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1. Continuous - time
processes

& martingales
From now on

,

(2
.

F
,

P) denotes a probability
space

on which all random variables are defined.

1
.
I
.
Continuous - time

processes

Retr
.

Given an index set IT
,
a stochastic

process
X = EX+: te T) is a collection of

random variables Xt = XIt
,
w)
,

tEIT
,
wel
,

taking values in some measurable
space
.

·

If it is a countable set
,

X is a discrete-time

stochastic
process .

· If TERR is a finite or infinite interval
,

X is

a continuous-time stochastic
process

.

&ful : For it uncountable
,
events like

Sw : X
+ (w) + [a

,
b) HtETT

o

Iw : + X
+
(w) is continuous)

are not measurable in
general
.

Sn : Build regularity into 1 .
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Defi
.

(la ,b) is the Banach
space

of continuous

functions f : [a
,
bl - R with norm

IIfll =
SUP
If

Detn
.

DIa
,
b) is the Polish

space (complete se metric
of left-continuous functions with right limits

Cadlig functions) f : [a ,b] R with tricme
-

d(f,g) = int ( +0 : 7X : [a
,b]= (a ,
b)increasing
,

invertible
,

and continuous

s
.

t
. Sup(x(t)-tEr ,
Sup(f(t)

-

g(x(t))) = + ] .

#
op

.

Dia
,b] is indeed a Polish space .

[Billingsley , Convergence of Prob . Measures
, Chapter 3] .

Pop .

The -fields of Borel Sets of Cla
,
b] or Da

,

b]
are generated by

the cylinder sets , i. e
., by-

[x+ X :
+
+
X
= x(H) + IS

,

It B(R)
,

tela , b]

Sketch Let F denote the cylinder o-field. Since--

ExeX : XIHEI) is a Borelset
,

FCB
. Conversely ,

Exec : /xIr = &TELEr
,
+]) -F.

Exercise : X=D
tz( ,b) 1Q
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We will always use the cylinder o-field (
= Borel

o field) on Cla ,b) or Dla ,b] . The space
([o

,
a)

is defined by x = (to
,
a) if Xot] -Clo ,T] and

likewise for Do
,
a) with unit . on compacts metric .

e. Let (
,
F) be

a measurable
space
. Then a

family [Fe
:
+ = 0] of sub-o-fieldsF is

·

a filtration if F Et if set
.

·

a right-cont . filtration if Fet= Fs

D
.

Let (d
,

F
,

(f) be a filtered measurable

space
.
Then a stochastic process

(X+ ) is

·

adapted if Ut : Xeeft , i.e
,

Xe is fo-meas.

·

integrable if Xt : XtL, i .e ., ElXtk &.

Example . If& is a
space

of functions on ICIO ,

9)
,

Ft = o(w(s) : set)
is the canonical filtration

.
The canonical

process

* (w) = w(t)
,

Wel is (fel-adapted .

#& is a
space

of right-cont . functions
,

it is

also adapted to #z+ ) .
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Pop . Let (X+) be a DIO ,al-valued adapted process.
Then (Xt) is progressively measurable : VTO

(0
,
t) + Xerol

on &xT0
,

1) is measurable wrt
. F *BITO ,TJ).

Sketch. By right-cont · can approximate by
X (w) = Xzn +24z7(w)

For
every

AEB(R)
,

4 (w
,
t) =& + T0

,
T] : Xitwi-Al

= USXznk (A)x[2-(k-1)
,

2- k) .

k!
- -

24T
-F =B([0 ,+])

Thus XV is #*BIO,TT) - measurable· Take limits.

Sometimes it is also convenient to assume that

the E contain all null sets
,
i
.
e
.
is complete .

Hefn
.

A filtration satisfies the usual conditions if

it is right-continuous and complete (wr .t .
a given

probability measure).
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1. 2. Functions of bounded variation

Letn. The total variation of x : [a
.
b) - R is

([a ,
b) = sup[((ti) - x (ii) :

a str
= b)

partition of [a ,b]

The
space

BY[a
,b] of functions of bounded variation

consists of X : [a
.
b]+ IR with Vla

,

b] <&.

Recall : A signed measure y on [a , b] is the
difference

of two muthmaaordandecompositiona
My
and

M ..
The total variation measure ofu is

(x) = m+ + x-

Hahn-Jordan thm : Given
any
finite positive measures

&

M .
and

M2
there are My and y . s .t .

M
=

MFM
=

M+-  -

L
op .

(i) Given a signed measure y on [a , b), its
CDFx(t) = M(la ,t]) is in BYla ,b] , cadlag , and

(x[a
.
b)= (p))(a .b]) .

(ii) Given XBY[a ,b) that is right-continuous , there
is
M

s
.

t
.
x(t) = M([n ,b1)

.
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Iroof
.

(i) Let
M
=

M+
-

M-
be a signed measure and

X its CDF
.

Let a =to = t ,x
- StrEb

.
Then

& (x(ti) - x(ti-1))=M(ti
-

ti]) = (u)(a ,b)
i= 1

= (x[a ,b] = /) (a , b) .

For the other direction
,

letIm be a
sequence

of rested partitions with maxIt 0
It suffices to show that

M)(a ,b)
=lim(x(tm) -x(t)) .

To see this
,

define the probability on (a ,b) by
r(dt) = (u)(dt)

(p) (a ,b]

Let Fm = 0) (tit] : lim) <Fi
+

X= = 7
suppyex

- 1
suppy-

Xm = ETX/Fm].

For setti
,
to then

Xm(s) = M(Hi ,
t]) X-XI

() ((t , ])
=

(((t , ti])

8



= EIm) = MClaib - xH

and the claim is EIXm)- 1
.

But (Xm) is a bd

martingale , so there is Y s .t . Xm+ Y in L

=> ElXm1- Ell
.

Since o(VFn) = B((a ,bi) in fact X=Y a .S
.,
so

ElY1 = EIX1 = 1
.

(ii) Now let X( BV[a
, b]

.

Assume X(a) =0 and set

X
=
(H) = z(Xx[a

,
t) [ X(t))

.

Claim : XI are increasing ,
i
.e

. X11s) = X(t) if set .

Let aEtox--- thet be a partition of [0 . t] &
sit

.

& = tox--- In Et IS is a partion of 10 , S] .

=> 2x
+ (s)

= Vx[a
,
s) =x(s)

-

IIHH-
= X

=
(s) = X

= (t) .

9



Claim : If X is right-continuous ,

so are XI.

It suffices to show vIH =Xx[a
.
t) is right-continuous .

Let B
=

X (t +) - v It) . Need to show B
=0
. Let h <0 s

.

t
.

x(t+h) -y(t) = B + 3

(x(s) - x(t)) + E for se[t
,
tth]

.

There is a partition of [t . +th] s .

t

.

(x(ti) - X (ti+))= Xx[t
.

t+h)
- B

i

=> [(x(ti) - X (ti+)) = B
-

(x(ti) -x(toll = -B - E
i=2

Since BEX(t ,1- vIto) there is a part of [to , ti] st .

[(x(ti) - x(ti)) = B

Thus there is a partition ofIt , ++ h] s
.

t
.

([t
,

t +h] zB - 3

On the other hand
,

Xx[t
,

t +h] = B+ E

=

B = 42 V30 = B
= 0

.
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Defn
.

Let x - BVla
,b] be right-continuous

associated signed measure m
.

For -L'l
withthe

Lebesgue-Stieltjes integral is defined by
& flu) bx(u)

=Sflu) Md
(a =St = b)

↓ flu) (dx/u))
=Sflu) yuldy

and set fox(t) = 1
+

flu) dx (n)
·

Exercise. Let XBXla ,
b) be night-continuous. Then

ISf(t)dxlt)) = )
:

"

(H) 1 (dxIt)I

and fox is in BV and right-cont . with signed
measure f(t)dxlt1 and TY If(t)) (dx(t)1

.

Drop .

Let XfBY be right-cont . and I bounded
and left-cont

.
Then for

any sequence
of

partitions (of [a ,
b) with step size0 :

&
"

Ht)dxlt) =im f() (x(ti) - x (ti-1)

f(dx(t))=m(x Stil - x (ti 1) )
·

11



Proof
.

Let fm(a) =0
,

fult) = flt) if teltt]

=> flt)
=im

fult) by left-continuity

=>) (x(t) -x()) = Sfm(t)dx(t)
(a
,b]

PESf(t) cx(t) .

The second claim is similar
.

Exercise
.

Let X
,y BYlab) be right-cont .

Then

X(b)y(b)
-

x(a)y(a)
= (x(t)dy(t)

+
Py(t+ dx(t)

&
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1
.

3
.

Continuous - time martingales
Detr

.

Given a filtered probability space
(8

,

F
,
(f)
,

P)
,

a martingale is a family of random variables
M
+ c telt such that

(i) (t + Mz)tD(Tt)
,

P-a
.

s
.

[if It is continuous)

(ii) H+ :0 : MetE and ElMel = &.

(iii) HOEsEt : E[MeIFs] = Ms , P-a .S .

If (i)It then (MItrl)
,

is a discrete-time martingale
Wit

. (Fe) . By taking ti
= 24k and using

right-continuity , most properties extend from discrete

to continuous
.

Doob's inequality
.

If (Ne is a martingale and

En
= [W
:S

Ms(w)) = e)

then

PIEe) = GETLEIMel] = ELIME)

PLEe) = EzEL1EeIM+]
=

tec EllMaR] .

13



Proof. The discrete-time versions of Doob's

inequalities imply the statement with Ee

replaced by
Ee

= [sup IMs1ze3
.

OISEt

SE2-tN

By right-continuity , P(EE) ↑ P(Ee)
.

Defn
.

(X) is a submartingale if (i) & (ii) hold
,

(iii) HOESEt : ETXtIfs]2Xs
,

P-a
.

S
.

and a supermartingale if EIX+ If] = Xs .

Exercise
.

Let (X) be a martingale , p : IR-IR

convex
&

and assume ELId(X)1] =& .

Then d(X)
is integrable for

any
<T and a submartingale.

Cletn
.

A stopping time is a random variable I
with values in [0,] s . t.

Ht20 : Ex
= StEtYeEt

Define E = <AEF : An ExtES
.

14



Exercise
.

· If I
,
Tz are stopping times , so are

[x52 and E , XTz .

·

If T
. ETs are stopping times . EE Fiz

.

·

It f is a measurable function s
.

t
.

f(t) t

for all + then f(t) is a stopping time
if I is one . Thus In

=2-12"It is a

stopping time St . In
? [ and in

I

.

Exercise : Let X be a random variable in L
,

i
.e. EIX1&. Then the set of random variables

EIX1E] where ECF
ranges

over sub-o-fields

is uniformly integrable : V307X0s
.

t
.

VE :

ElETXIE) LEXIESKx] = E.

Vitali's
convergence

theorem : Equivalent :

·

XifL' and Xi - X in 1

·

XiUI and Xi +X in probability .

15



Ihm
.

(OST)
·

Let (Me) be a martingale and, in be

two bounded stopping times. Then MeiEL' and
ElMic (F

.
] = Mz
,

a
.

S.

Proof Assume [
.
Tz = N .

Let T = 2
-*

↑2"[i] = N+
-

where N is a deterministic constant
.

The

discrete-time OST implies that

ME
=

EIMM / fe]

In particular
,

Me is UI . Since M
-

Mr as .
therefore Mir My

,

in Land likewise for t
.

The discrete OST also implies
E[Me (fer) = Mic

In particular , for any
Aft
,
Fi
,

EIME1a] = EIMer1A]

Since My - Mc
,

in L'the claim follows
.

C
.

For
any stopping time , Mex is a martingale.

Exercise
.

Extend to (Mz) a submartingale.
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1
.

4
. Semimartingales
Let (2

,

F
,
(f)

,

P) be a filtered probability space
.

Example Let (Xnl be an adapted discrete-time
process
.
Define

An = [E[X; - Xi+1 ]
,

Ao =0.

j=

Then Yn = Xn-An is a martingale : for men
,

M

Elin/Fm) = E(XnIfm) - BETE(Xi-Xi+ IfIlfm)
-

-

LEXmlim
= Xm-EX-X

and An Fh-
.
The decomposition Xn = Yn + An with

these properties is the Doob or semimartingale
decomposition of Xn . The process in is the

martingale part of Xn and An the compensator .

Exercise : The semimartingale decomposition is unique .

17



The semimartingale decomposition is more subtle
in the continuous case.

Rop .

Let (A1) be a continuous - time martingale. If
A is continuous and BV

,

P-a
.
S
.,

then A is const.

Proof. Assume Ao=0 and let At be the variation
-

of A on [0
.
t]

.

It suffices to consider **It =C
.

Otherwise
,
consider Any where T= inflt : AC).

Let tj = (/n)T . Then

At-AtSyplAt-At[At-Aj

=

Csup lAtj-Atjil .

Since 1Atj1 = /Aol+C and A is continuous on

10
,
T]
,
thus uniformly continuous ,

-

#At-AtR]+ 0 .

On the other hand
,

since A is a martingale,

ETA-AR) = EA-AoR

Thus ELIAT-AoR) = 0 , i .e. A += Ao a
.
s
.

18



ropetbeboundedmartingaleandon
with AC for

everyt
. Then

X
+

= M
+At-MoAo-] Ms dAs

is a martingale.

R
. Formally, X+= J AsdMs -

Proof. Since A is continuous
,

&"MscAs =im Mtj(At-Ati

n

=

MzAe-MoAo + lim Atj (Mej-Meit
n + j=

=> X
+=limA-Mix

Since At Fi
,

and M is a martingale,

EAti (Maj -Mtj) (f) = 0 .

and similarly XV is a martingale.

If Misbd
,

X* - X+ in 1 .

It follows that X is

a martingale.

19



2. Brownian motion In fact
,
suffices to

havet in dense set
.

2. I
. Kolmogorov's continuity criterion

↓
Ihm

. (Kolmogorov's criterion). Assume (Xt)tard is a
stochastic

process
S.t

.

for some P21
,
x30

&

ELIX-X
,

(*) = Alt-s/d
++

S

Ot
,

S = I
.

Then there is a version * of X
,

i.e
.,

P(X+ =*z) = 1 Xt
,

that is continuous in fact v-Holder continuous :3
-

p sup
It-*st

-X]=t+ S It -S/W

provided thatV< X/p and with C
=Carp
-

The essence is really a real analysis estimate.

Formally , the estimate follows taking expectation over
the following inequality ("Besox space embedding").

Prop For X :R
*
-IR" continuous

, p21 and UsO,-

Sup
(xt-Xl

ECP)d)
tSEB

It-s10

-

[x]j
where B=B

,
(O) CRI

20



Garsia-Rodemich-Rumsey inequality .

Let
p
and 4

be strictly increasing continuous functions on
Co

,

al s
.

t
. p(O)

= 0 and 4(t)- (t -a)
.

Then

if X
: [0
,
i) - IR" is continuous and

-

(4)(x(t)
-X(s))
)dsdt = B=

p(t-sK

the(t)-x(s)) = 8+ (B) plau)
Plu) d

Proof of#) when d= 1
.

Let 4 (ul = up
, plu) = u8

+/P
,

B = B(x) = ))(x()
-xsl

as dt
.

It-sp
+2

=> ((t-X(5)) = (B) "P
=(Bp'n8du =

G
,
pB
**
It - s/X

8

# If
x is only in Loc and the RHS is finite , there

is * S
.

t
.
Y= X a

.
e . S .
t
.

the estimate holds : Set

x(t) = 2 tX(t+u)du

Then IXr is bounded. By Arzela-Ascoli there is X
st

.
IX
*
- * la -0 along some to. But xXa .

e
. by

Lebesgue diff . Im ., so Y= X a .
e.

21



Proof of Kolmogoroy's criterion. If we already knew
that X was continuous

,

the estimate would

follow from the GRR inequality
.

But we have

not even assumed that + X+ is Borel measurable !

Let

XE = Xz-n(2nt)

Then XI is measurable . Set

*w= [hX(w) for (w ,t S .t . the limit exists
O else

.

Since PIXE-X= 2-n) =A2th2m) l
+B

is

summable the limit exist a.s. for
every

fixed to

Let

↑ = EXI =) ds
=> ElyP] =Al It-sll

+

<- pudsd++ if as up .

Thus
,

for
every
w.* coincides for a

.

e
.

t with a st
.

[X] = CY for all w.

22



It remains to see that PIX=*) = 1 for
every
t
.

# suffices to show this for += 2- K
. Then

PTX = Y+ ] = P[X+ = Y+7 .

But PTIX
+

- **/ > S] > &"gltB - O so as before
S

*** a .s
.

as 340
,

so X= *+ a . S.

#roof (GRR)
.

Let

T

IHH = ( 4) II-XsII
so that It)dt = B . By the mean-value theorem

,

there is to+ (0
.

T) S
.

t
.

ICtol = B/T
.

Given the
,

define an by

p(dn-1)
= zp(tn-1) (so Oxdn-< tn-1)

and the (0
,
dn-i) S it.

Ilt)=B4
(x(tn) - x(tn -1)

( = 2[(tn+ )
y

P(tn - +n+1 dn -1

Each can fail on set of measure of th

Thus both can fail only on a set of meas .Any.

23



Thus dost
,
sa ...

Then :

p
(dn
+
) = 2 p(tn+1)= p(dn) = dritnto .

Also :

p(tn- +n+1) = p(tn)
= 2 p(dn)

=

4(p(dn)
- zp(dn)

= 4(p(dn)- p(dn+1)

=> (x(tm) -x(tn)) = p(tn
- tn
+1)4

+

))
= 4(p(an) -p(dn+1))4+n -1)
= 494)p(du)

=> (x(to) - x(01) = 454
+

/* ) plau)

By an analogous argument,

(x(T) - X(tol) = 4 4
+

(7) p(du)
=> (x(T) - x(01) = 84

+

(B) pldu)
.

24



Given Ols <t = T set

Y(u) = x(s +Eu)
P(u) = p((u)

The argument above with Bu (s)" B = E gives
(x(H) - x(s)) = 84"(B)((du)

= 84-1))p(du) .

25



2. 2
.

Definition of Brownian motion

Lett
.

A stochastic
process

(Belzzo is called a

Brownian motion or Wiener process if it is

continuous and:

(i) (ts : B
+

-

Bs ~ NO
,
t-s).

(ii) t>S : B+
- Bs is independent of olBu

: UIS)
.

Im. There exists a unique probability measure
on Co

,
a such that the canonical

process
is

a Wiener
process
. This is the Wiener measure.

Lemma
.

If (i)
holdsfor

a stochastic process on some

probability space there is a version that is

in fact Holder continuous for
any

Holder exponent
strictly less than 42

.

Proof
.

Since Wt-Ws NO
,

+-s)
,

EliWt-Wslp] = Cplt-sIP for
any p
: 1

.

Thus Kolmogorov applies U
=I- 3 when P2 :

EtIWt-Ws/P] =Clt-sIPX = (pIt-slUp
+

26



&roof (construction of Wiener measure)
.

Given
any

eac (R
,

F
,

P) on which a Brownian
probabilityis defined

,

consider the ma
a

1 : 2 x([0
,

a)
,
wr(t+ Bew).

This
map

is measurable
·

Thus Pol" defines a

Borel
measure on Clo

,

a).

Using a monotone class argument one checks it is

uniquely defined by its fin-dim .

distributions
.

Drop .

Brownian motion is not in (2 :

P(sup
(
=

-

Xs) =a) = 1.
tS It-sl

-

Oxt
,
S

Proof. For each t
,

(B+ -Bs)/It-slk is NO , 1) .

Sup
N
+
-Xs)
zSuzn-XIt-gl2 2.

/2

=> Plsup = 1 - PIX]- 0
.

where 2vNCO, 1)
.

27



There are
many ways

of constricting (Bt).

Defn
.

Let (d
,

F
,
P) be a probability space.

Then

SCE(f
,
F
,
P) is a Gaussian space if S is a

closed linear subspace and any
X is a Gaussian

random variablee.

Example .

Let (Xil be i
.

i
.
d NO

,
1) on some

probability space
. Then spanXi) is a Gaussian

5)
The X

:
are an ortho normal system :Ta le

.

E[XiX i)
= Sij

Note that limits of Gaussian random variables

are Gaussian.

Prop .

Let I be a separable Hilbert space and S
as in the example. Then there is an isometry
I : H+ S

.

Thus :

· FfeH : I(f) ~ NO
, 11f()

·

VfigeH : Ellf)[lg)
= (f

,g(t

In fact
,

[laf +Bg) = aIH) +BIlg) a .S .

28



&roof
.

Let lei) be an orthonormal basis for H
.

Set

IHf) = H
,

ei) X :
·

The limit exists in 1 and a
.s. since

kt(ei) Xi
is a martingale bounded in L2

Lett
.

Let W be an isometry from ECRH) into some

Gaussian
space
. Then W is called white noise.

For +zo
,

define

We = W(150
,

t])

# Would like to think of Wif) as IfdW but

W has infinite variation almost surely .

Exercise
.

(i) For ACIyBorel
,

1A1&, W(A) ~NCO, (A)

(ii) For A
,

BCR
+
with ARB =0

,
W() and W(B)

are independent.

(iii) For A = & A : with Ai disjoint,
i = 1

WCAl
=
Wil in L and a . S

.

W looks like a random measure but it is not.
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Pop . For any t, ..., In the rector (WilE ,
is

jointly Gaussian with covariance

EWtWs] = sXt for s
,

tI0
.

Moreover
.

Wo= 0 a
.
S
.

and

We-Ws is independent of otWn : U<s)

W-Ws ~ NO
,

t-s)
.

Exercise : Let B be a Brownian motion. Then

· - B is a Brownian motion (symmetry)

· But is a Brownian motion (scale invariance)

·

Bets
-

Bs is a Brownian motion that is indep
of (Bu : UXS) Markov prop?).

Exercise
.

Understand how Brownian motion is the

Gaussian measure with corariance (1)"on

to
.

al with O-boundary condition at 0.

Defn
.

A stochastic
process taking values in IP is

a d-dim .
Brownian motion if each component

is a Brownian motion.
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2. 3. Heat equation and Feynman-Kac formula

Let pe(x,y) =re be the heat kerne on R
.

Detr
.

The semigroup of Brownian motion is

Te f ( x )= Ex[f(Bt)]

where Ex is the expectation of a BM starting
at X- IR

.

Eact
.

Since Bt -X ~NO , t),

To f ( x )= (p
+

(x
,y)f(y)

= (f(x+y)p+ (0,y)by
=(f(x+y()p, (0,y) dy .

Retr
.

The infinitesimal generator is

If(x) = Lig
Te f ( x )- f(x)

t

for such that the limit exists
.

Eact. For feC the limit exists and

If = If".
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Proof Iffec3
,

-im(f(x
+

y -
f(x)

P
,

10
,y) dy

=lim)
f(x)yetef")yt

+ tey) ploy yo

with Keely)) = Clyp . Thus

↓(x) = If "(x)
.

If fECt
,

one
still has +ety)) = o(t) .

Thus not
,

x) = tef(x) satisfies the heat equation

E ult
,

x) + f(x) (t +01
.

Exercise
.

Let Xt = X + oB++mt be Brownian motion

with variance of and drift m .

Show

Lf(x)=f"(x) + mf'(x)
.

Fact
.

Given (2
,

F
,F ,

P)
,
a continuous adapted

process
(BH) is a Brownian motion iff

ETf(B
+
) IFs] = Tt-sf(Bs) Of continuous

.
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Feynman-Kacformula .

Let X be bounded and

continuous
.
Then
-

uH
,

x) = Ex(exp()Y(Bs)ds) f(x+)]
satisfies

= + Yu
,

u(0
,

x) = f(x)
.

#root. Expand exponential :

ultix)= Ex]Y--YVIBH) --- V(B +n) f(Xt) dti -dt]

=Extat)--X(B+) f(x)dt
..

- dtn]

=F -Vlt)f(x)dtI
n11

=>TTYTVTet
dit
.

M I

Differentiate term by term
.
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Example : Arcsine law
.

Let St
=

Ef
*

1Bpods .

= El3t] = E
.

What is the distribution of 37?

3
= S'1Besso ds ! 1FBRO dS

=

GAB50da

= 3
+

~3
1.

top .

P[5[X]=y dy= arcsin() .

Roof
.

Let V(x) = 1x0
.

This Y is not cont . and

a more careful argument would involve a limiting
argument to apply Feynman-Kac. Anyway

,

ult
,

x) = Ex[exp) -0)"X(Bs)ds)ds]
satisfies

=Ou
,

u(0x) = 1.

Let g(x,x)
= Ye-Xtult

,
x) ot
.
Then

O

xg + oVg-
= 0

.
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Thu
+olg-Ig" = 1 (x>0

x
g
- zg" =0 (x0)

andshouldbe boundedatand
continuousa

&

g(x)=
Thus

&

ES expl-xt
-o]Y(Bs)ds)dt]

= El exp(-xt - o+ 3t)dt)
= E(9 exp(-xt -o+3 , )dt)
= Elis)=*
Thus Elites) = it
.

Differentiating :
&

El = F(x
*
-*
(rx)
-

dx
.

Since the support is bd .
moments characterize the

distribution.
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2.4 . Strong Markox and reflection property
Markox property .

Let ts
.

Then

E

#A: PIB+Alfs) = Pts(Bs
,
Al=Le-idy

.

#f bd : PIf(B+ (fs) = Pt- sf(Bs) = (Pt-s(Bs ,y) fly) dy .

&roof
.

Immediate from independent increments.

StrongMarkovproperly Letbeastopping timeThen

conditional on [S&

Proof
.

Let in = 2
*

T2"Il and = 2-k
.

Given Atfers set Ar= Al[[n = tr]-Fexts
.

Then

Elf(Bin+t) 1Ak] = ETf(Btic+t)1Ak]
= ELTt-sf(Btats)[An]
= EITt-st(Bin +s)1An]

Elf(Bintt)1AnaEal] = ElTt-sf(Bints) 1Austas]
For f bounded

,
can take no:

Elf(Bi+t) [Anstas] = EITE-sf(Bits) 1Anatias]
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=> Ef(Bi+t) /Fits] = ElTesf(Bits)] a . s .OnO

Rk
.

Let Es : Cl0
,
a) - Clo

,
a)

,
@wlt) = wit +5)

·

Then for fin
. stopping times

Px[G+w+Alfe] = PxtIA]
,

Px-a
.
S
.

For a stopping time that is not a .s . finite,

Px [GweAlf) = Pxca[A]
,

Px-a .S . on En
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&

Reflectionprinciple .

Let a30
,
Ta= infit20 : B+= a)

,

and

x
= (Bt [tETal

29 -Bt (t -Ta )

Then (Xt) is also a Brownian motion
.

int
Proof. On the exent Tax& set

Bt = Bitt-BTa .

By the strong Markox property
,

B is a BM cond
.

on Taxa indep .

of Fia
.

Same for -B
.

=> Bt
=

Bitt Bl-ta
+

&Tac

* = Biaxt-Blt-ta
+

Atacd .

Thus B and X have the same distribution
.
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Cor
.

For a 10 and bea
,

PISUBa , Beb]
=

PIB2a-

In particular
,

SupBs ~Bel and t

PL1Bs1 = a) = 4 P[Bt = a)

Poot. For the first claim notice :

LS= PITaIt
,

Br = b]

RHS = P12a-Bt = b]

=PITaIt , XtEbl+
Tas t

, By 2a-b]
O

For the second one :

PTsupBs2a]
= P[supBs2a , Br =a)
-

PlBz =a) trivially
+PspBs[a, BsEa]

PlBzIa] by reflection

= 2 PIBtZal = PLIBH = a]
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