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Problems marked with (†) may be handed in for marking (CCA pidgeonhole G/H). Problems marked with (?) are additional questions

Problem 1. Let X be a continuous semimartingale under P, and let P̃ be another probability measure on
the same space such that P̃ � P. Suppose that X is also a semimartingale under P̃. Show that X has the
same quadratic variation process under P and under P̃.

Problem 2. Let b be bounded and measurable. Use Girsanov’s theorem to construct a weak solution to
the SDE

dXt = b(Xt )dt + dBt

over the finite (non-random) time interval [0,T].

Problem 3. (†) Show that the SDE

dXt = 3X1/3
t dt + 3X2/3

t dBt, X0 = 0

has strong existence but not pathwise uniqueness.

Problem 4. Find the unique strong solution to the SDE

dXt =
1
2

Xtdt +
√

1 + X2
t dBt, X0 = x.

(Hint: consider the change of variables Yt = sinh−1(Xt ).)

Problem 5. (†) Construct a filtered probability space on which a Brownian motion B and an adapted
process X are defined and such that

Xt =

∫ t

0

Xs

s
ds + Bt, B0 = X0 = 0.

Is X adapted to the filtration generated by B? Is B a Brownian motion in the filtration generated by X?

Problem 6. Let X be a solution of the SDE

dXt = Xtg(Xt )dBt

where g is bounded and X0 = x > 0 is non-random.
i. By applying Ito’s formula to

Xt exp
(
−

∫ t

0
g(Xs)dBs +

1
2

∫ t

0
g2(Xs)ds

)
show that P(Xt > 0 for all t ≥ 0) = 1.

ii. Show that E(Xt ) = X0 for all t ≥ 0.
iii. Fix a non-random time horizon T > 0. Show that there exists a measure P̂ on (Ω,FT ) which is

mutually absolutely continuous with respect to P and a P̂-Brownian motion B̂ such that

dYt = Ytg(1/Yt )dB̂t

where Yt = 1/Xt .
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Problem 7. Consider the Cauchy problem for the quasi-linear parabolic equation

∂V
∂t
=

1
2
∆V −

1
2
|∇V |2 + k on (0,∞) × Rd,

with V(0, x) = 0 for x ∈ Rd where k : Rd → [0,∞) is a continuous function. Suppose also that
V : [0,∞) × Rd → R is continuous on its domain, of class C1,2 on (0,∞) × Rd, and satisfies the quadratic
growth condition for every T > 0:

−V(t, x) ≤ C + a|x |2, (t, x) ∈ [0,T] × Rd, a <
1

2T
.

Show that V(t, x) is given by

V(t, x) = − logEx
[
exp

(
−

∫ t

0
k(Ws)ds

)]
for t ≥ 0 and x ∈ Rd.

Problem 8. Let b : Rd → R and σ : Rd → Rd×d be bounded and continuous. For each n, j, set tnj = n2−j
and ψn(t) = tnj if t ∈ [tnj , t

n
j+1). Assume that (Xn

0 ) is a tight sequence, and that Xn solves

Xn
t = Xn

0 +

∫ t

0
b
(
Xn
ψn(u)

)
du +

∫ t

0
σ

(
Xn
ψn(u)

)
dBu . (1)

Show that for each m,T > 0 there exists a constant C > 0 such that

E[|Xn
t − Xn

s |
2m] ≤ C(t − s)m for all 0 ≤ s < t ≤ T . (2)

Explain what it means for the sequence (Xn) to be tight in the space C([0,T],Rd). By looking at the proof
of Kolmogorov’s continuity criterion, explain why (2) implies that (Xn) is tight.

Problem 9. Consider the SDE
dXt = X2

t dBt .

i. By considering the process X̃t = 1/|Bt − ξ | where B is a three-dimensional Brownian motion and ξ
is a standard Gaussian in R3 independent of B, show that the SDE has a weak solution.

ii. Let Φ(s) =
∫ s

−∞
e−t

2/2 dt/
√

2π be the Gaussian distribution function. Verify that both

u1(t, x) = x
(
2Φ(1/(x

√
t)) − 1

)
and u2(x, t) = x

solve the PDE
∂u
∂t
=

x4

2
·
∂2u
∂x2 , u(0, x) = x on (0,∞) × (0,∞).

iii. Which of these solutions corresponds to u(t, x) = Ex(Xt )?
You may find it helpful to explain why SDEs with locally Lipschitz coefficients have uniqueness in law.

Problem 10*. The goal of this question is to show the following existence result for SDEs with continuous
coefficients. Suppose b, σ : R → R are bounded and continuous, and x ∈ R. Then, for any T > 0, there
exists a weak solution (Xt )

T
t=0 to the SDE{

dXt = b(Xt )dt + σ(Xt )dBt ;
X0 = x.

(3)

i. Define
(
Xn
t

)T
t=0 by (1), as in Question 8, with Xn

0 = x, and using potentially different Brownian
motions Bn. Let µn denote the law of (Xn)

T
t=0. Recalling Prohorov’s Theorem, explain why there is a

subsequence µnk which converge weakly to a probability measure µ.
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ii. By looking up Skorohod’s Representation Theorem, explain why (Xn
t )

T
t=0 can be realised on a

common filtered probability space, such that Xn → X uniformly, almost surely, where X has law µ.
iii. We claim that X is a weak solution to (3). Let 0 ≤ s ≤ t ≤ T , and suppose G : C[0,T] → R is

bounded and continuous, such that G(X) only depends on X |[0,s], and that f ∈ C2
b
(R). Explain why it is

sufficient to prove that

E

[(
f (Xt ) − f (Xs) −

∫ t

s

L f (Xu)du
)

G(X)
]
= 0 (4)

where
L f (x) = b(x) f ′(x) +

1
2
σ(x)2 f ′′(x).

iv. Define, for f ∈ C2
b
(R),

Lnk
u f (x) = b

(
Xnk
u

)
f ′(x) +

1
2
σ

(
Xnk
u

)2 f ′′(x).

Show that Lnk
u f

(
Xnk
u

)
→ L f (Xu) as k →∞, and deduce that∫ t

s

Lnk
u f

(
Xnk
u

)
du→

∫ t

s

L f (Xu)du.

v. Conclude.
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