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Problem 1. Suppose that M is a continuous local martingale with M0 = 0. Show that M is an L2-bounded

martingale if and only if E(〈M〉∞) < ∞.

Problem 2.

(i) Suppose that M, N are independent continuous local martingales. Show that 〈M, N〉 = 0. In

particular, if B(1) and B(2) are the coordinates of a standard Brownian motion in R2, this shows that

〈B(1), B(2)〉t = 0 for all t ≥ 0.

(ii) Let B be a standard Brownian motion in R and let T be a stopping time which is a.s. not constant.

By considering BT and B − BT , show that the converse to the previous part is false. Hint: show that T is

measurable with respect to the σ-algebras generated by both BT and B − BT .

Problem 3. (Burkholder inequality) Fix p ≥ 2 and let M be a continuous local martingale with M0 = 0.

Use Itô’s formula, Doob’s inequality, and Hölder’s inequality to show that there exists a constant Cp > 0

such that

E

(
sup

0≤s≤t

|Ms |
p

)
≤ CpE

(
〈M〉

p/2
t

)
.

Problem 4. Suppose that f : [0,∞) → R is a continuous function. Show that if f has finite variation then

it has zero quadratic variation. Conversely, show that if f has finite and positive quadratic variation then

it must be of infinite variation.

Problem 5. Let B be a standard Brownian motion. Use Itô’s formula to show that the following are

martingales with respect to the filtration generated by B.

(i) Xt = exp(λ2t/2) sin(λBt )

(ii) Xt = (Bt + t) exp(−Bt − t/2)

(iii) Xt = exp(Bt − t/2)

Problem 6. Let h : [0,∞) → R be a measurable function which is square-integrable when restricted to

[0, t] for each t > 0 and let B be a standard Brownian motion. Show that the process Ht =

∫ t

0
h(s)dBs

is Gaussian and compute its covariance. (A real-valued process (Xt ) is Gaussian if for any finite family

0 ≤ t1 < t2 < · · · < tn < ∞, the random vector (Xt1, . . . , Xtn ) is Gaussian).

Problem 7. Show that convergence in (M2
c, ‖ · ‖) implies ucp convergence.

Problem 8. Show that the covariation 〈·, ·〉 is symmetric and bilinear. That is, if M1,M2,M3 are continuous

local martingales and a ∈ R, then

〈aM1 + M2,M3〉 = a〈M1,M3〉 + 〈M2,M3〉.

Problem 9. Let B be a standard Brownian motion and let

B̂t = Bt −

∫ t

0

Bs

s
ds.

(i) Show that B̂ is not a martingale in the filtration generated by B.

(ii) Show that B̂ is a martingale in its own filtration by showing that it is a Brownian motion. [Hint:

show that B̂ is a continuous Gaussian process and identify its mean and covariance.]
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Problem 10. Fix d ≥ 3 and let B be a Brownian motion in Rd starting at B0 = x = (x, 0, . . . , 0) ∈ Rd for

some x > 0. Let | · | denote the Euclidean norm on Rd. For each a > 0, let τa = inf{t > 0 : |Bt | = a}.

(i) Let D = Rd \ {0} and let h : D → R be defined by h(x) = |x |2−d. Show that h is harmonic on D

and that Mt = |B
τa

t |2−d is a local martingale for all a ≥ 0. For which values of x is M a true martingale?

(ii) Use the previous part to show that for any a < b such that 0 < a < x < b,

Px[τa < τb] =
φ(b) − φ(x)

φ(b) − φ(a)

where φ(u) = u2−d. Conclude that if x > a > 0, then

Px[τa < ∞] = (a/x)d−2.

Problem 11.

(i) Let f : C → C be analytic and let Zt = Xt + iYt where (X,Y ) is a Brownian motion in R2. Use

Itô’s formula to show that M = f (Z) is a local martingale in R2. Show further that M is a time-change of

Brownian motion in R2.

(ii) Let D = {z ∈ C : |z | < 1} and fix z ∈ D. What is the hitting distribution for Z on ∂D in the case that

Z0 = 0? By applying a Möbius transformation D→ D and using the previous part, determine the hitting

distribution for Z on ∂D.

Problem 12. (⋆) Let U ⊂ Rd be an open set. We say that a function u ∈ L∞
loc
(U) satisfies the mean value

property if, whenever S(x, r) ⊂ U, we have

u(x) =

∫

S(x,r)

u(y)µx,r (dy) (1)

where we write µx,r for the uniform distribution on the sphere S(x, r) = ∂B(x, r).

(i) Suppose u ∈ C2(U) is harmonic. Show that u satisfies (1).

(ii) Suppose, conversely, that u satisfies (1). For any compact K ⊂ U, express u|K as a convolution, and

deduce that u ∈ C∞(U).

(iii) Suppose u satisfies (1). Fix x ∈ U and r > 0 such that B(x, r) ⊂ U. Let B be a d-dimensional

Brownian Motion started at x, and let τr = inf{t > 0 : |x − Bt | = r}. Show that

∀t ≥ 0, E

(∫ t∧τr

0

△u(Bs)ds

)
= 0.

Deduce that u is harmonic. Hence (1) is an equivalent characterisation of harmonic functions.

Problem 13. (⋆) (Liouville’s Theorem.) Suppose u : Rd → R is bounded and harmonic. Let B be a

Brownian motion starting at 0.

(i) Show that Mt = u(Bt ) is a bounded martingale. Conclude that Mt converges, almost surely and in

L1, to a random variable M∞.

(ii) Recall Blumenthal’s 0 − 1 law. Deduce that the tail σ-algebra

τ = ∩t≥0 σ(Bs : s ≥ t)

contains only events of probability 0 and 1. Deduce that M∞ is almost surely constant.

(iii) Using the relationship between M∞ and M1, deduce that M1 is almost surely constant. Conclude

that u is constant.
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