. Assume $\tau_1, \tau_2 \leq N$. Let $\tau_i^n = 2^{-n} \lceil 2^n \tau_i \rceil \leq N+1$ where N is a deterministic constant. The discrete-time OST implies that

$$M_{\tau_2^n} = E[M_{N+1} | \mathcal{F}_{\tau_1^n}]$$

In particular, $M_{\tau_2^n}$ is UI. Since $M_{\tau_2^n} \rightarrow M_{\tau_2}$ a.s. therefore $M_{\tau_2^n} \rightarrow M_{\tau_1}$ in L^1 and likewise for τ_1 . The discrete OST also implies

$$E[M_{\tau_2^n} | \mathcal{F}_{\tau_1^n}] = M_{\tau_1^n}$$

In particular, for any $A \in \mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_1^n}$,

$$E[M_{\tau_2^n} 1_A] = E[M_{\tau_1^n} 1_A]$$

Since $M_{\tau_1^n} \rightarrow M_{\tau_1}$ in L^1 the claim follows.

Cor. For any stopping time, $M_{t \wedge \tau}$ is a martingale.

Exercise. Extend to (M_t) a submartingale.

1.4. Semimartingales

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ be a filtered probability space.

Example Let (X_n) be an adapted discrete-time process. Define

$$A_n = \sum_{j=1}^n E[X_j - X_{j-1} | \mathcal{F}_{j-1}], \quad A_0 = 0.$$

Then $Y_n = X_n - A_n$ is a martingale: for $m \leq n$,

$$\begin{aligned} E[Y_n | \mathcal{F}_m] &= E[X_n | \mathcal{F}_m] - \sum_{j=1}^n \underbrace{E[E[X_j - X_{j-1} | \mathcal{F}_{j-1}] | \mathcal{F}_m]}_{\mathcal{F}_m} \\ &= \begin{cases} E[X_j - X_{j-1} | \mathcal{F}_m] & (j > m) \\ E[X_j - X_{j-1} | \mathcal{F}_{j-1}] & (j \leq m) \end{cases} \\ &= X_m - \sum_{j=1}^m E[X_j - X_{j-1} | \mathcal{F}_{j-1}]. \end{aligned}$$

and $A_n \in \mathcal{F}_{n-1}$. The decomposition $X_n = Y_n + A_n$ with these properties is the Doob or semimartingale decomposition of X_n . The process Y_n is the martingale part of X_n and A_n the compensator.

Exercise: The semimartingale decomposition is unique.

The semimartingale decomposition is more subtle in the continuous case.

Prop. Let (A_t) be a continuous-time martingale. If A is continuous and BV , P -a.s., then A is const.

Proof. Assume $A_0=0$ and let A_t^* be the variation of A on $[0, t]$. It suffices to consider $A^*(t) \leq C$.

Otherwise, consider $A_{t \wedge T}$ where $T = \inf\{t : A_t^* \geq C\}$.

Let $t_j = (j/n)T$. Then

$$\begin{aligned} \sum_{j=1}^n |A_{t_j} - A_{t_{j-1}}|^2 &\leq \sup_j |A_{t_j} - A_{t_{j-1}}| \times \sum_j |A_{t_j} - A_{t_{j-1}}| \\ &\leq C \sup_j |A_{t_j} - A_{t_{j-1}}|. \end{aligned}$$

Since $|A_{t_j}| \leq |A_0| + C$ and A is continuous on $[0, T]$, thus uniformly continuous,

$$E\left[\sum_{j=1}^n |A_{t_j} - A_{t_{j-1}}|^2\right] \rightarrow 0.$$

On the other hand, since A is a martingale,

$$E\left[\sum_{j=1}^n |A_{t_j} - A_{t_{j-1}}|^2\right] = E[|A_T - A_0|^2]$$

Thus $E[|A_T - A_0|^2] = 0$, i.e. $A_T = A_0$ a.s.

Prop. Let (M_t) be a bounded martingale and (A_t) be an adapted continuous process of finite variation with $A_t^* \leq C$ for every t . Then

$$X_t = M_t A_t - M_0 A_0 - \int_0^t M_s dA_s$$

is a martingale.

Rk. Formally, $X_t = \int A_s dM_s$.

Proof. Since A is continuous,

$$\begin{aligned} \int_0^t M_s dA_s &= \lim_{n \rightarrow \infty} \sum_{j=1}^n M_{t_j} (A_{t_j} - A_{t_{j-1}}) \\ &= M_t A_t - M_0 A_0 + \lim_{n \rightarrow \infty} \sum_{j=1}^n A_{t_{j-1}} (M_{t_j} - M_{t_{j-1}}) \\ \Rightarrow X_t &= \lim_{n \rightarrow \infty} \sum_{j=1}^n A_{t_{j-1}} (M_{t_j} - M_{t_{j-1}}) = \lim_{n \rightarrow \infty} X_t^n \end{aligned}$$

Since $A_{t_{j-1}} \in \mathcal{F}_{t_{j-1}}$ and M is a martingale,

$$\tilde{E}[A_{t_{j-1}} (M_{t_j} - M_{t_{j-1}}) | \mathcal{F}_{t_{j-1}}] = 0.$$

and similarly X^n is a martingale.

If M is bd, $X_t^n \rightarrow X_t$ in L^1 . It follows that X is a martingale.

2. Brownian motion

In fact, suffices to have t in dense set.

2.1. Kolmogorov's continuity criterion

Thm. (Kolmogorov's criterion). Assume $(X_t)_{t \in \mathbb{R}^d}$ is a stochastic process s.t. for some $p \geq 1$, $\alpha > 0$,

$$\mathbb{E}[|X_t - X_s|^p] \leq A |t-s|^{d+\alpha}, \quad 0 \leq t, s \leq 1.$$

Then there is a version \tilde{X} of X , i.e., $P(X_t = \tilde{X}_t) = 1 \ \forall t$, that is continuous, in fact γ -Hölder continuous:

$$P\left[\sup_{t \neq s} \frac{|\tilde{X}_t - \tilde{X}_s|}{|t-s|^\gamma} \geq \lambda\right] \leq C \frac{A}{\lambda^\beta}$$

provided that $\gamma < \alpha/p$ and with $C = C_{\alpha, \gamma, p}$.

The essence is really a real analysis estimate.

Formally, the estimate follows taking expectation over the following inequality ("Besov space embedding").

Prop. For $x: \mathbb{R}^d \rightarrow \mathbb{R}^n$ continuous, $p \geq 1$ and $\gamma > 0$,

$$\underbrace{\sup_{\substack{t \neq s \\ t, s \in B}} \frac{|x(t) - x(s)|}{|t-s|^\gamma}}_{[x]_\gamma} \leq C_{\gamma, p} \underbrace{\left(\iint_{B \times B} \frac{|x(t) - x(s)|^p}{|t-s|^{\gamma p + 2d}} dt ds \right)^{1/p}}_{\|x\|_{\gamma + 2d/p, p}} \quad (*)$$

where $B = B_1(0) \subset \mathbb{R}^d$,

Garsia-Rodemich-Rumsey inequality. Let p and γ be strictly increasing continuous functions on $(0, \infty)$ s.t. $p(0) = 0$ and $\gamma(t) \rightarrow \infty$ ($t \rightarrow \infty$). Then if $x : [0, T] \rightarrow \mathbb{R}^n$ is continuous and

$$\iint_0^T \gamma\left(\frac{|x(t) - x(s)|}{p(t-s)}\right) ds dt \leq B < \infty$$

then

$$|x(t) - x(s)| \leq 8 \int_0^{t-s} \gamma^{-1}\left(\frac{4B}{u^2}\right) p(du) \xrightarrow{p'(u) du}$$

Proof of f) when $d=1$. Let $\gamma(u) = u^p$, $p(u) = u^{\gamma+2/p}$,

$$B = B(x) = \iint_0^T \frac{|x(t) - x(s)|^p}{|t-s|^{\gamma p+2}} ds dt.$$

$$\begin{aligned} \Rightarrow |x(t) - x(s)| &\leq C_p \int_0^{t-s} \left(\frac{4B}{u^2}\right)^{1/p} u^{\gamma+2/p-1} du \\ &= C'_p B^{1/p} \int_0^{t-s} u^{\gamma-1} du \leq C_{\gamma, p} B^{1/p} |t-s|^\gamma \end{aligned}$$

Rk. If x is only in L_{loc} and the RHS is finite, there is \tilde{x} s.t. $\tilde{x} = x$ a.e. s.t. the estimate holds: Set

$$x^\varepsilon(t) = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} x(t+u) du$$

Then $[x^\varepsilon]_x$ is bounded. By Arzela-Ascoli there is \tilde{x} s.t. $\|x^\varepsilon - \tilde{x}\|_\infty \rightarrow 0$ along some $\varepsilon \downarrow 0$. But $x^\varepsilon \rightarrow x$ a.e. by Lebesgue diff. thm., so $\tilde{x} = x$ a.e.

Proof of Kolmogorov's criterion. If we already knew that X was continuous, the estimate would follow from the GRR inequality. But we have not even assumed that $t \mapsto X_t$ is Borel measurable!

Let

$$X_t^n = X_{2^{-n}[2^n t]}$$

Then X_t^n is measurable. Set

$$\hat{X}_t(\omega) = \begin{cases} \lim_{n \rightarrow \infty} X_t^n(\omega) & \text{for } (\omega, t) \text{ s.t. the limit exists} \\ 0 & \text{else.} \end{cases}$$

Since $P[|X_t^n - X_t| \geq 2^{-n}] \leq A 2^{+n} (2^{-n})^{1+\beta}$ is summable the limit exist a.s. for every fixed t .

Let

$$Y = \|\hat{X}\| = \left(\int_0^1 \int_0^1 \frac{|\hat{X}_t - \hat{X}_s|^p}{|t-s|^{\alpha p+2}} \, ds \, dt \right)^{1/p}$$

$$\Rightarrow E[Y^p] = A \int_0^1 \int_0^1 |t-s|^{1+\alpha-p-2} \, ds \, dt < \infty \text{ if } \alpha > \alpha_p.$$

Thus, for every ω , \hat{X} coincides for a.e. t with a X s.t.

$$[\hat{X}]_\gamma \leq CY \quad \text{for all } \omega.$$

It remains to see that $P[X_t = \tilde{X}_t] = 1$ for every t .
 It suffices to show this for $t = 2^{-n}k$. Then

$$P[X_t = \tilde{X}_t] = P[\tilde{X}_t = \tilde{X}_t].$$

But $P[|\tilde{X}_t - \tilde{X}_t^\varepsilon| > \delta] \lesssim \delta^{-1} \varepsilon^{1+\beta} \rightarrow 0$, so as before $\tilde{X}_t^\varepsilon \rightarrow \tilde{X}_t$ a.s. as $\varepsilon \rightarrow 0$, so $\tilde{X}_t = \tilde{X}_t$ a.s.

Proof (GRR). Let

$$I(t) = \int_0^t 4 \left(\frac{|x(t) - x(s)|}{p(t-s)} \right) ds$$

so that $\int_0^T I(t) dt = B$. By the mean-value theorem, there is $t_0 \in (0, T)$ s.t. $I(t_0) \leq B/T$.

Given t_{n-1} , define d_{n-1} by

$$p(d_{n-1}) = \frac{1}{2} p(t_{n-1}) \quad (\text{so } 0 < d_{n-1} < t_{n-1})$$

and $t_n \in (0, d_{n-1})$ s.t.

$$I(t_n) \leq \frac{2B}{d_{n-1}} \quad \& \quad 4 \left(\frac{|x(t_n) - x(t_{n-1})|}{p(t_n - t_{n-1})} \right) \leq 2 \frac{I(t_{n-1})}{d_{n-1}}.$$

Each can fail on set of measure $< \frac{d_{n-1}}{2}$ of t_n .

Thus both can fail only on a set of meas. $< d_{n-1}$.

Thus

$$t_0 > d_0 > t_1 > d_1 > \dots$$

Then:

$$p(d_{n+1}) = \frac{1}{2} p(t_{n+1}) \leq \frac{1}{2} p(d_n) \Rightarrow d_n, t_n \downarrow 0.$$

Also:

$$\begin{aligned} p(t_n - t_{n+1}) &\leq p(t_n) = 2p(d_n) = 4(p(d_n) - \frac{1}{2} p(d_n)) \\ &\leq 4(p(d_n) - p(d_{n+1})) \end{aligned}$$

$$\begin{aligned} \Rightarrow |x(t_{n+1}) - x(t_n)| &\leq p(t_n - t_{n+1}) 4^{-1} \left(\frac{2I(t_n)}{d_n} \right) \\ &\leq 4(p(d_n) - p(d_{n+1})) 4^{-1} \left(\frac{4B}{d_n d_{n-1}} \right) \\ &\leq 4 \int_{d_{n+1}}^{d_n} 4^{-1} \left(\frac{4B}{u^2} \right) p(du) \leq \frac{4B}{d_n^2} \end{aligned}$$

$$\Rightarrow |x(t_0) - x(0)| \leq 4 \int_0^T 4^{-1} \left(\frac{4B}{u^2} \right) p(du)$$

By an analogous argument,

$$|x(T) - x(t_0)| \leq 4 \int_0^T 4^{-1} \left(\frac{4B}{u^2} \right) p(du)$$

$$\Rightarrow |x(T) - x(0)| \leq 8 \int_0^T 4^{-1} \left(\frac{4B}{u^2} \right) p(du).$$

Given $0 \leq s < t \leq T$ set

$$\bar{x}(u) = x\left(s + \frac{(t-s)}{T} u\right)$$

$$\bar{p}(u) = p\left(\frac{(t-s)}{T} u\right)$$

The argument above with $B \rightsquigarrow \left(\frac{T}{t-s}\right)^2 B = \bar{B}$ gives

$$\begin{aligned} |x(t) - x(s)| &\leq 8 \int_0^T 4^{-1}\left(\frac{4B}{u^2}\right) \bar{p}(du) \\ &= 8 \int_0^{t-s} 4^{-1}\left(\frac{4\bar{B}}{u^2}\right) p(du). \end{aligned}$$

2.2. Definition of Brownian motion

Defn. A stochastic process $(B_t)_{t \geq 0}$ is called a Brownian motion or Wiener process if it is continuous and:

- (i) $\forall t < s : B_t - B_s \sim N(0, t-s)$.
- (ii) $\forall t < s : B_t - B_s$ is independent of $\sigma(B_u : u \leq s)$.

Thm. There exists a unique probability measure on $C([0, \infty))$ such that the canonical process is a Wiener process. This is the Wiener measure.

Lemma. If (i) holds for a stochastic process on some probability space then there is a version that is in fact Hölder continuous for any Hölder exponent strictly less than $\frac{1}{2}$.

Proof. Since $W_t - W_s \sim N(0, t-s)$,

$$E[|W_t - W_s|^p] \leq C_p |t-s|^{p/2} \text{ for any } p \geq 1.$$

Thus Kolmogorov applies $\gamma = \frac{1}{2} - \varepsilon$ when $p \geq \frac{1}{\varepsilon}$:

$$E[|W_t - W_s|^p] \leq C_p |t-s|^{p/2} \leq C_p |t-s|^{\gamma p + 1}$$

Proof (construction of Wiener measure). Given any probability space (Ω, \mathcal{F}, P) on which a Brownian motion (B_t) is defined, consider the map

$$I: \Omega \rightarrow C[0, \infty), \quad \omega \mapsto (t \mapsto B_t(\omega)).$$

This map is measurable. Thus $P \circ I^{-1}$ defines a Borel measure on $C[0, \infty)$.

Using a monotone class argument one checks it is uniquely defined by its fin-dim. distributions.

Prop. Brownian motion is not in $C^{1/2}$:

$$P\left[\sup_{\substack{t \neq s \\ 0 \leq t, s \leq 1}} \frac{|X_t - X_s|}{|t-s|^{1/2}} = \infty\right] = 1.$$

Proof. For each $t > s$, $(B_t - B_s)/|t-s|^{1/2}$ is $\sim N(0, 1)$.

$$\sup_{t \neq s} \frac{|X_t - X_s|}{|t-s|^{1/2}} \geq \sup_{0 \leq k \leq 2^n} \frac{|X_{2^{-n}(k+1)} - X_{2^{-n}k}|}{2^{-n/2}}$$

$$\Rightarrow P\left[\sup_{t \neq s} \frac{|X_t - X_s|}{|t-s|^{1/2}} > \lambda\right] \leq 1 - P[Z < \lambda]^{2^n} \rightarrow 0.$$

where $Z \sim N(0, 1)$.

There are many ways of constructing (\mathcal{B}_t) .

Defn. Let (Ω, \mathcal{F}, P) be a probability space. Then $S \subset L^2(\Omega, \mathcal{F}, P)$ is a Gaussian space if S is a closed linear subspace and any X is a Gaussian random variable.

Example. Let (X_i) be i.i.d $\mathcal{N}(0, 1)$ on some probability space. Then $\text{span}\{X_i\}$ is a Gaussian space. The X_i are an orthonormal system:

$$E[X_i X_j] = \delta_{ij}$$

Note that limits of Gaussian random variables are Gaussian.

Prop. Let H be a separable Hilbert space and S as in the example. Then there is an isometry $I: H \rightarrow S$. Thus:

- $\forall f \in H: I(f) \sim \mathcal{N}(0, \|f\|_H^2)$
- $\forall f, g \in H: E I(f) I(g) = (f, g)_H$

In fact, $I(\alpha f + \beta g) = \alpha I(f) + \beta I(g)$ a.s.

Proof. Let (e_i) be an orthonormal basis for H . Set

$$I(f) = \sum_{i=1}^{\infty} (f, e_i) X_i.$$

The limit exists in L^2 and a.s. since

$$k \mapsto \sum_{i=1}^k (f, e_i) X_i$$

is a martingale bounded in L^2 .

Defn. Let \dot{W} be an isometry from $L^2(\mathbb{R}_+)$ into some Gaussian space. Then \dot{W} is called white noise.

For $t \geq 0$, define

$$W_t = \dot{W}(1_{[0,t]})$$

Rk. Would like to think of $\dot{W}(f)$ as $\int f dW$ but W has infinite variation almost surely.

Exercise. (i) For $A \subset \mathbb{R}_+$ Borel, $|A| < \infty$, $\dot{W}(A) \sim N(0, \mathbb{1}_A)$

(ii) For $A, B \subset \mathbb{R}_+$ with $A \cap B = \emptyset$, $\dot{W}(A)$ and $\dot{W}(B)$ are independent.

(iii) For $A = \bigcup_{i=1}^{\infty} A_i$ with A_i disjoint,

$$\dot{W}(A) = \sum_{i=1}^{\infty} \dot{W}(A_i) \text{ in } L^2 \text{ and a.s.}$$

\dot{W} looks like a random measure but it is not.

Prop. For any t_1, \dots, t_n the vector $(W_{t_i})_{i=1}^n$ is jointly Gaussian with covariance

$$E[W_t W_s] = s \wedge t \quad \text{for } s, t \geq 0.$$

Moreover, $W_b = 0$ a.s. and

$W_t - W_s$ is independent of $\sigma(W_u : u < s)$

$$W_t - W_s \sim N(0, t-s).$$

Exercise: Let B be a Brownian motion. Then

- $-B$ is a Brownian motion (symmetry)
- $\frac{1}{\lambda} B_{\lambda^2 t}$ is a Brownian motion (scale invariance)
- $B_{t+s} - B_s$ is a Brownian motion that is indep. of $(B_u : u < s)$ (Markov prop.).

Exercise. Understand how Brownian motion is the Gaussian measure with covariance $(-\Delta)^{-1}$ on $[0, \infty)$ with 0-boundary condition at 0.

Defn. A stochastic process taking values in \mathbb{R}^d is a d-dim. Brownian motion if each component is a Brownian motion.

2.3. Heat equation and Feynman-Kac formula

Let $p_t(x,y) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{|x-y|^2}{2t}}$ be the heat kernel on \mathbb{R} .

Defn. The semigroup of Brownian motion is

$$T_t f(x) = E_x [f(B_t)]$$

where E_x is the expectation of a BM starting at $x \in \mathbb{R}$.

Fact. Since $B_t - x \sim N(0, t)$,

$$\begin{aligned} T_t f(x) &= \int p_t(x,y) f(y) dy = \int f(x+y) p_t(0,y) dy \\ &= \int f(x+y\sqrt{t}) p_t(0,y) dy. \end{aligned}$$

Defn. The infinitesimal generator is

$$Lf(x) = \lim_{t \downarrow 0} \frac{T_t f(x) - f(x)}{t}$$

for f such that the limit exists.

Fact. For $f \in C^2$ the limit exists and

$$Lf = \frac{1}{2} f''.$$

Proof. If $f \in C^3$,

$$\lim_{t \rightarrow 0} \int \frac{f(x+y\sqrt{t}) - f(x)}{t} p_1(0, y) dy$$

$$= \lim_{t \rightarrow 0} \int \frac{f'(x)y\sqrt{t} + \frac{1}{2}f''(x)y^2t + t^{3/2}e_t(y)}{t} p_1(0, y) dy$$

with $|e_t(y)| \leq C|y|^2$. Thus

$$Lf(x) = \frac{1}{2}f''(x).$$

If $f \in C^2$, one still has $t^{3/2}|e_t(y)| = o(t)$.

Thus $u(t, x) = T_t f(x)$ satisfies the heat equation

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}, \quad u(t, x) \rightarrow f(x) \quad (t \rightarrow 0).$$

Exercise. Let $X_t = x + \sigma B_t + mt$ be Brownian motion with variance σ^2 and drift m . Show

$$Lf(x) = \frac{\sigma^2}{2}f''(x) + m f'(x).$$

Fact. Given $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$, a continuous adapted process (B_t) is a Brownian motion iff

$$E[f(B_t) | \mathcal{F}_s] = T_{t-s}f(B_s) \quad \forall f \text{ continuous}.$$

Feynman-Kac formula. Let V be bounded and continuous. Then

$$u(t, x) = E_x \left[\exp \left(\int_0^t V(B_s) ds \right) f(X_t) \right]$$

satisfies

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + V u, \quad u(0, x) = f(x).$$

Proof. Expand exponential:

$$\begin{aligned} u(t, x) &= \sum_{n=0}^{\infty} \frac{1}{n!} E_x \left[\int_0^t \cdots \int_0^t V(B_{t_1}) \cdots V(B_{t_n}) f(X_t) dt_1 \cdots dt_n \right] \\ &= \sum_{n=0}^{\infty} E_x \left[\int_{0 < t_1 < \cdots < t_n < t} V(B_{t_1}) \cdots V(B_{t_n}) f(X_t) dt_1 \cdots dt_n \right] \\ &= \sum_{n=0}^{\infty} E_x \left[\int_{0 < t_n < \cdots < t_1 < t} V(B_{t_1}) \cdots V(B_{t_n}) f(X_t) dt_1 \cdots dt_n \right] \\ &= \sum_{n=0}^{\infty} \int_{0 < t_n < \cdots < t_1 < t} T_{t-t_1} V T_{t_1-t_2} \cdots V T_{t_{n-1}-t_n} V T_{t_n} f dt_1 \cdots dt_n \end{aligned}$$

Differentiate term by term.

Example: Arcsine law.

Let $\xi_t = \frac{1}{t} \int_0^t 1_{B_s > 0} ds$.

$$\Rightarrow E[\xi_t] = \frac{1}{2}.$$

What is the distribution of ξ_t ?

$$\xi_t = \int_0^t 1_{B_s > 0} ds \stackrel{(d)}{=} \int_0^t 1_{FB_s > 0} ds = \int_0^t 1_{B_s > 0} ds$$

$$\Rightarrow \xi_t \sim \xi_1.$$

Prop. $P[\xi_1 \leq x] = \int_0^x \frac{1}{\pi \sqrt{y(1-y)}} dy = \frac{2}{\pi} \arcsin(\sqrt{x})$.

Proof. Let $V(x) = 1_{x>0}$. This V is not cont. and a more careful argument would involve a limiting argument to apply Feynman-Kac. Anyway,

$$u(t, x) = E_x \left[\exp \left(-\sigma \int_0^t V(B_s) ds \right) \right]$$

satisfies

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} - \sigma V u, \quad u(0, x) = 1.$$

Let $g(\lambda, x) = \int_0^\infty e^{-\lambda t} u(t, x) dt$. Then

$$\lambda g + \sigma V g - \frac{1}{2} \frac{\partial^2 g}{\partial x^2} = 0,$$

Thus

$$(\lambda + \sigma)g - \frac{1}{2}g'' = 1 \quad (x > 0)$$

$$\lambda g - \frac{1}{2}g'' = 0 \quad (x < 0)$$

and g should be bounded at $\pm\infty$ and continuously differentiable at 0. The solution is

$$g(\lambda, x) = \frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{\lambda + \sigma}}.$$

Thus

$$E\left[\int_0^\infty \exp(-\lambda t - \sigma \int_0^t V(B_s) ds) dt\right]$$

$$= E\left[\int_0^\infty \exp(-\lambda t - \sigma t \xi_t) dt\right]$$

$$= E\left[\int_0^\infty \exp(-\lambda t - \sigma t \xi_1) dt\right]$$

$$= E\left[\frac{1}{\lambda + \sigma \xi_1}\right] = \frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{\lambda + \sigma}}.$$

Thus $E\left[\frac{1}{1 + \sigma \xi_1}\right] = \frac{1}{\sqrt{1 + \sigma}}$. Differentiating:

$$E[\xi_1^n] = \frac{1}{\pi} \int_0^1 x^{n-\frac{1}{2}} (1-x)^{-\frac{1}{2}} dx.$$

Since the support is bd. moments characterize the distribution.

2.4. Strong Markov and reflection property

Markov property. Let $t > s$. Then

$$\Leftrightarrow \forall A: P[B_t \in A | \mathcal{F}_s] = P_{t-s}(B_s, A) = \frac{1}{\sqrt{2\pi(t-s)}} \int_A e^{-\frac{(y-B_s)^2}{2(t-s)}} dy.$$

$$\forall f \text{ bd: } P[f(B_t) | \mathcal{F}_s] = P_{t-s}f(B_s) = \int P_{t-s}(B_s, y) f(y) dy.$$

Proof. Immediate from independent increments.

Strong Markov property. Let τ be a stopping time. Then $B_{\tau+t} - B_\tau$ is again a BM independent of \mathcal{F}_τ conditional on $\tau < \infty$.

Proof. Let $\tau_n = 2^{-n} \lceil 2^n \tau \rceil$ and $t_k = 2^{-n} k$.

Given $A \in \mathcal{F}_{\tau+t}$ set $A_k = A \cap \{\tau_n = t_k\} \in \mathcal{F}_{t_k+s}$. Then

$$\begin{aligned} E[f(B_{\tau_n+t}) 1_{A_k}] &= E[f(B_{t_k+t}) 1_{A_k}] \\ &= E[T_{t-s} f(B_{t_k+s}) 1_{A_k}] \\ &= E[T_{t-s} f(B_{\tau_n+s}) 1_{A_k}] \end{aligned}$$

$$\Leftrightarrow E[f(B_{\tau_n+t}) 1_{A \cap \{\tau < \infty\}}] = E[T_{t-s} f(B_{\tau_n+s}) 1_{A \cap \{\tau < \infty\}}]$$

For f bounded, can take $n \rightarrow \infty$:

$$E[f(B_{\tau+t}) 1_{A \cap \{\tau < \infty\}}] = E[T_{t-s} f(B_{\tau+s}) 1_{A \cap \{\tau < \infty\}}]$$

$$\Rightarrow E[f(B_{T+t}) | \mathcal{F}_{T+s}] = E[T_{t+s} f(B_{T+s})] \text{ a.s. on } T < \infty$$

Rk. Let $\theta_s : C[0, \infty) \rightarrow C[0, \infty)$, $\theta_s w(t) = w(t+s)$.

Then for fin. stopping times

$$P_x[\theta_\tau w \in A | \mathcal{F}_\tau] = P_{x(\tau)}[A], \text{ } P_x\text{-a.s.}$$

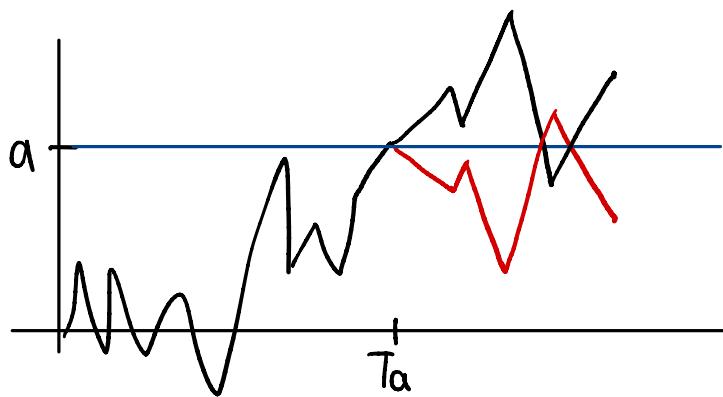
For a stopping time that is not a.s. finite,

$$P_x[\theta_\tau w \in A | \mathcal{F}_\tau] = P_{x(\tau)}[A], \text{ } P_x\text{-a.s. on } \tau < \infty$$

Reflection principle. Let $a > 0$, $T_a = \inf\{t \geq 0 : B_t = a\}$, and

$$X_t = \begin{cases} B_t & (t \leq T_a) \\ 2a - B_t & (t \geq T_a) \end{cases}$$

Then (X_t) is also a Brownian motion.



Proof. On the event $T_a < \infty$ set

$$\tilde{B}_t = B_{T_a \wedge t} - B_{T_a}.$$

By the strong Markov property, \tilde{B} is a BM cond. on $T_a < \infty$ indep. of \mathcal{F}_{T_a} . Same for $-\tilde{B}$.

$$\Rightarrow B_t = B_{T_a \wedge t} + \tilde{B}_{(t-T_a)_+} 1_{T_a < \infty}$$

$$X_t = B_{T_a \wedge t} - \tilde{B}_{(t-T_a)_+} 1_{T_a < \infty}.$$

Thus B and X have the same distribution.

Cor. For $a \geq 0$ and $b \leq a$,

$$P\left[\sup_{0 \leq s \leq t} B_s \geq a, B_t \leq b\right] = P[B_t \geq 2a - b]$$

In particular, $\sup_{0 \leq s \leq t} B_s \sim |B_t|$ and

$$P\left[\sup_{0 \leq s \leq t} |B_s| \geq a\right] \leq 4 P[B_t \geq a]$$

Proof. For the first claim notice:

$$\text{LHS} = P[T_a \leq t, B_t \leq b]$$

$$\text{RHS} = P[2a - B_t \leq b]$$

$$= P[T_a \leq t, X_t \leq b] + \underbrace{P[T_a > t, B_t \geq 2a - b]}_0$$

For the second one:

$$P\left[\sup B_s \geq a\right] = P\left[\underbrace{\sup B_s \geq a, B_t \geq a}_{P[B_t \geq a] \text{ trivially}}\right]$$

$$+ P\left[\underbrace{\sup B_s \geq a, B_s \leq a}_{P[B_t \geq a] \text{ by reflection}}\right]$$

$$= 2 P[B_t \geq a] = P[|B_t| \geq a]$$