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.
Essentials of measure theory

1
.

1
. Definitions

Defn
.

Let1 be a set and f a set of subsets of R
.

· F is a field or algebra if DEB and

Af= A F (complements)

A
,
B + F = AuBef

.

(finite unions)

· F is a -field or o-algebra if F is also closed

under countable unions :

(Ailien
,

AiEF
=UAitF

countable unions

· off) denotes the smallest o-field containing F

Defn
.

Let F be a field and let
M
:F to

,
] be a

function
.

Then
M
is a finitely additive measure if

M
(d) = 0

M(A) = 0 HA+F

M
(AUB) = M(A) + M(B) HA

,

BEF disjoint
and a finitely additive probability measure if also
u(r) = 1
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Detn
.

Let F be a o-field and m : F-to
,

]
.
Then

↑
is a countably additive) measure if in addition

MIVemAil= M(Ai) # Ailien ,
Aiff disjoint

Exercise
.

Countable additivity is equivalent to either of :
· H (Ai)

,

AirAi : MIAimMLA

· H(Ai)
,
Ait[Ai :

MILAilimMA

&efn
.

If f is a o-field on 1 then (2
,

E) is

called a measurable
space
.
If
M
is a (probability

measure on (O
.

f) then (
.

F
, M) is a measure

(probability) space .
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1
.
2. Construction of measures

Caratheodory Extension Theorem
.

Let F be
a field

and
: f- to
,
] a count

.

additive measure
.

Then
y

extends to a measure on off).

Proof. Define the outer measure : For ACR,

(
*

(A) = inf([M(A ;) : (AiljenCF, jUAgIA)

) = +& if the infimum does not exist)
.

Define All to be
M

*

- measurable if

↑* (B) = m
*

(B(A) +
y

*

(BCA) VBIL

and M to be the set of
*

-measurable A.

We will show that M is a o-field and that
*

restricts to a measure on M extending M.
This

proves
the theorem

.

Step
1
.

*

is count
.

subadditive
,
i.e
.,

M

*

(BIM
*

(Bil if BCUBi .

it

5



WLOG
/
*

(Bil =& for all it N
.
Then given E30

there are (Aij)jen < F s .t .

BicWAij , [M(Aij)
=

/

*

(Bi) + 32-i

=>

BCUYAj , M*BlE[M
*

(Bi) + E

Since Es0 is arbitrary , M
*

(B) =M
*

(B :) follows.

Step 2.
*

extends
/,

i
.
e

.,

*

(A) =MCA) #A-F.

Indeed
,

for
any
Aff and Ailien (F

. Ai ? A,

M(A) = [M(AmAi)M(Ail
↑

subadd
. AnAiAi

=> M(Al = M
*

(A)
.

Since trivially
*

CAI = /(A) thus (A) = /
*

(A) .

Step 3 . M contains F :

AF
,
B21 = (B)

=

m

Y

(B(A) +
m

*

(B1A)
.

By subadditivity enough to show ?

6



WLOG
y

* (B) <&. Given 270 there is (Ailief

BCWAi , [M(Ail = y* (B) +E

=>

y
*

(B) +2- [M(Ai)
= [((AirA)+ y(AieAY)
=

M

*

(BeA) +
y

*

(BeAY

Step 4 . M is a field
.

Clearly , DEM and AEM if AEM
.

Let A
,
AEM and BER. Then

MBeCAAA(BA
A
,EM AirA?) A A

,

"

= An A
,

=
(B1A

, &An) +y
*

(BeA ,
+Az) + y(BeA?(

-

=

M

*

(B)

AEM M

*

(Br Ail
AEM

Thus A
.
+AzeM

.
Hence M is a field

.
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Step 5 . M is a o-field and
*

is a measure on M.

Let (Ailien >M be disjoint, A= Ai . It suffices
to show

A=M and M*CA)= M
* (Ail

For
any

BIR
,

(
*

(B)
=-
m

*

(BcA ,) +y
*

(BlAi)

A
,
eM

-
M

*

(B1A ,
)+
y

*

(B1A2)+
*

(BeAivAY
AzEM

----
A since AzA ,=

= M

*

(BrAi)
+
(BrAYe .. -A)

= (
* (BRAY

=>

M

*

(B) = ZM
* (BeAi) +

M

*

(BeAY (t)

subada
.

--(
*

(BCA) +y
*

(B1AY

OTOH
, by subadditivity , I holds , so =, i . e ., A +M .

TakeB=A in (*) =
M

*

(A) = EM
*

(Ai)
,

i

.
e

.,
/

*

is a measure on M.

8



1
.

3
. Uniqueness of measures

Refr
.

LetA be a set of subsets of 1
.

· A is a monotone class if

Aift
,

Ai+? Ai (or ?) = UAitA (or 1)
· A is a X-system if it is a monotone class , REA,

,

*
,

BtA
,
ALB = BLAtA

.

· A is a-system (d-system) if DEA and

A, B +A = ArBeA

Fact
.

A is a o-field

= A is a field & a monotone class

Es A is a T-system& a X-system.

Monotone class lemma
.

Let f be a field. Then the

smallest monotone class containing F equals OF).

Dynkin's i-system Lemma
.

Let A be a it-system. Then

any X-system containingA
contains -(A)

.

Both statements are similar.

9



Proof (monotone class lemma).

Every o-field is a monotone class
,
so off IM

if M denotes the smallest monotone class containg F.

To show M is a o-field
,

it suffices to
prove

it

is a field (previous fact)
,

i. e
.,

A
,
B + M = AlB

,
BLA

,

AlBEM
.

(Note &+ F
,

so
R+M)

.

Define

D(A) = [B+M : AlB
,

BLA
, AlBeM) .

It suffices to
prove MCDIA)

,

so it is enough to
show DCA) is a monotone class containing

F

.

Claim : DIB) is a monotone class.

· If AitD(B)
,
Air Ai

,

A =UAi then AEDIB) :

BlAi = BeAptM is decreasing
= BLA = 1(B1A:) eM

AilB = AilB'EM is increasing = ALBEM
AlB = YAinBeM

·

If AitD(B)
,

Ain[Ai
,

A = 1Ai then A+ D(B) :

similar

10



Claim : D(A) contains F
,
i
.
e
.

Bef => B+D(A)

BEF = FcD(B) since f is a field

=> McD(B) since D(B) is a

monotone class If

=> AtD(B) since AEM

E Be D()

Cor (uniqueness of extension). Let F be a field and

Met
M ,
and
ye

be two count. add measures on

off)
, MiLRId , s .t . MiCAl-MelA) #AtF.

Then
M . (A) =M2(A) #A + oF) .

↳roof. Let

A = [M ,
(A)
=
(A) : Atoff]

.

Then A is a monotone class : if AilA then

M
,

(A) = lim M ,

(Ail
=MMzAi

=MA

by countable additivity.

Thus A is a mon tone class containing F, so
contains off) by the monotone class lemma

.

R
·

Same holds for o-finite
measures Mi
.

11



1
.

4
.

The Lebesque measure

Def
.

Let X be a topological space. The Borel
O-field B(X) is the smallest o-field on X

thatcontainsallopensetsonenerated by
lab = [XfR :

a
= X = b)

,
aeRuS-a]

,

DER

Fa
,
a

= (XeR : asxx& )

The set of finite disjoint unions of the lab together
witho is a field

F

.

Let F : IR - to
, 17 be nondecreasing and satisfy

im F(x =0
,mF%

Then a finitely additive measure P : F- [0, 17 is

defined by
P([a

,
b) = F(b) - F(u)

.

Im
.

P is countably additive iff F is right-continuous.
Thus the probability measures on BCR) are in
one to one correspondence with such F called the
distribution function of P

.

12



Froot
.

() Suppose P is countably additive. Then

F(x)= P(ta , x]) =P(ta , xi)) = (mP((-a, X :)
for
any sequence

(xi) with xitx.
= F(xi)

#) Suppose F is right-continuous .

Let AjfF, AjtO .

It suffices to show PLAj) +O .

By contradiction
,

assume P(Ai) = 50 for all i.

Step 1
.

It suffices to assume A
;
(C-e

,
e) for some 1 :

P(Aj)
-

P(Aj[
-2

,1))e)
(l+00)

Thus we can assume PLAp) = - and Ajc[-f , 27 .

Step 2 .
There are BjeF s .t . BjcAj

,PLAB

Indeed
,
since AjeF, there are kit , Aji , bji R s .

t
.

Aj= Fajib

Take Bj= Fasti with 200 sufficient small .

=> PlAjIBjl=Flag-Flat;) 0 as E
,

00

right-continuity

13



Step 3 . Let Ej= Bi and Ej= Bi .
Then E

;
is decreasing

,

closed
,
bounded

,
and E

;
to

since A;? Ej .

Since A; is decreasing and BjAj,
P(Ej) = P(uBj)

= P([A\Ai(Bil)
= P(Ai) - P(A: (Bi)
=

PLAj)-PilBi)-8
Since PLEj) = PCEj) thus each Ei #0.

This contradicts
E

j ↓O :

any
intersection of

nonempty ,
bounded

,

closed
, decreasing intervals

is

nonempty .

Thus the assumption PCAi) : S was false and
P(A

;
) +O (note PlAj) is nonincreasing) .

1k
.

Can drop condition lim F(x) = 1.
.

This would

lead to Borel measures on Y** that are finite or

all bounded Borel sets
.

14



1
.

5
. Integration

Detr
.

Let (1
.

1) be a measurable
space
.

Then a

measurable function or random variable is a
map

f :1+ IR st
.
f" (B) +I for

every
BEB(IR)

.

Eact. For
any
AtI the indicator function

↑x(w) =16 if WE
is measurablee.

Eac
.

Sums
,
products

,

limits
,

and compositions
of measurable functions are measurable

·

&

Simple functions. For any finite collection of disjoint
sets Ajt] and a fIR ,

the function

f = [a
; 1Aj (4)

is called a simple function (and measurable)
.

Defn
.

For a simple function f and a measure y , set

Stdx
= M(f)= aj M(A;

)

.

# The
repr.

(A) is not unique , but the into well-defined .

15



EacForfandsimple ,
so are aftbg
,

a!

J(af + bg)du
= affdy +bfgdy

ISfdul = SHf1dy = sup1f) MIR)
From now on

,

let
m be a finite measure

.

Bounded functions
.

Let f be measurable with IfIM.

Eact There
are simple -j s

.

t
. sup

If
;
-fl-+ 0

.

Proof. Assume If/<M
.

Write

[-M
,M)= Fi,

j
=

aj
+ [ F, )

where the
a

;
are s .

t
. [-M

,M)=E .

Then set

R

fr
=

9
;
1A
;

where Aj = f
+

(lj).

Clearly
,
Ifn(w) - full=*

- 0.

Fact. If f
; are simple and suplf;-fl

-> 0 then

Stid is a Cauchy sequence
.

The limit

Staye
let

lim If; d
e

is independent of the approximating sequence
.

16



Roof. By the properties of simple integrals ,

If: du-Stindpl = Slfi-fil d =

Sup Ifj-fuel pelct)
.

Since suplfy-fl +0, (fj) is Cauchy, i.
.e . Sup1j-fc0.

Similarly , if sup Ifj-fl
+ 0 and Sup15)-fl +> 0 ,

then Ifj-F1-0 uniformly .

Eact. The integral for bounded functions has the

following properties : If f.g are bounded , abelR,

Slaf +bg)du
=

affdx
+ b/gd.

1Sfal = Sif)d = Sup(f) ju(d) .
In fact

,

1Sfdpl = MlEw : If(c)k0b) suplf)

BootTakelimitsofthecorrespondingpropertiea b

i (A) = MIARB) where B =Ew : If (c)k0
defines a measure and

Sta
= Stdy , SHd

=

SH, ju(R)
=y (B)

The last property thus follows from the second.

17



#side: Convergence of measurable functions

Retr
.

Let (fnl be a
sequence

of measurable fuctus
.

· fr+f uniformly if sup1fn-fl -> 0

·

En-f pointwise or everywhere if Ifn(w)
-f(w)O

for
every

wfl.

If there is a measure P on (1
,
1) also define

· Inf almost everywhere (or almost surely),
written fn+ fa

.

e
.
or as. if there is NEI st.

P(N) =0
,

Ifn(w)-f(w)l -O for weN?

· fn+ f in measure (or in probability) if

P(w+ Ifn(w) -full- 2) -0 for
every

230
.

Fact
.

In+f uniformly => In if pointwise
=> Inof ae

.

= fu + f in measure

Iroof. Only the last implication is nontrivial . But note

furt ae Mn[wilfm(r)-f(w)k- 3) <N

Em PmUnHmlu-f(wI
count. add

-im P(fn(w) -f(w))] E]
.

18



Notation. Given A a measurable set
,

define

Sta
=

Staf d.

and note /fdy =

Rfd + f du .

Bounded
convergence

theorem
.

LetIn be measurable

functions with Ifnl=M for some constant M. Then

Inif in measure
-

>

LmStr d
= If dy.

Proof
. Replacing In by fr-f it suffices to prove

that if In+ 0 in measure then Slful d
- 0.

SIfuldyE (Ifn/dM +SHlya

Es
nia

=>

lim Sup Slfuld=0

=>

/Ifuldy
=

limsup Slful d
=O

Example . 1
= [0
,

1) with Lebesgue measure. Then

· fn(x) = **, Ifn(x))) ,
fr+0 a . e

.

=> Stud=0

· fn(x) = nx
,
fn+ 0 a.e

.
but Study = 1+ 0

.

19



Nonnegative functions .

Defn
.

f is a nonnegative measurable function if
f :1 - [0

,
+] is measurable with respect to

the Borel o-field on [0
.
+&]

.

Defn
.

Letf be a nonnegative measurable function .

Then define

Stdy = suph/gdm :

g
bounded

. 02g]f).

Fatou's Lemma
.

Let In be
nonneg

.
meas.

functions
.

If fr-f in measure
,

then

If d
= limit Std

In
general
,

/limit In du E liinf Sfn dy a

Iroof. Let
o
be bounded and OgEf. Then

gxfn is bounded and

gifn-gaf = g in measure.

By the BCT

Igqu= /gaf d
= limit Send ,a

Thus Sf dye = liminf &In dy .

20



Forthegeneralcae replacby F in t

Monotone Convergence Theorem. Let In be nonneg
.

meas
.

and fntf pointwise. Then

Stadp ↑ Sf du .

Proofearly dSmSfnd

Std = limit Study = him Stude

Fact
.

For all
nonneg

. meas .
F
, g and all a,b20 :

((af + bg)dy = affdyu + b/gd
Sta = Sgap if feg

Stay
= O ifIt 204)=0.

Proof
.

Let fr = naf
, gn
= mag
.

Then fr
,go
are bounded

and fulf
,
gnig
.

The first claim follows from MCT

and the corresponding which we already know :

(af+ bg! dy
= affdy + b/gn4 .

21



The second claim is obvious from the definition
.

The third claim follows since

f =0 a
.

e
.

Es fr=0 a
.

e
.

Em
.

and the corresponding claim for bounded functions.

Arbitrary functions.

Den
.

F : +[0,] measurable is integrable if

Stay
f : l
-

> IR measurable is integrable if Ift is . Set

Stom
=

St
+

dy-Sf-dy
where ft = fr0

,

f= (f)v0
.

Eact. If fig are integrable, then aftbg , a, belR
are integrable and

((af+bg)du = affd +b/gdy

1Sfd) = (1f) qu
Moreover

,

for
any

measurable f
,

JIf)dn = Stdu =O if M(dfF04) =0

22



A root. Only the first claim is slightly nontrivial .
Note that f+

g
= (f+g)+(+g) == f+ f-+g+g-

=> H+g)
+

+ f
-

g -
= (f+g)- +f++g+

=> ((++g)+ dy +St- dy + Sg - dy
= ((f+g) -dy+ St+dy +fg+ dy

=> SH+g)d = Stdy + Sgdy .

Similarly Saf du
= Jaf+ dy-Saf-du = a Stdy .

Dominated Convergence Theorem. Letfo be
meas,

and assume fr-f in measure. Let
o
be integrable

and Hul Eg for all n .

Then

naStr an = Sfdp.

↳roof
. gitn and g-fu are nonnegative and

gif -gIf in measure
.

By Fatou, limit (19Ifu) dy SgIfy
=> limit Iffndy ? If ye

=> limint (fn du = Stop - limsup If Mye
= l fudy= Stdy.

23



1
.

6. Transformat ions

LetGiventwomeasurablespac
,a

for
every

A-Iz
.
If
m
is a measure on (1

,

2)
the induced measure on (2

,
[2)

,

also called

pullback or image measure , Typ
=

MoTt is

Th(A) = MCT
+

(A) for
every
AEIz .

#Im
.

If f :1-R is measurable
g

= foT : &
,

XIR

is measurable and
g
is integrable w .

r
.

t
. M
ift

f is integrable w
.
r.t . Tape and

Refd=gd

Proof. Recall the simplifying assumption that y is fin.
1. If f = 1 A

,

AtZ
,

this is by definition of ThM .

2
. Iff is a simple function , this follows from 1

.

and linearity of the integral .
3. Ift is bounded

,

it extends by uniform limits
.

4
. Iff is nonnegative , it follows by monotone limits .
5

.
For general f , decompose into ft and f.

24



1
.

7
.

Product measures

Defn
.

Given measurable
spaces

(e
.,

[
,
)
,
(8
,
[2)
,

the

product space (2 , I) is given by & =,
x&
2

and I the o-field generated by the rectangles
A
,
XAz

,

A
,
Ell
,

AztIz
.

Eact. The finite disjoint unions of the rectangles
A
,
xAz form a field F and so I = off)

.

Given two finite
measures

M ,
and

M2
on 18

.,
[
,

)
,

( [c)
,

define
a finitely additive measure on F by

M)A , xA2) =M ,
(A

, )Mz(A2)

Fact
. M

is well-defined
,

i
.
e
.,

if

E = UCAx *2) = Y(B, x B])

then M .CAY/MclA) = IM ,

(BY(Mc (B2) .

Prop . M
is countably additive on f.

In particular, i extends to a measure on I = off).
Also write

M
=

M , Q Mz

25



Proof
.

For Eff and wee
,

define

Ewz
= [With : (WWL)eES

.

Then
wet M(Ewz) is a simple function , so

measurable
,
and

ju(E)=MCEw) d

Let EneF
,

En ↓O
.

Need to show y(En) to.

Since EntF
,

Ent
,

En
,
wat for all Watc

.

Since
M ,

is countably additive,

MiCEw) +O #Watchz
.

Since
M ,
is a finite measure

, ( . /Ewa) is bounded.

By the BCT therefore

M(En)
=

SM , (En ,wa)dxz
-O
.

Thus
M

is countably additive.
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Aside : Monotone Class Theorem
.

Let (2
,

2) be a

measurable
space

andF a field St
.

[ = o(A)
.

Let UC [ +: 1+ IR bounded) st
.

(i) 1eU
,
LetAff .

(ii) fn +U
,

In 20
,

+ is bounded
,
Ant = f+U

.

ThenO contains all bounded measurable functions
.

Proof. Note that fxE0 for all AtE by the
monotone class temma for sets

.

Since V is a vector
space ,

it contains all simple
functions
.

Therefore
,

given 20 bounded
,

fn =2 (2nf) + U.

Since furt
,

hence f+U
.

For f : ZvR bounded
,

decompose as f = f
+

-f with f
#
10 bounded.

#op. Let f be a measurable function on (2 , 21 .
Then w

,

to flw
,

wa) is measurable for each wath

Iroof
.

Let U be the set of bounded f for which

the claim holds
.

The assumptions
of the MCT

apply , so r contains all bounded measurable f.

Finally , approximate + as limit nxt and take ned.
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&rop .

Letf be a bounded or nonnegative measurable

function on 1
,

2)
.
Then

filw ,
) = SHw
,

wa) da

is again a bounded resp . nonnegative measurable
function

on (2
.,
[

.
).

Proof. Apply MCT.

Fubini's Theorem
.

(a) Let f be
nonneg .

meas . On I
,
E)
.

=> Stay=Hwwa) d) d,a

(b) Let f be meas
.

on (6
,
I) and pe-integrable . Let

A = [With, : (Iftwiswall de Y

For witA
,

define fi : R .
-R by

f

, (wi) = Stw
,

wal die if we A ,

=O If WLA
,.

Then MlA) = 0 ,

t
,

is
Mr integrable, M .

(i)
= M
(f)

.
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#roof. (a) The usual pattern (variations possible) :
· For f = 1A

,

A= A
,
XA2 this is the definition of M .

·

By linearity it extends to f
= 1A

.

AF
.

·

By the monotone class theorem land using the
monotone convergence

theorem to verify its

assumption)
,

the assertion follows for20

bounded meas
·

For general #10 meas . it follows from monotone

convergence .

(b) Let +be -integrable . Then by (a) ,

SIAdu
=)S If,wall de d,a

so that M(Ai) =0 .
Let

fi
F

(w) = (fF(w ,
wa) diz

=> f
,

= (fit) - f, ))]A
,

By (a) , therefore

Stay =)f
+

du-Sf
-

cy
= Stdm

,

- StiOp ,

as needed.

=

If
, dy ,
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1
.

8. Distribution and expectation
Hefn

.

Let (1
,

I
,
P) be a probability space

and

X : 1- IR a
random variable

.

XxP = x

is a probability measure on BIR) called the
distribution ofX and its distribution function

F(x) = x))-a
,

x]) = P(X = X]

is called the distribution function of X
.

Defn
.

The expectation and variance of X are

E[X] = SX(w)dP = (xdx

Var[X]= E[X]- ECX] = EL(X-EIX1)Y

provided(kx1dx= resp
. (x2da &. Similarly

,

the p-th moment of X is

EEXP]

provided ELIXIP] if p
is not even

.
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#ide: Let : ICIR-R be convex

:s#(+x+ 11 -H(y) = +q(x) + (1 -+)d(y) .
where I is an interval.

The Legendre transform ofI is defined by
#
*

(p) = syp(px - q(x)

-
afor peI

*
where I

*
=

< **(p)<* ).

Then forI convex :

P(x) = sup(px
- P
*

(p)) = q
**

(x)

Indeed
,

for all b
,

the defn
. implies ↑(=***(x)

:

#*(p) = pX- b(x)yx , p
= d(x) = q

**

(x)

For convex t
,

for
every,

there is p
s
.

t

.

P(y) = P(x) + p(y -x) Hy

Yxf(x)
Es dy)-py = q(x) -

px Hy
Es py -b(y) = px - P(x) Hy
= (4p) = px

-P(x)

= d(x) = px-(p) = q
**

(x)
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#hm (Jensen's inequality) . Let P
: R-IR be

convex and f and pot be both integrable .

if x is a prob . measure on IR :

Then Jof da=P)(fda) .

In other words
,

for
any
random variable X

,

E(p(X)) = P(IE(X)) .

Proof.

pf(x)
- q(p) = q(f(x)

= p(fdx -((p) = Geof da

= P(Stda) = Sup(p(fdx - q(p)) = (potda .

(t
.

For
any ps1 , ElIX1)

= E((X(P)P
.

Proof. 4(x) = XP is convex on to .a) .
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Heth
.

For a vector of r
.

x
.

X= (X
.. . . .,

Xn)
,

a
= X xP

is the joint distribution of (X, ...,Xn) . It is a

probability measure on BIR") .

Letthecoordinate masacalled
the marginals of a
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2
.

Weak
convergence

2.I
.
Characteristic functions

Detr
.

If a is a probability measure on BIR),
P(t)= (t) = Jeixt da

is called characteristic function (or Fourier transform)
of the measure X

.

Ihm
.

I is uniformly continuous and positive
definite

,

i

.e
.,

Plti-t
;
) 5i5

;
20 #zeC"

,

tER?

ii = 1

Proof
.

[d(ti-ti) 3 : j = /Zeilti-ti) x3, da10

#eitix3 : 1 = 6 is
p .
d
.

(d(t) - $(s)) =)exeisx) daFo by BCT
= leilt-s)X - 11 -0 =# is unit. cont

.
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How to recover the distribution from I ?

Assume
x
= f(x)dX

,
F(x)= f()dt

,

so F'(x) = f(x)
.

ThenI is the Fourier transform of f and the

inversion formula (for nicef) gives
F(x) = z)e

- i+
Xd(t)dt

=> F(b) - F(a) = 2 (Pt)Se-itxdx dt
-

e-itb-evita
- it

=Im e-itb-evit t

#m
.
If a

,
b are points of continuity for F then

#(b) -F(a) =tim e-itet

Proof. Let

u(T
,

X) = sintx d signx =[
↓

Then luCT
,

X)l =C andim uLT,x
= sign(N
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=>fitbetajei dae

= Sde-it
-x)
- e-ita

-

x)dt
- it

= (d
sin(t(x-all - sin(t(x-b) dt

t

= (da(u(T, x-a) - u(T, X-b)

By the BCT
, using (uCT,x)IE) ,

- =(d)en(x-al-sign(x
-b)

&
O if Xa

+ if X = a

2 if a< xXb

+ 1 if x = b

O if x > &

=

21a + x =D + (x = a - 1x=)

= F(b) -F(a) + z (F(a) - F(at) -F(b)+F(bt)
-

=O at cont
- points
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Drop . If F is increasing the set of points of
discontinuity is countable..

If Ex and F are distribution functions of
a and

B
and Fr = Ep on all continuity points,

then Fa= Fi , so x=B .

Hence
, o

determines the distribution uniquely .

ProofForanyincreasing tesetx
: F i

(F(X_)
,
F(x)

,

XER are disjoint (or empty)
=> 1 = F(a) - F(-a) = &(F(x+) - F(x-) .
=> [X : F(x+) = F(x+Y is countable

.

Thus for
any

x there are xix which are

continuity points for Fa and Fp s .

t
.
Xitx. Thus

#(x)mF(xi)(m Fp(xi)
=
F(x)

night-cont Fa=Ep on right-cont
cont

. points

Hence Fa=Ep , so a=B .
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2
.

2. Weak
convergence

Example. The total variation distance between two
measures

M
and r on (

,

2) is

,

r) =
SU(u(A -r()) .

Note that if
M
= Sx and v = by on BIR) then

M ,

r) = 1 whenever
xty .

IfIt is a metric
space

such as R we would

like a distance st
.
d)8x

, Sy)
+ O as x

*

y.

Left
.

A

sequence
an
of prob . distr . on R

converges weakly to a (written an x or an) if

(1) = x(l) Winterval I = [a
,
b]

st
.
x(a))= x([B)) =0

Equivalently
,

m
F(x) = F(x) for

everyx
that isa

continuity point for F.

This is also written En =
F

.
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Lexy-Cramer Continuity Theorem .

TFAE :

(i) An = x (or F = F)

(ii) naffdxn = Stde Xf
: RvR bounded

continuous

(iii) lim YH=*) HER

Moreover
,

if $HH) = lim &n(t) exists for all telR
n-&

andb is continuous at O then =* for some

probability measure a.

Proof of (i) (ii) = (iii) .

Let0
·

Step 1
.
There are cont

. points ab of F s
.

t
.

F(a) = 2 , 1-F(b) = E

=> Fi(al = 23
,
1-Fn(b) = 23 for n2hol)

.

Step 2 . Using thatf is uniformly continuous on [a ,b],
for
any

S>O
,

there is 30 St . If(x)-fly)kS if

(x-yl 3 .

Let a
,

be cont
. pts . of F, Air-ajx3st .

(a ,b]= Ej , Ij
=( ,a+1) .

Step 3 . Let h
= [11

;
flaj) ·

Then Suplh-fS anda
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1Stdx-Haj)[F(at) - F(aj]) = S+2ME

1Stdin-Haj [F(at) - F(aj]) = S+4ME

where M=

sup
1f1

.

Since Flaj)-> F(a;) Hi.

limsup /Sfdx-Stdn = 2 + GM.

=> him a ISfda-Stdn) = 0.

This
proves

(i) = (ii)
.

(ii) = (iii) is trivial since (iii) is (ii) with the

special choice f(x) = eitx .

Proof of livi (i)
.

Step
!
.

Since Entto
,
1
,

for
every,

there is a

Subsequence stconverges
.

Extract a dig
a

Fulr)-> F(r) WHER
,

nex
,
1 -

.

Step 2 . Let F(x) = int Fli
.

Notice F is right-cont .
# and increasing

.
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Step 3. For every cont . point x of F
,

him F(x) = F(X)
.

Indeed
,

let +>X
,

+E. Then Fn(x)EFn()-> F(t)
.

= limsup F(x) = F(t) .

=>

limsupFn(x
= F(X

To show
convergence ,

let
yxx

and reQ
, yerxX.

=> liminfFn(x)[liminfFn(r) = FIH = Fly) .

=> liminfFn(x) = inf Fly) = F(x) = F(x)

since X is a cont.Point of F .

Step 4 .

$101=1 and I is cont
.

at O

=> F(a)=0
,
F(+a)= 1

.

=> F(x) = x()-a ,x]) for some prob .

meas
.

9
.

Indeed
,
we will show

-&(E) + F)
- z) = 2(i -]P(t)dt]

For T s
.

t
.
E are cont

. points for F, take limit :
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1-F(z) + F(
- z) = 2(i - c],P(t)dt]

Let T+O along cont . points,
1 - F(0) + F)-a) = 2() - P(0)) = 0

.

Conclusion. Thus En * F and
n

=Pas ned

along a subsequence andis ch
.

function of F

by (i) (iii). This works for any subseg ,

hence the

limit is unique.

Lemma
.

For
any prob .

dist. X
,

1- Fall+ FatE) = 2[1- [] (t)dt]
Pot.Hdt = /Eitxdfd

Sin(TX)

TX

=Id
= x((x( +e)+ x((x(ze)

= -(t)dt = (1 - Fe)x((x)=2)**)
e=ELIS .
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Deth
.

A
sequence

of t
.
X. Xn converges

in distribution

or in law to a r
.
X

.

X if the distributions an of Xn

converge weakly to the distribution a of
X

.

Im
.

LetA be a family of prob . measures on R
.

Suppose A is uniformly tight :

iSu(x)=

Then for
any sequence

and A there is a subseq
.

that
converges weakly to a limiting prob .

measure.

#k
.

Uniform Lightness is equivalent to

him SPS11-Palt))
=O

Proof
.

Same as last theorem
.

# The above can be generalized to prob . measures

on a metric
space
.

·

An= x then by def if If dan+ If de # + b d
.

Cont
.

· A is light if #ExOzK compact st . Sah(KY E .
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Im
.

Let an= x. Then

#CCI closed : limun(C) = x(C)
#GCIR

open
: limit=(G) .

Moreover
,
if xIFA) =0 then imAn(A) =A

Proof
.

Let

I
f(x) =

1 + d(x
,

c)
,

d(x
,
x)
=
inf(x-y.

Since C is closed
,
f(x) = 1 = X + ( and f(x)x

for X* C .
Therefore

f(x)" ↓ 1c(x) as k>&.

Since fl is continuous
,

Lina(f(x)"dan =Sf(x)"da

=>

limsup (C)imSf(xd
= Sf(x)

=>

lisupan(D
= x

Since G is
open
G is closed and the second

statement follows
.

The third statement is immediate since IA :AlA
.
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2
.

3
.

Bochner's Theorem

Bochner's Theorem
.

If % :-I is
pos .

def
,

cont
.

at O
,

$10) = 1
,
then B = 2 for a probability measure x

Eact
.

Let 6 : /R-C be
pos ·

def. Then

(a) &It) eith is
pos .

def
·

for
any
a
ER

.

(b) b)-t)=t) and 1Pt = $10) for all t

(c) (P(t) -P(s)k= 49(0)(1-Plt-5) for all +, s
.

Proof. (a) Pti-t; ) eiti-5)a 5
:
5
,

=

[Pi-tj) 1 :510 , :
= eitias

:

(b)

To=

det[P ) 0 = PO-PP
= (d(t)) = q(0)

↳

det -I
45



=> O = 1 + b(t-s)d(s)dt) +d(t)bt-s)s)
- (61t -S)R-19(t)R-1915)/2

=> 0 = 1
-

(s) -$14) -

1PHt -S)1
-

(l-p(t -s))b(s)Ptt) - ll-TS))b(t)ts)
.

= 1 - (P(s) -P(t)R -1(t -s)k+ 2/1 -P(t-S))

=> (P(s)-dItR=sil+ 211-P(t-s))

(1 -1P(t-s)()(I + |P(t -s)))
- -

Ell -Plt -s)) = 2

= 4/1-plt-s))
.

E
.

If do are
pos .

def
.

and r a measure on a

then (edo also is
pos .

def
.

Proof of Bochner's Theorem
.

Let o be
pos .

bef
.

3

continuous
,

and in addition integrable. Let

f(x) = zi)e
- itx
p(t)dt

Step 1 f(x) 20 .

T

Hx =Lime
it

p(t)dt (DCT)

= time-ilt-sx dlt-s)dd
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Indeed
,

the change of variables (5) () =(Fis)
has Jacobian 2 and thus

T

gH-s)dtds=(glu
-

T

ux(0
,
2T) => Xt (-u

,
2T-u]

S Y-uf (0
,
2T] = ye (n

,
2T+u]

=> ve(lul
,

2T-D

= glu) (2T-2) du

=

T]g(u)(1- du

Thus

f(x)
=mixetixs Pts)ds

=mixii
I where

:

=Fi ↑
Riemann sum

approximation
pos .

def
.

47



Step 2. (H)= Seitf(x)dx

Let fo(x)= f(x) e
- 20? Then

Seitx fo(x) dx = /eitxe-zoxfe-is p(s)dsdx

=

PSS-

#(fo(x)dx = (d(s)Poa(s)ds = P(0)(Pols) as

= d(0) = 1

By Faton's Lemma,

(f(x)dx = ( (m fo(x)dx = Limo (fo(x)dx = /

Thus Ifo(x) eitx/= f(x) is integrable . By DCT
,

Jeitx f(x)dx
=im /dls) Poult-sl

d

= lim(Pstt) Poels)d

= Lim(dlt+os)p ,
(s) ds =P
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Step 3. Now assume o is pos .

def
-

and continuous
,

but not necessarily integrable. Then

Pt =(He- = (city pozly) dy

pos .

def
.

is also
pos

·

def
.

and integrable.

By Steps 1 and 2
,

=
o
for
some prob .

measure No.

Since Polt-dlt) for all t
,

the Cont
.
Theorem

implies that= for some prob . measure a.
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3. Independent sums

3.1
. Kolmogoroy's Consistency Theorem

Defn
.

A family of prob . measures Pn on R is

consistent it

TWPn+ 1
= Pr where it(x

. . . . . Xn+
) = (X1

,
. . .

,
Xn)

.

Let &= IR
*

=E(XX2
,

...

) : XitIRY and I =0(F) where
- is the field generated by cylinder sets

B= (w : (X,
,

. . .

,
Xn) +A)

,

AEBCIRU)
.

Kolmogorov's Consistency Thm .

Given a consistent

family of distributionsPn on IR" there exists a

unique prob . measure Pon ( ,
I) s

.

t

.

TIP = In where it (x
,

....
) = (x1

< ...,
Xm).

I

roof. By consistency ,

one can define Pon F by

P(B) = Pn(A)
.

To
prove countable additivity ,

let BjeF s .
t

. BiP .

To show P(B
;
) tO assume P(Bil:8 for all j

,

some 80.

-

=> Bj="(Bj) for some BtB(R") .
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There is a compact set EjcB; st . (inner reg .)
.

PriBi) = 82-4

Let
ki=(j)

Dj = k;= (D) for some ICE
;
Ch

Then DjCBj ,

so Did and Dit since

P(Dj) = P(k
,)

K
= PlmBalBr\kn))
= P(B

; \(Bra(k)
↳6-) 0

Pn(B = G2-k
- 1

j
Note if wit(xix

....
)+D
;
then (

...,Xml
->

p

forj.

For each : there is a subsequence Nis .

t
.

XXi Livia
, jeAi) .

Takediagonal subsequence As .

t
.

X-X
:
Hi (jid

,

jtN.

Then w = (X1
,
X2 ...
) ED
i
for all k

.

Thus Di #0.
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The proof used the inner regularity of Bore measures.
ILet a be a prob . measure on I? Then for

any
BEB(R) there is KCB compact s .

t

.

a(B)k)E
.

Proof
.

Exercise
.
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3
.

2
. Independence and convolution

Letn. Exents (Ad
n
are independent it for any finite

subcollection a
, ..., In :

PIA)= #PLA
Random variables (Xala are independent if the
events [XafAYa

,
a

where AEBIR) are independents
i

.
e
.,

for
any
finite subcollection

, ...,
ani

P1&X = A;))= P(XaiEA
;
] #A
, ...,

AntBIR)
.

Rop .

Let F and E be fields s
i

t

.

PLAMA)= PLAIP(A) HAitFi

Then off) and oE) are independent.

&roof
.

Given A
,
+F
,

define measures

((A) = P(AMA
,

)
,

r (A) = P(A)P(A)
.

Then AuBytheuniqueness
Now repeat with AtoE) given.
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Ext
.

Random variables X and Y on (1
,

[
,
P) are

independent its the joint distribution on R2 is

thecroduct measure xB where a
, B are

the
I

distributions of X and Y
.

Eact. If X and Y are independent then the distr.
of X+Y is <* B

= fx (B) ,

+(x
,y) = x+

y
,

and

(xp)(A) = (x(A -y)dB
= (B(A -x)da

Eact
.

**B(t)= /)5(t) .

Proof.B(t)
= Jeix

+ d(x*B)

= /eilx
+

yltdadB
=Jeixtda) (eigt dB)= (t)((t) .

Fact
.
If X

, ,
. .

.,

Xn are independent random variables,
Var(X

,
+

-- -

+Xn] = Var[X
,

] + --

+ Var(Xn]
.

Proof
.

Var (X
,
+

--- +Xn] = E((Xi+.. - +Xn - E(X]----E(Xn])]
= [Eli-E(Xi](+Xi-E(Xi])

(X
;

-E(X;]1]
;

=

[Var[Xi]
·

=

O by indep
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3. 3
.

Weak law of large numbers

# Let Xi
,
Xz
,

...

be a
sequence

of independent
identically distributed (i . i .d) random variables with
ELIXi)) =& and E(Xi) =

m . Then Sn=n (Xit--- + Xn)

converges
to
m in probability :

Pl- -m18] -0 80.
.

ELIX1]
Markov Inequality .

PINI8)
J

Chebyshev Inequality .

P(IX-ELXTKS]=

Proof
.

INS EfIX1 and IX-EXJKS E(X-E(X])

Emma
.

Weak LLN holds assuming Var[Xi]&.

Iroof
.

PlSn-mks) ja Var()=in [Var(Xi)
=

sn Var(Xi)

->0(nia)

Proof 1 of weak LIN
.

Let X = Xi1NileC
-

m2 = E[Xi].
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=>

IXi = IX + h[(Xi-Xi) .

= EChIX:- m/l =EllIXi -mill

+ Elln[(Xi -Xi)-m -mY/]

=
IX* + 2Eli -Xi]

=

=>

limsup ElnIX-m
= ELIXi -X

Sinceim
El

: -Xil =O
,

therefore

ha ElhIXi -m/j =
o

=> IXi-m in probability by Markov's ineq.

Proof 2 of weak LLN. Leto be the characteristic

function of Xi
.

Then Su has chadleristic facth
.

4n(t) = P"
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Since EI) =n
,
t is differentiable at O

,

# 101 = im
,

m
= E(Xi)

.

= d) = 1 + int + on)

=>im 4nlt)= (l + into eimtm(t)

= Law(nSn) = Sm weakly
.

#ercise. Let X ,
Xz
,

...
be a

sequence
of random

variables and X a random variable (all on the

same probability space)
.

(a) Xi -X in probability => Xi -X in law

(b) Xi O in law = X:- 0 in probability .
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3
.

4
.

Central Limit Theorem

#m
.

Let X
,
Xz

,
...
be i

.
id
,

EXi] =0 ELX] = Gel0
,

S

Then the distribution ofSr=(X+X2 +
-- .)

converges weakly to the normal dist. with dens
.

p(x)
=e z

Proof. Let o be the characteristic function of Xi
.

Then the characteristic function In OfSn is

4n(t) = P(t)"

Since P(t) = (10) +$110)t + (P"(0)t2 + o(t
?

)
= It 202th + olt)

,

4n(t) = (1 +1 +0())- er))

= PnH) =e = (t)

= Law(Sn) = N10
,

82)
.
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3
.

5 Borel-Cantelli Lemma and Kolmogorov's O-1 law

Borel-Cantelli Lemma For
any

exents A
,

Az
,

....

& P(An)= = P(w:man(w) = 0) = 1
.

#happensfinitely often

Moreover
,

if the Ai are independent , EX .

Prof
. [P(An)

= St)= [ 1An(w) <&a .
e.

U

since ELS]=.

=>

la fan
= O a . e

.

Suppose the A: are indep .
and IPCAn) =&.

= PlUmAn) = 1 - P(mAn)
= 1-TAn]) (indep)

= e-PLAn]

21-e-mPLAn] = 1

=>
PLAn happens finitely often) =0

.
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↓ef Given random variables Xi
,
Xz
,
...,

let

8)Xi X2
,

... ) = o(X:" (B(R))
be the smallest o-field with respect to which the
X: are all measurable.

Define En
= GXn

,
Xn
+. ....)

.

En=(X
....
Xn)

Faf Fa=Ufn)

F is called the tail o-field.

Kolmogorov's 0-1 law Suppose XI , X2, ...
are

independent randomvanablesThenanyAfSom
variable is almost surely constant.

Hoof For
any
Aff

,

Befr given by

A=EXEAic
....
XnEAn)

,
AitECR)

B = EXn+E Batic--. ,XniBrY ,
BiEBIR)

P(ARB) = PCA)P(B) by independence of X ,

X2
,

... .

The above A form a field that generates En and
the aboveB a field that generates Ent! Thus
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by uniqueness of extensionFn and Ent are

independent.

=>Fr is indep of Fa
=>Fa is indep .

of Fa
.

Since F
&
C Fa

,

for
any
Affa,

P(A) = P(ANA) = P(A)
2

=> P(A) =0 or PCA) = 1
.
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3. 6. Strong Law of Large Numbers

Strong Law of Large Numbers .

Let Xi
,

Xz
,

...

de li
.
d
,

ELXi) =0. Then

=
0 a

Poot
.

if ELX] =

M =

ELSnt) = EllXi)Y]
=EX + G

since ECXiX= )
= ELXiX

;Xi] = ELXiXiXnXe] = O

InM + G(2)M = (n +3n(n -1) M = 3rM

since ELXEX;] =ELXiJE[X ;]

= ELX
Y

E[Xi4]" =

M

=> P(4
An

=> Saf happens finitely often a .s
.
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Proof of general case. Let Yn= Xn1nln.

Step 1
.
It suffices to

prove
In [Yn -0
.

PINnk n]= P(IKt]
= ELIXil] =&

=> PLIXn)= /Yul 1
.

0
.] = 0

=> 1[X-[Yn) & a .
S
.

= In[Yn-hIXn) - O

Step 2.Var(Yn)= 4 ELIXl] <&.

Var(Yn)= ElYn2) =%2y PLlYnk y] dy
= PLyP(1X ,Ky] dy .

=> [ELYn2] [n21yen Zy PlIX,ky] dy

=2) 2yP((X , Ky] dy
= 4

= 4ELIX
,

1]
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Indeed
,

if you

=
=>

Ly= 4

and if ye ,1) then also

2yg2** 2) +5) =
4
.

Step 3.Yns)
-O if n(k) =( )

,

x3

Tn(k)

& PlITns-ETnauken(k))EntVar(Tuca)

=Var(Ym)

=Varn
~

E[ra42 = 41x24(1-a2)"n-
k: n(k)2n kinkan

=)[Var(Yn)=
6 EXi
52(1 -x2)
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By Boret Cantelli , nik)Thik-ElTri]
- 0 a

.
S
.

-

-> ELX
,

] by DCT

=>(k) Th(k)
- O

Step
4

.
+---+ Yn)-> O

WLOG Yi 20
.

Then

# if n(k) =m < n(k+)

Since n(kH)/n(k) -+ * (ka) LHS and RHS

converge
to 0 as kn a .

S.

=> Tm/m-0 a
.
S

.
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3.
7

. Infinitely divisible distributions

Penetberobmeasureona se

j times

The measure eal) is called compound Poisson
distribution associated with a.

I x = G
,

then ealfi) is the sta .
Poisson distribution

.

# (t) = e
-

=
eatb(x) = ea(x) + ep(x)

ea(x) =

e()+ . . . x em(x)

n-times

L

left
.

A prob .

distr
. B that can be written as

B
=

B
-*B

N

for some Bn and any
n is infinitely divisible.
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Exercise fandare
infinitely divisibleth is

Exercise
.

The normal distri is infinitely divisible .

Consider r
.
x

. EXnij : 1jkn] with distr . &nij.

Assumelim SUPPLXn6]
=0 SO

Let
yun

be the distr
. Of Xij

Accompanying Laws Thm .

Assume ELXn]=
for all n

.j
. Then

M
=

M
=>

Xn
=

M

&
n,,*

--- *
Arkn Brik---

* Back

where Brij = e
,

(amj) is the associated compound
Poisson distribution

.

We will not
prove

this tim
.
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The characteristic function of in is

*

nit)= Bright)-

- explicit -1) dins]
= exp()(ei

+x

-1)dMn)
=

exp[/e)itx-1 -itf(x)dMn + itbe]

where an
= JOdMn

and O is
any

bd
.
function
.

Assume

f(x) =
x +0(x3) .

Lef
.

M is an admissible Lexy measure if

(dM=

Im
.

ForanyadmissibleymaSMO,R

jult) = exp[)(eitx-1 - O(x)dM + ita-t
Denote

M
= e(M

,
o? a).
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TheMaMiM
=e,

·

haSfdMn
= StdM If cont .

bd
.

f(x) =0
.
(xk

·

Im (odM)=]s .
M(-ey0Ge3)=0.

·

man =

Cor
. Kevy-Khintchine repr.) Any infinitely divisible

measure
in
is of the form

y
= e(M

,
02 a).
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&conditioning
4
.

I
. Radon-Nikodym Theorem

Hefn A signed measure on (1 ,1) is a set function

X Iv IR that is countably additive :

x(WAn) = [x(An) for disjoint An
Exerc

xAn) --(A) for AnYA or AntA.

Example .

Let
M ,
and

M2
be finite positive measures.

Then X= M ,
-

M2
is a signed measure.

Hahn-Jordan Decomposition A signed measure x on
10

,

1) can be decomposed as
x =

M+
-

M-

whereI are positive measures that are orthogonal,
i
.e
.,

there are disjoint RIEIs .

t
. M+
(2 - ) =

M-
(2+)= 0.

Lemma
.

If t is a signed measure on (R,2) then

((A)) =&.

Proof Facts
:

x =a+
b = (x| z(a) -(b)

IRIERINA)l-ACAY/1 = IXR)k & HAEZ .
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(ii)sup(B)l
=a

&SupAB)
=>

sup
(Bll = sup(INBRAI + IBA

SupposethereisAs SB
= Then fora

easy

IAilk
-
N and

sup
INB)l=

Indeed
,
we can pick ECA st .

IE)/22N and then

by (i) INCALELI-WCELI = IXA)l = (x()k& and

WxAE)/22N-IX(R)) =N if N is sufficiently large.
Thus both E and AlE satisfy the first condition.
By (ii) at least one of then has to satisfy the
second condition

Iterating this , there are #j st . AixA; and

N(Aj)1z ; and Sup
Bil=

Thus A
;
is decreasing but KA; )l- & , a contrad

to count
. additivity which gives x(Aj) - XCA)R if

Ajt A.
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Lemma SupposeNAO
.

Then there is At is

inf X(B)20
BCA

such that XA)_ X(A).

Poof
.

Let m= inf X(B)
.

Then
BCA

·

m = X(0) = 0
·

m
-

a by the previous lemma .

WLOG we can assume mFO
,

otherwise =A works
.

Choose B
,

CA st
.

X (B)= 0
. Then

A
,
=AlB

,
satisfies x(A

,) = XA)

BinX(B) *

Heratively find Aj s .

t
. AitCA;

and

X(Aj) X(A) and inf XBI
-

BAy

Let= 1Aj
.

Then X(#) = X(A) and inEx(B) 10.
BCA
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Proof (Hahn-Jordan Decemp .)

Let m
+

=

Sup(A)= .

WLOG m+<0
,

otherwise XA) =OHA and R-=&,
2 = ① works
.

There are Aj s .

t
.

X(A
; ) = m+ -5 and llast lemma

#
; totally positive st . XA;) = m - I.

=I
=

#;
is totally positive

x(c
+
) = M
+

Claim : 1 -=1)1
+
is totally negative

Otherwise there is BCl-S
.

t
.

XB) > 0.

=> X(f
+
VB) = X(2

+
) + x(B) m+ - contradiction .

Define
MI
=Xe

Defn
.

If X is a signed measure with Hahn-Jordan
decomposition X

=m
+

-

M
- then the measure

( = (+ + M-

is the total variation measure of X.
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Example. Leti be a positive measure and
f :R -R be -integrable. Then

x(A) = 2 fdy

defines a signed measure
,

MICA) = If F Gu,
21 = [ + t = 04 and IXCA) = S1f1du"

A

Petn
.

A signed measure ↓ is absolutely continuous
with respect to a positive measure M , written
xm ,

if

u(A) =0 = x(A) = 0 HAEI .

Radon-Nikodym Thm .

IfX on (8
,
2) then there is

am-integrable (R,I) -measurable function f s
.

t
.

x(A) = Sfdy HAfI
.

- is uniquely defined almost everywhere.

Pet= is theRadonikodymderivate
is
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↳roof
.

Let

Xa = X-ay , &(a) = totally pos . subset of Xa.
(defined

up
to X-measureO set)

Note if =f then [fal =C+(a)
up
to meas

.

O.

Up to sets of measure O,(a)<l+(b) if bea
WLOG

, by removing null sets, (a) is decreasing
along a EQ.

Thus set

flu) = suplac : we a)).

Claim : f is measurable

Sw : fluk x) = [W : werly) for some y>X,yea
=Ul+(y)

= f is measurable.
2

Claim : x((f)= a) =M)(f)=a)=0

Ach+(a)
= X(A) -au(A) = 0 Ha-Q
= M(A) = 0
= X(A) = 0 by absolute cont.

=X(f =+a) = M(f = + a)
= 0
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Alf(a) =0Ha = X(A) - am(A) = 0 Ha-Q
= M(A) =0
=> X(A) = 0

= x(f = -a) =y(f =
-a) = 0

Claim :

Sta =& and XCA)= If d.

Let Ea
,b
= [W :

a = flu) = b)

Ch
+(a)+(b) Hasa

,

b > b.
.

=> aplAle XIA) = bulA) # AC Ea ,b
=> 1(A) - (b-a)y(A) = ay(A)
X(A)+ (b-a)(u(A) = byu(A)

Let En = Enn
,mash

for some fixed h > 0
,

ne

=> NAMEn)-hplAmEn) EnhylAnEn)

=Sf y
e

= (n+1)h/u(AmEn)

IX(AMEn) + h(AMEn)
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=> XA)- hyu(A) = ( +du
= X(A) + h
,

(A)
.

Exercise : Prove that f is integrable and

x(A)
=+g .

# If f and f are
as in the theorem then f =Fa

.
e.

Rk
.

If XA1Z0 HAEI then 20 a .e.
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4
.

2
.

Conditional expectation

DeLetbeprobabilityspalan
B

-

#I given B is defined by

P(A/B) =
PLANB)

P(B)
-

The conditional expectation is defined by

EIXIA] =
SaXIw) dP

P(A)

Let 3 be ar .X . taking discrete values a; on Aj.
with 1= UAi disjoint. Aj

= P(B) = [P(Aj)P(BIAj)
=

[P(BIj) P(3 =aj)
How to extend this to P(3=a) =0 ?

In the case 3 takes discrete values
,

consider

I = LISEES : Ec[aj)3 (the o-field
gen . by 3) .

=o(j)

=> PIBII) : WER PIBIAj if weA
;

EIXII : wER- ELXIA] if WEA;
are I-measurable random variables

.
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Let I'c I be
a sub-o-field

.

#MthentheRthmcan beapplied
in

-=z

f=
Note f is I-meas ,

and f is-meas
.

(I-meas).
but f is not I'-meas

.

in general

&

Def
.

Let X be
a integrable r .v. on (2,I ,P) and

5cI a sub-o-field. Define

EIXIIT = A with XA) = SX(v)dP
Thus EIXII'] is a lmeasurable random variable.

Fact
.

(i) ELI] = 1 a .e
.

[x= P=
=T]

(ii) ELEXII] = EIX] [SdP =(lz , dP(zl =fox)

(iii) X=0 => ELX121] 10 a
.
e.

(iv) Ela ,Xi+b ,XzlZ']
=
a
,

E [X
,

/I'] + azE[XzIE]] ae.

Ha
,

az
const
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Pop. ELIEXIIII
: E[I1]

Roof
.

Let dX = XdP. Then

(IXdP = (XdP + (X. dP = SupXA)-inf NA
AEI

YI

CIENIIJIdP=... = SNA)-inf XA)Afzl

Drop If I is a bounded I-meas .

random var
,

EIXIlI = 1 EXII'] a
.e.

Poot
.

Let I= LE
,

EE]'
.

Then

#(A) = (IEXCP
=SXdP
=CARE

=>
Extend from indicator to simple to bounded .

Tower
property
. If I"cI'cI then

EIXIE"] = ELEXIE'J II"]
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Foot
.

EXII=

= E([llI"]=In , MIA)
= / dP
= (dp = (XdP

=
z

Conditional Jensen ineq
.

Let P :R-IR be convex

Ther

Efq(X) /I < PlE[XII']) a .e.

E($(X)] : E(P/EIX1['])]

Iroof
.

Since I is convex
,

p = sup(yx -P
*

(y)) = Su(yx-lyYER

=> E(P(X1(2) = ELS(yX -P(y)](I

[SpE(yX-M(y)(I] ae.

=P(E[X/2'])
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Let [(f
,

I
,
M) = [f :2+1

,

I-meas : (If du <*/
where fug if+ =

gae.

ECR
,

[
,

M) is a Hilbert
space

with inner product

(x
,

Y) = ) XY Qu

Fact. The
map

X +o ELXI'] is the orthogonal
projection from ((R

,

I
,
m) to (12 , I',M) ·

Prop
.

The conditional expectation Y= EIXII') is
the

unique (up to a .

e.) I'- measurable r. X .

St
.

(XdP = SYdP
HAtIl

&roof. If Y and Y' satisfy the conditions
,

&-YYdP
=0 At I

Let A= EY-Y'= > 03
. Then

3P(A) = SP -T))dP
= 0 => P(A) = 0

.

=> P(Y-Y' >0) =0
,

likewise P(Y' 410) =0.
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4
.
3
.
Conditional probability

Define Plw
.

All) = ELLAll'] (w).

Ihm
.

(i) Plw
,
215) = 1

,

Plu
,
$12) =0 a

.

e
. -w

(ii) DE Plw
,
Alll El a . e .-w HAfl

(iii) For
any

count
. disjoint Ai +

E

,

Plu
,

UAil]) = [Pw, AilEl) a
. e

.

-w

(iv) Plw ,Alll) =1w) a . e .o * AfIl

Iroof. Exercise from properties of EC-121

R Each case involves possibly different null
sets (depending on the Ail.

Can one construct a version of the cond
. prob.

involving only one hull set for all properties ?

this iscalled
regular conditional probabila
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Ihm
.

LetP be a prob . measure on (t0
.

1
,

$10
,
17)
.

Let ['cB(t0
,
17) be a sub-o-field. Then there

exist prob .

distr
.

QX
,

X(0
,

17 s
.

t
.

X + Qx(A) is I'-meas
.

HAEBO
,
1])

Sty) Qx(dy) = EP1f([] P-a
.
e
.

If I' is count. generated then

Qx(A) = (A(x) *A=/0
,
17)

.
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-MarkovChains

5

.
I
.

Definition
.

Let (X
,
F) be a state

space
.

X is distr according to some prob . Mo on (X,F).
Given Yo= Xo

, ...,
X+=X

,
we would like to

define the distribution of XK by
P(XEA) = Th(Xo ,

...,

X-1 jA)
.

Assume :

· for each (Xo
, ...,
Xk-1)

,

The is a prob .
meas

.
On (

.

F
.

· for each AtF
,

(xo
.
...,

X) Halo
, ...,
XijA) is

measurable w
.
r
.
t
.
(X1 FY (product space) .

Then if
Mr
is the distribution of (Xo

.
...,

Xz) on

(XFK) define M, on (X**,
H) = (X*4) x (X, *by

(c)AxAr)
=Stil

·

An) dist.

By Kolmogorov's consistency thm, one can define a
measure P on XI in this

way
(if the conditions

are satisfied ,
which is the caseif X is a complete

separable metric space.

85



Defn
.

(Xm) is a Markox
process

if the transition

probabilities satisfy
TklXo

, ...,
Xavij) = Taya(Xi ; ) * K

It is a time-homogeneous Markox process if

Tak(Xa r
:
) = (X
:) K
.

For a Markov process ,
define

T
,ke+

(x
,
A) = (T

,
ke(X

, dy) Tire ,itemly ,A)
=

StkX , dy---Thate
,
Krefi (YanesH).

Chapman-Kolmogorov egns
.

Tn(x
,

Al = )Tim (X,dy) #min(y , H) # Kmar

In the time-homogeneous case , define

π(k+1)(x
,
A) = (π

+

(x
, dy)i(y ,A) , i "(x

,

() =π(x
,

A)
.

Chapman-Kolmogorov egns
.

π(k+e)(X
,
A) = Si
| (x

, dy)i()(y , A)
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Prop .

Let Im= /Xo
, ...,

Xm)
. Then

PEXneAlEm] = Tmin(Xm, A) a . e . if man

Proof
.

Need to show that

PLSXnfA)9B) = Sim ,

n (Xm
,

A) CP #BtIm
,

HeF
.

But indeed
,

PESXntAYnB]

MAP =/quoto(dx)Tmm(xmk

"Im ,m+ (Xm ,
dXm+ i)

- -

- T
n-ion (Xn-A)

#min (Xm
,
A)

=

Smin (Xm , A) d
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Ihm
.

LetP be a probability measure on the
product space (Cxyx2 with product o-field.
TFAE :

(i) EIg(E) IX,Y] = ElgI]) (Y] * g : 2+Rbd

(ii) Elf(X) (4
.
27
= Elf(x) (4] # f : X+Rbd.

(iii) Elf(X)g(z)/Y] = Elf(X (4] E(g(z)1Y]

Hf :XiR
,
giZTR bd .

Proof Assume (i) . Then (iii) holds :
-

Elf(X)g(2)/Y] = ElEg(2)(X,Y](Y]
f(x) E(g(2)(X ,Y]
[f(x)E(g(z)(4]

Assume (iii) . Then
= Elf(X) (i) E(g(2)(4)

Elf(x)b(Y) Elg(z) IX ,Y]]
= Elf(X) b(Y) g(21] = ElblY) ElfIXIg(2)(47)

HE(b(Y)E(f(x) (4]E(g(2((47]
= ETb(Y)f(X)E[g(2)(Y]]
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= Eff(x)b(Y)(E(g(z)(X,Y] - Elg(z)(Y])) = 0

Since f and b are arbitrary
,

also

ETh(X
,

4) (E(g(2)IX
,

Y] - Elg(2)(Y])] =0

Tak ing h(X,Y)
=
uhis implies

Elg(2)(X,Y] = Elg(2)/Y] a
.e.

Interpretation. X = past , Y = present
,

I= future

Det
.

A prob . measure in on (X, F) is an
invariant

measure for the Markov chain if

M(A) = Sπ(y ,A)(u(dy) #A+F
.

This is written also as M
=

MIT.

# If
Xorn

and
pe

is invariant
,

thenP has

marginal in at every
time

,
and No
,
X
, ... ) can

be extended to a stational process (Xn)nez
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5
.

2. Stopping times and strong Markov property

Defn
.

A random variable [:> Nostal is a

stopping time if

1w : Thn) is In-measurable An

= (w : T(w)=n) is In-measurable Xn
.

Example.
·

T = min[h : XneAl is a stopping time
.

·

T = min [n : X+ -A) is not a stopping time .

Fact. Let t be a stopping time
. Then

I = &A : Atla and AndtInItIn for all n)

is a o-field and t is It measurable
·

Strong Markox Property. Let t be a stopping time
.

Then a
.
e
.
on Itx& :

P [XIHEA
, , ...,XitEAnlEz]

=S(Xdx)---ndns
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Iroof. Let At I
=
and Ac[ica)
.
Then

PLAREXintA , le---cEXiintAnY]

=

[PLA19T=k)e9X++A,ye
--- n(Xk

+ [AnY]

=C ---Tdxm---T(tndxn

= ---TX ,
xi---Txtndxn s

=SAP---((Xdx)
---(Xndx
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5.3
.

Countable state
space

We assume the state
space

X is [1
,

2
,
... ) and

consider time-homogeneous Markov chains.
Then i(x

, y)= (x
, <y3) , X ,yeX, is a matrix st.

π(x
,y)20 , Yπ( ,y)

= 1 XX
.

Such matrices are called stochastic matrices.

it (x
,
y) = entries of the n-th matrix power of it.

it'
*

(x
,y)

= Sx
,y
= entries of identity matrix by corx.

Defn
.

The state xeX communicates with yeX if

M(x
,y) > 0 for some n
.

The Markox chain is irreducible if all states

communicate with each other
.

Let Ix be the first
passage

time to x :

[x = inf(n = 1 : Xn =x)

Let fn(x) = Px[[x = n].
↑
Xo=X
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= fn(x) = Px(X; + X for(j= n
+ 1
,
Xn = x]

= [HT(x
,y ,) Ty
,

y2) -- Tyn-c)
Y,X

andx

P([xa) = [fn(x)
= 1

.

Detn
.

The state x is recurrent if Px(ixia) = 1

transient otherwise
.

Let Xx=# visits to x = 1Xn=X
n=0

Eac

Xisrecurre
Iroof. By the strong Markox property

,

P[Yx > +] = PxT[x]
+

↑[Xx=a)
=imPx[Yx=im PLIxtrans

.

I

Ex[X]
=
PIXM =

1-PExayans
.
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Define the Green's function

G(x
,y) = Ex[Vy]

=

[π(x,y)

Prop .

For an irreducible chain
,

either all states are

transient or all are recurrent:

G(x
,
x) =& for some x => G(x

,
x) =a for all x

.

#of. By irreducibility there exist n .m s .
t

.

π()(x
,y)

> 0
,

i m)(y ,x) > 0.

= +(r++m)(x
,

x)]πm(x
,y)π ( (y ,y)πm'(y , x).

↓

=>(y ,y) =M)(x
,y)Tim/(yxxx)

Gly ,y) G(x
,x)

Therefore Gly ,y) =n = G(x,x)= and vice versa
.

Lemma
.

G(x
,

x) =
1 -B(tx=a)

G(x
, y) = Px(ty=a)G(y ,y)

and if the chain is irreducible it is recurrent if

G(x
,y) =& & Px(tyd) = 1 for all X

,y.
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Proof. G(x
,
x) = YHPxlixall was shown in last pf.

Ex[Yg] = Ex[E[Vg1[g] ligid]
-

Eg[Vyl by strong Markov property
= Px(Tya) Ey[Vy]

If the chain is irreducible then for
any y

there is n st.

Px(Ty =n) (x, y) > 0.

Moreover
,
if the chain is recurrent

,

1 = Px[Xx = a) = Px[[1xx=x =a)

[Px[X=x
> 0)

Markov prop) =

[PX--

Since [T" (x
,
2) = 1 and T (x,y > 0,

Py[txa] = 1
.
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Eact
.

If Px[ty <& ) <O then Px[EyTEx] > 0.

Proof. Suppose Px[TyT [T
=0
. Then PxTEy <al = O by

the strong Markov properly.

Let mixl= Ex[Ex] be the expected return time
.

Refr
.

The recurrent state x is

positive recurrent if m(x) =&

null recurrent if m(x)=&.

Prop . For an irreducible recurrent chain
,

all states

are of the same recurrence type.

Proof
.

Extix] - Ex[lx1Tgitx]
= Ex[Eg[[x] 1tgi[x]

= Ey[[x] P([y <[x)
-

= Ex[[x]= Ex[[x] p
>8
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In the other direction
,

Ex[Ty) = Ex(Ex1tyi[x] +EfExTy]

E([x + Ex[Ty])1ixiTg]
= Ex([x) + Extly] (1 - p)

= Ex[[g] [ gEx[[x]
Thus

Eg[[y] = Ey[Ty 1tgsx] + Eg[Ex1TyeTx]

=

Ey[([x+ Ex[Ty]) [tysex] + EyLTxfTyeT]

= Eg[[x] + ExTTy] E EEx[[x]
Thus if x is

pos .
rec so is

y

Defn
.

A state x is a periodic if it' (x,x)) O
for all n2no(x) . A Markox chain is a periodic
if all states are aperiodic .

Excise. For an irreducible Markov chain
,

if there is

an aperiodic state , all states are aperiodic.
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Ihm
.

Consider an aperiodic positive recurrent
Markov chain

. Then
,

for all X
, y ,

him (x
,y)

= g(y)=
)

and
a
is an invariant distribution :

[q(x) = 1
, gi

=

q(ie . [q(x)π(x, y)
= q(y)

*

Yy
Hoot

.

Fix x and set

fn = PETx =n]
, Pr
=

*
(x
,

x)
,

m = m(x).

Then :

fn20 for alln
,

Int 0 for neS where

S is such that

(t) Ifn
= 1
, Inf

=

M
every
ns

no can beI
Pn= -j Po = written n=jijieS

Lemma
.

If () holds then

nic Pr
=

In

The lemma impliesLim(x =m
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For general Xy
,

i (x
,y) = [ PCTy = k] In

-

k(y ,y)

and [Px[ty = k]
= Px[Ty =] = 1 by recurrence. Thus

im(x,y) PCTy=k)(y)
=

myl EX .Y.

Claim : [q(y)
= 1.

Indeed
, by Fatou,

Igly)
=

Zim(x ,y) limi
On the other hand,

im
+ 1

(x
,y) = [πm(x,z)i(z ,y)

= g(y) ? [q(z) it (2,y) by Fatou

=

[a(y) <[g(z)( ,y)
=

=q(z)

= g(y)
= [q(z)it (2 ,y)

=> g(y) = [ g(z)(y)
+*

)[9()5g(y) = 1
.
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I

roof. of Lemma
. Clearly pn=l for all n.

Choose a subseq .

Sit
.

Pr-90
=

limsup Pr.

and Priti- 9
;
for all je.

=

an= fj9n] for all ne . #r)

=>qufiq
Ho)

Claim :

aj
=

go
for all j

Note that
a

=

90
= limsupen for all

j.

Since fist for all jeS , 9=%
for jeS by (0).

Then 9%
=

90 for j =jitjz , jitS by (*j).

Then
9%
=

90
for j = jit--- + jn , jitS again by (4)).

By assumption on S , 9-j =9 for j2no.

By (no +1)

9-notfi9-notj =9
By induction an go for all nex.
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claim : Let Tj fi. Then TF1 ,T = m and

TPN-j = 1 -
PN

Indeed
,
Pn= jPn-; implies

P

=

= -

Tr
=>

1-Pr=N

Conclusion : Recall that
Pati 90 · Pratj

=

90.

IfTj =min then by DCT,

1 9
= 9 m=

=> lim sup pr = In

An analogous argument shows

liminf Pe
=

in.
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If ITj = a then by Faton

1
%
=

limit (l-Pnu = limit ITP
= 90[Tj = 90

=0.
=> limpn =0 .

Example. Simple random walk on

bE2
, symmetric : recurrent (null recurrent)

>2 or asymmetric : transient
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5
.

4
. Example : Polya urn

Defn A bounded function U :X- I is harmonic

with respect to the transition probabilities of a
Markov chain if

u() = (π(x,dy)U(y) (xeX.

Let U be bounded harmonic
.

Then

EU(Xn+1) - U(Xn)(f) = (π(X ,dy)(U(y) - U(Xn)) = 0.

Thus
En
= U(X) - U(Xn-1) satisfies

ETMn] = 0
, EEMaMm] = 0 #REM
.

Thus

U(Xn) = U(Xo) + y+... + 2n

=> ELUMn(2] = U(x + Ex] +.. - + Ex(E) = sup U

= U(n) is a Canchy sequence in E
= 3 = himU(X) exists , E3] = U(x)

#
. UX) is a martingale and the limit exists as
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Polya um : X
= IXN

, NT((p(9) . (p+ 1
,9) =e

π((p ,q) , (p , q +1)) =eg

Ihm
.

En= 3 in L(P) and as

and if (Po ,Qo)
=

(p , 9)
,
3 has distribution

to

B(p,q)X
** (1-x)9

+

dx

Lemma
.

For
any

X+ (0
,

1)
,

#x(p ,9) = B9) xP
+

(1 -x(97
,

B(p,q)=
is bounded harmonic and so is

g

Pf
.qF(p+,9)+ F(p ,q+1)

= F(p ,q)

Lemma For
any
f : to

,
1 + IR continuous

,

Ej(p ,q)
= (f(x) Ex(p,q)dX

is bounded harmonic and

lim Fy(p,q) = f(x) .

PX
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Sketch
.

m Ex (r)= (fy)B-x(t)y
* -

(1 - y)) -
**

dy!
-

I

n=
ex

**

(1-x))
-x)

Y,T
↳ A

->O unless 21 +O unless =

* f(x)

Proof of Thm
.

Since Ulp ,q)=g
is bd

.

harmonic
,

=imUPQ)= exists in

Since Ef is bd .

harmonic
,

Ey(p ,a)-+(x) itquix, pud,

im Fy(P .Q) exists in

NinaFf(Pn ,Qn) = f(3)
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On the other hand

Epiq[f(3)] =lim EpgIECP ,
Qnl

= Fy(p .9)
=

St(x)g)XP" (l -x)9
+

dx

=> ~Beta(p ,9) .

106



6. Martingales
6

.

1
.

Aside : LP
spaces

Let 1Iflkpyu)
= llfllp

= (S /fid()
"P

.

Holder's inequality .

Let
p ,get best

Sig) du E IfIPus 11g1l2(4)
Proof

.

WhOG 11f1/Liy -(0 ,
a) and then
If

= 1
.

Then define a prob . meas
.

P(A) =

/Pdy.
Thus E(X] = ( X 1fPdyu.

By Jensen ,

ElIX1] = E/IX19]
%
9
.

=> (Hg)d =

So
- E(p11fko)
=El

,

11510)
"

= (191910dllgiqu
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Minkowski Inequality.
11f+g(((p = Il f((p + 1191)(

&roof
.

Assume ps1 and11fllp + 11glyp =&. Then

(f +g(p = ((f) + (g()P = 2P(f(p + (g(p)

= Ilf+gllp

(If+g(Pdy = S(f) If+glp" qu + S1g)(f+g(p- dy
= (1)f((p +1191)yp)(+g(P

+

12

Ilf +gla
= If+ gllyp = 11f +g(

- 2 )
= 11 f(lyp + 1151129.

Completeness .

Let petial .

For
any

(fn)CLP S
.

t.

Ilf-fully -O (nm -a)

there is feLP s .

t

.

llfn-f(l -0 .
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Proof (for pra)
.

Find a subsequence (nk) st.

S
=fat-fill

= Ife-fulllyp S

Minkowski

=>

In-FrilI
monotone conx.

=> Her fail ae

=> fun(w)
converges

for weRLN with MIN)=O

Define f(w) = &limfr(v)
for weR I

⑧ for wEN.

Since (ful is Canchy in LP
,

Sin-fulPd2 for m 2 n = n (3).

=>

SIfr-fnd
= 3 for nan()

,
kzk(3).

=> (In-flPdy =

Slimint Ifn-frudyse Elimint(Ifo-frd dy
= feLP

,

llf-fully -O .

Fatou IE
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Gr
.

[P(1
.

F
, m) = [ +:/-M meas

.. If=/
where fug if f =ga . e .

is a Banach
space
.

Duality .

Let qe[lin] .

Then the
map

for
every geL?

Ag : (P- IR , Ng(f) = Stg dy
is bounded with 111g11

=Ug(f)l
= gla ando

if
p
=n then for

any
bounded linear X on LP

there is gtl" S
.
t

.

X = Ag
.

From now
,
assume M

is a finite measure.

Defn
. (gi)cLis uniformly integrable if it is bounded

and

sup
· 0 (t=a)

.

Weak compactness. Let (9; )(Ll be bounded, 97 1
.

Then there is a subsequence s .

t

.

(9jsf) - (g
,

f) (fELP.

The same holds if (g; )cL' is uniformly integrable .

(9) 1 : Banach-Alaoglu , q
= 1 : Dunford - Pettis)
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Vitali's
convergence

theorem (finite measure version).

Let (fj) and f be measurable .

TFAE :

(i) fith' for all j ,
fel' and fjof in L

(ii) (fj) is uniformly integrable and fjvf in measure
.
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6
.

2
. Martingales and Doob's inequality

DetLet beaprobabilityspaceadom
variables X1,

...,

Xn and sub-o-fields Fi S
.

t

.

· EIXil]&, Xi is Fi-measurable

· Fi for
every

i

· X
= E(Xin/fi] a

.
e

,

for
every
i= 1
....,

n-1 .

An infinite martingale sequence is defined in the
same way
.

# Let Fo = [0
,
2) and Xo= EXi] (which is indep

of i)
.
Then Xo

.
X
.,

...

is a martingale as well.

# If (i) is a martingale ,
Y
:=

Xi -Xi
+
satisfies

ElinIFi] = 0 a .e

Such
a

sequence
is called martingale difference

sequence
.
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# Let (fi) be an increasing sequence of o-fields
and X a random variable s .

t
.
ELIX/]&. Then

Xi
=E[X/E]

isa martingale Called
Doob martingaleas

Defr
.

(Xi
,
Fi) is a

·

submartingale if X:= ESXitIfi) a .
e

. Hi
·

supermartingale if X: ElXitlfi] a . e.
.

Hi

Emma
.

Let (Xi
,
fil be a martingale and I

a convex function s .

t

. Y(Xi) is integrable for

everyTheissubmartingaleaif PI.
If

.

Jensen

Doob's Inequality. Let X, , ...,
Xn be a martingale. Then

PSUPNiKt]EEINe)EETIXnl
&

ELIP] = ( EIIXuP) for
any p

> 1.
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Iroof
.

Let S
=Sil
.
Then

ESze) =

(Ej , Ej
=ke,
...,ke

,

Wiley.

= PLEj) = E/IX;IfEj) ElIXul1E]]
IXI) is a submartingale

= Plsze] It [EINnIfEj)
= GETIXn/1sze]

The second claim is a consequence
of the next

general lemma.

Lemma
.

Let p) 1 .
Then for i

.

X
.

X10
,

Y20
,

PLY[e] = EneXdP

= E(4P= E[XP]

Proof
.

Let Thy) = PlYy). Then

ElyP] = pogyP" Thy) dy
-

>yyPXdP Cassumptiona
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=> E(YP = p(XTYyp dy]dP(Fubini)

= (X4P
+

dP

= EXPTYPE(491-11]Ya (Holder)
-

Elypyl-t
=> ElyP = (E[X] if ElYP]ed

In general , apply to YXN to get

ELIYaNP]PELX]P

E(YP = (p) EXP .
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6. 3. Martingale Convergence Theorems

Let XELP
, pal and set Xn

= ElX1fn)
.

Then IXIP is a submartingale and ELIXn/P] :ELIXIP]
.

Im
.

Im EI-XIP]-

Roof
.

Assume X is bounded. Then XER and

we have already seen Xn-X in E
.

Indeed,

EIXE] = ENE] +E[] +
---

+EEn]
,

In
=X-Xn+

=> [EIMn] = ElIX12] =&

=> EX-Xm/]- 0 (m-)

Thus (XIn is Cauchy in 2 and therefore Y = Lin
exists by completeness of (2).

Claim : X= Y a
. S.

&Y dPimPXPA
M+ Y in L def

.

Of Xn

=> Xn-Y in L

=> Same for AtF=/UF) = X=Y a
.
s
.
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Since X is bd
,

also Xn-X in LP # petlia).

For
any
XtLi

,
there is X*2 st . IX-X'llp =3.

Then Xn =E(X(Fn] satisfies IXn-XnIILp <#R.

Since X -X in LP
,

limsup In-X11 p =2320

=> limXn-X = 0
.

Im. Let (X) be a martingale that is bd in L:

sup
ELInIP]<

(P(() .

Then there is XELP St
.

Xn =E(X/Fn]
·

#roof
.

Since () is bed in LP
, p>1
,

which is the dual

sparot,theBarachu
s

weakly in LP
,
i

.
e
..

ElXn] -> EIXY] FYfLY

=

&XnjdP-XPVA
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For AfFm
,

since (n) is a martingale :

MXjdP
= (Xmd
A

Thus

SaXmdP
=

LXdP #AfFm
.

=> Xm=XIFm] .

Im
.

Let X + LP
, p21 .

Then Xn =ELX1fn]-X a .s.

Froot
.

Assume
p

= 1.
.

Let

M= EX+ L : EX/fn]-X a .
s

. ).
Note M is a linear space ,

so if it is dense and

closed in L then M = L proving the result.

Let
Mn

= [XfL' : X is En-measurable) .

Then Mn is a closed subspace of L'and UMn
is dense in L

Note that MnCM
,
so UMn CM and M is dense

in L
.
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It thus suffices to
prove

M is closed
.

Let YjEM and Y
j
-X in L

.

Need to show XEM
,

i
.
e
.,

if Xn= EX1fn] then Xn+ X a
.

s
.

By Doob's inequality and Jensen,

PENIXnl = eTE ELIXv] E GELIXI].

Claim : limsupYn
= liminf Xn a .

S
.

(Since Yn-X in L

Let Ynj = ElYj1Fn) .

Write this implies Xn-X a .
S.

) .

X= Y
- (X-

Y

Xn= Ynij - (Xn-Ynij

=

limsupXn-liminf Xn = limsupYnis- liminf Yi,
+ limsup(Xn-Ynj) -

Liminf (Xn-Ynis)
YtM=

limsup(Xn-Ynjl-limit (Xn-Ynij)
= 2

Sup IXn-Ynijk

=> PlimsupXn-liminfXn = 3) = P[sup(n-Ynijk_]
Doo- ZEIX-Yj1) -0 .
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Im
.

#f Xn is a uniformly integrable martingale, i
.
e.

SupElIXn/1Xnkt] -O as tod,

then there is X St .
Xn = E(X1Fn].

Proof
.

Uniform integrability implies weak compactness
in 11. The rest is the same
.
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6.4
. Doob decomposition

Doob decomposition theorem. Let (Xn) be a sub-

martingale. Then Xn = MntAn where

(i) Mn is a martingale
(ii) An+ 1

? An a
.
e

.

An
,

A
,

=

0

(iii) An is Fr measurable Hm =2

The decomposition is unique .

#roof. The condition implies
An-Any = Xn-Xn

+

+ Mn-- Mn

=> An-Any = E(Xn- Xn-1 1Fn -1]0

= An= An- + E(Xn- Xn- 1fn-] = An-

Thusthedecompositionisunique
and AnAs

#
.

Such a decomposition without monotonicity
holds for

any adapted process
(XnI .
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Letbeanonnegative martingale
hnis

EfIXul] = ELXn] = E[X ,]

Ihm
.

Let (X) be an L'bounded martingale. Then
there are nonnegative martingales (in) and (In)
S

.

t
.
Xn = Yn-In
.

I

Proof. For nijdefine

Yin = EIn/1Fj] .

Since (Inl) is a submartingale,

YinYin
= EfIXn+ il- (a) 1Fj]
= E/El(Xn+ l - IXn/lFn] 15j] 20 as

.

Since Yign ? O and ElYin] - ELIXnI] -ELIX1] there
S

is YjtL St . YnjEY; in L'(by mon.
conv

.)

.

Limits of martingales are martingales and Yin
is a martingale for jen. Thusj is a mart.

Y +Xj = E((n) + Xn(fj] = 0

Thus Xi
= ( +Yj)

-

Y
j
with Xity; and Y nonney

.
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6. 5. Optional stopping
Recall the defn

.

of stopping time writ . En).

Example. Let t be a stopping time and f an

increasing function s .

t
.
An)In

.

Then f(t) is

again a stopping time
.

Example Let i and Is be stopping times. Then
[xiz =max[[[z) and [

. NTz
=mindt,[2) are

stopping times
.

Thus in = Inn is a bounded

stopping
time such that In-I.

Optional stopping theorem. Let (Xn) be a martingale.
Let OETETEN be two bounded stopping times.
Then

EXiIE] = Xi a
.
S
.

Proof
.

Since E
.
CFEN

,

it suffices to show

EIXIE) = Xe

ifI is a stopping time st .
EEk

.

Indeed then

EIXIF] =ElE]IF) .

-

Xe
,

Xtz
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To show the claim
,
let Affe

.

Define

Ej = [T = j) = l
=

Since An ef; the martingale property shows

MedP =XP
= SXdP

= (X
=
#Af

.

A

for theoptionastoppingtheoremextendstob
a

Lor
.

If (Xn) is a martingale and - a bounded

stopping time ,

then

E(Xe] = EXXo]

E
.

Boundedness is important : it 3 are ii .d
.

uniform on #I
,
then Xn = 3

,
+

-- + En
,

Xo=O
,

is
a

martingale
,

=
= intEn20 : Xn = 1) is stopping time

,

Plixa] = 1
,

but EIXe] = 1 * O = ELXo].
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# If I is an unbounded stopping time , can

apply OST to tak.
=> E(XiN] = ELXo]

·

Since tak-[ a.S
.,

XiN-X= a .S
.

and to
d

pass
to the limit it suffices to show that (Xick)k

is uniformly integrable. This is the case if , e .g.

S =

(n) Li

Indeed
,

then NinklES .
Il

Defe
.

Given a random
process

(XnIn and a

stopping time -
the stopped process XT is

defined by X
= Xnat
.

Im
.

Given an adapted integrable process (Xn)
,

i
.

e
.,
XntFn and ECIXn/J <a for alln

,

TFAE :

(a) X is a martingale
(b) for all bounded stopping times - and all

stopping times o

EXTIFo] = Xiao as.
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() for all stopping times I , XT is a martingale
(d) for all bounded stopping times 0 = [ :

E(Xe] = E(Xo]

Poot
.

(a) = (b) is the OST applied with i . =
-
and

Ez
=
-no
.

Both are bounded
,

so

ElX1Fo] = ElXt/Fino] = XinO
.

(b) with o=
n >m and I replaced by tam

implies (c) :

EX1Fn] = E(XemIFn] = Xiam

(d) also follows from (b) or OST.

(d)=X(u) Let AfFm and n =m.

Then T = m1A+ n1x) is a stopping time ,
En .

=> EX1x) - ELXm1n) = ElXn] - E(Xi] =0

c

=> ElXnIfm] = Xm a
.S.
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Cor
.

Let X be a uniformly integrable martingale,
and let to be

any stopping times (not bounded).
Then

E(X=] = ELXo]
and

E(Xelf) =Xixo
.

Proof. Similar to earlier remark.
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6.6
. Upcrossing inequality

Let (Xn) be a random
process ,

ab.

An upcrossing of [a ,
b] is an interval [jjt ,

...,

k)
s

.

t
. Xjsa and Xb.

Let Un(a ,b) be the number of completed upcrossing
up
to time n.

i M

~a
-

#

↳

Upcrossing inequality. Let X, , ..., In be a martingale.
Then

E((a ,b)) = Fa Fla -Xn)+]= (a) +E((Xn()) .

Proof
.

Define [1 = nx infEk : X = a)

[2 = nxinf(kz5 : Xk]b)

is
: n x inf(kIic : X = al

·

SinceIn ? [p ,
H and infl=&, In = n

.
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Define

D= (X2j - Xizj +)
.

Each if
Ta i l,

the interval [T21
,
[2j) corresponds

to an upcrossing ,
Xi2

% -Xizi+E
b-a

,
and there

are Ula,b) upcrossings .

=> D = (b-a)U(a
,
b) + Rn

if Tze< H = Tze+ (incomplete downer .)Rn
=Xia) if Tzen in= Tze (incomplete upcross)

By OST, EID] =0
.

Thus

E/H(a ,
b)]=El

-Rn] = ba Ella - Xn)
+
]

.

Cor
.

Let (n) be a martinaale bounded in L.

Then Xn has a limit a .S
.

and the limit is in L.

Proof. The number of upcrossings of [a ,
b] is finite as
.

By Doob's ineq, NI is bounded almost surely :

Plsup(nk e] = EsupElXn)
1 P(sup (nl = a) = 0.
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Let

to= [sup(n) =\n(Ulab)
= P(R)= 1

andXn
converges

on Ro (otherwise
, limsup Xn

> liminf Xn and there would be an interval

with "infinitely many upcrossings).
Let Xa
=XnAro

.

Then Fatou give

EllXal) = Elliminf(Xn112o] = liminf ECIXel].

so Xa is integrable.

Defn
.

(Fulnco is a backward filtration if

F Ent
,

=1
n10

Alternatively we can consider (f) neo
.
En =-

.

Then (Yuinzo or (Xino given by Xn = X-n

is a backward martingale if (Xn) satisfies the
usual martingale defn : XEL' for all n and

Xn = E(Xn+ (fn)
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Backward martingale convergence thm
. Let (In

be a backwards martingale. Then Xn
converges

a
.
S

.

and in Las n--a.

R
. L'convergence is automatic .

Prof
.

Let Unlab) denote the number of upcrossings
of [a ,

b) by Xn. ..., Xo. Then

E(Un(a
,

b))= E((a-Xo)
+

])
.

=> ElU(a
,
b)) =a by monotone convergence.

The rest of the proof is as in the almost sure

martingale convergence
theorem
.

Note Xn = ElXolE] so (Xn) is uniformly into

Thus Xn-X-a as n
+- also in L.
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6.7
. Martingales and Markov chains

Ihm
.

Let (Xn)
nzo

be an adapted process. Then
(n) is a Markox chain with transition prob .

T

iff

Mt
= f(Xn) - f(Xo)-f(x) - f(X)

is a martingale for
all bounded cont

.

f

. Sit(Xdy)f(y)

or Hidharmonic f then
s

Poot
.

(n) Mc = (2)n martingale : similar
to argument we have seen if f is harmonic.

In the other direction
,

E(f(Xn)(fn-] =

En -)
+ f(x)+f(X) -f(x)

M = f(Xn+) - f(x)- )

= f()+ πf(Xn -1)-
+
)

= πf(Xn-1)
.
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Detn
.

Given a measurable set A in the state

space ,

the hitting time of A is

TX
= infEn20 : XnEA)

.

The function

Ux(x) = Px[[A<]

is the exit probability from A.

Fact For XeA
,

Ua(x) = 1
,
and for X-A
,-

UA(x) =

π(x
, A)
+Sπ(x,dy)Ux(y)

= (π(x , dy)Ux(y)
X

Thus UA solves the Dirichlet problem

# &
(T - I)V = 0 on

A

y =

1 on A

Im
.

VA(x= PTT) is the smallest solution to
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&roof. Let Y be a
nonneg

.

soln to

Define W =min[V
.

13
.
Then OEW=l and W(=

for XeA
.

For X*A,

iTW(x) = ST(x,dy)W(y) = Sπ(x,dy)Y(y) = V(x)

Since alsoTW(x) = 1
,

hence for X*A
,

nW(x) = W(x)= minGX(x)
,
1)

This also holds for XeA. Thus iTW(x) =W(x)

for all X-X.

Thus (W(Xn)) + is a supermartingale. Therefore,
for
any

bounded stopping time
I

,

Ex[w(X=1] = Ex[W(Xol) = W(x).

We would like to take I = ta but I is not

bounded. Thus takeI = T* x N. Then

Ex[W(Xi)) = Ex[W(Xo)]
= W(x)

.

On [Ia)
,

[A +- and W(Xian) "W(Xz) = 1
as

Nid
&

=>W()- limsupE/W(XA)1=a) = P([x]
.

= V(x) = W(x) = UA(x)
.
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Prop .

For x st . Ux()= 1
,

and
any

bounded soln to

(((π
- 1x = 0 on Al

X = f on A

↳it follows that -S'x

Y(x) = Ex[V([A)]
.

PoetVebsotoandh
Since h(x) =0 for X*A

,

n(Xj-) =0 for jETA
,

Y(x)* Ex[X(X[N)].

If X is st
. Ux(x) = Px(TAxa)-1

,

then can take

Nud to get

V(x)PEx[X(Xta)]
.

135



7. Stationary processes

7
.

1. Ergodic theorems

Befn
.

A
sequence

of random variables (3n)
ne

is

a stationary stochastic process if the joint distr.
of (3m
,

. . . .,

En) and Ent
.
...,

Emy) are the

same for all k21 and n,
M
.. ... ,

McETL .

Examples .

I
.
i .d

.

sequences .

Markov chains starting
from invariant measure extended to negative n.

In general
,

the 3n can take values in a measurable

space
(X

,
8)

.

We assume (X
,
8) is such that

Kolmogorov's consistency theorem applies. Then
there is a measure P on

=

X* with the same

finite-dimensional distributions
.
Define

T :R+&, (Twn =

Wha

Stationarity now means TxP= P.

Den
.

Given a prob . space
(2

,

F
,

P)
,

T :R +&

is a measure preserving transformation if TP
=P
.

Given T : e-1
,
a measure is T-invariantif TaP= P.

136



From now assume (R
,

F
,
P) is a probability space,

T : 1-& is an invertible P-preserving map
.

For
any

measurable
map

3 : (
.

Fl - (X
, B)

,

3 (c) = 3)T")

then defines a stationary process.

For f :/+ IR define

Uf(c) = f(Tr)
.

Fact
.

U is an isometry on LP
,

i
.
e.

(If 1 p
= (SIf(Tw)Pdp)

"

P
= (S(f(w)1PdP)"P =

1fllui
,

and

SufdP = StdP .

Moreover
, U is unitary on [ with inverse

U"f(c) = Sf(T"w)dP.

MeanergodictheoremLetbeHilberteasier

·

f + Hf+ ---

+ Unf) π(f) in H

where It : H - Ho
=EftH : Uf =+3 is the orth

. proj
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Proof
.

Ho is a closed subspace .
Define

Ho=

<g : (g ,
H) =

0 Hf
: (
*

f =f) = ker((I-U)
*

)
+

I =im(I - u)
Uf=f Es U'f

= U
*

f = f

where
we

used that HerT
*

)+= iT.

Indeed
,

if fekerT
*

then(f,Tg)= (T
*

f
,g) = 0.

=> im Tc (e rT
*

)
+

= imT <KerT
*

)
+

Iff-limT It= (f , Tg)=0 #g = (T
*

f
, g) = 0 +g

= (imT)
+

cher T
*

Since IF(imT)PlimT)+= (erT
*

) (erT
*

)
+

one

has imT = (kerT
*

)+

Let Anf
= H(f +uf + --

+ un + f)

=> llAnfllElfll * feH

Ant = f # fEHo

= Anf-T(f) = f AfEHo

Aft = g-lg then Ant = h(g-ug)
= llAnfllE20
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= Ant-0=f) (ftH=MI-U)H.

Altogether . And-) AfEH
= HoPH:

Defn
.

An event A is invariant if T"(A)=A and

quasi-invariant if PCAXT"(A)) = 0
.

Let

I = (AEF : TY(A) =Al

be the o-field of invariant sets
.

Fact T(f) = Elfll]
.

Refn
.

P is ergodic for T if for every AEI,

P(A)e[0
,
1)

.

Ec If P is ergodic then Elf11) = Elf]
.

Fact. Any product measure is ergodic.

#of. This follows from the Kolmogorov 0-1 law.

Let A-I. There are An EX
*

depending only on
coordinates [-n .

n) s .
t

. PLADAn) It .

Since AEI
,

PLAAT
*

An) = h as well. Thus A is in the tail

o-field
,

so Kolmogorov's 0-1 law implies PCA) EEO ,1.
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Cor
.

Let feLP(P)
, lepd. Then

hlf+... -

+ Un + f) - Effll) in LP
.

Poot
.

Let feL?
.

Then Anf-if in L and

thus in L
, lpd. The extension to feLP

t

followsbyalimitingargumen ,usingto
is
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Maximal Ergodic Lemma Let fEL'(P) ,

and set

En =

/wit]
0

ThenSofdPO
Proof

.

Let S
=max

Sj. Theis

Sj = f +SjoT = S
= f +(S-T)vO

.

Since S10 on En

f = S* - (SoT)vO = (S*rO) - (SpTIvO.

=>

SofdP
= S(O)-(PT) vO]
E

-SoLStvO-ST)vO] a

=

(SvO)dP-SSVO)
-

-0

10)
= Go(SvO)dP
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Maximal ineg .

Let feL'(P)
,

130. Then

Put
Iroof

.

WLOG 20
. Applying the Maximal Ergodic

Lemma to f-f gives Eno En
,

SEf-e]dP
= 0 E St dP = ePLEn).

En

=>

PlEn]=
tSfdP .

Almost sure ergodic thm .

Let ++ L'(p). Then

fluo) + =-

+ f(Thw)
-+ g(w) a

.
S
.

n

Sketch. Convergence holds if feHo and if f = g-Ug
with geLa as then

Art = /glo) - Ung(r))=
-

0

The functions fittz
,

fieHo
,

fa= g-Ug
, get are

denseinPremainstoshowtheseate
art.
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7
.

2. Structure of invariant measures

Left
.

Let M denote the set of T-invariant prob.

meas
.

On (8
,

F) and Me the set of ergodic ones
.

Fact
.

M is convex (or emply) , i
.
e

.,

if P
.

QeM then

tP + (1 -t)QEM Xtel0
,
1]

.

Ihm
.

PEM is ergodic iff P is an extreme point
of M

,

i

.
e

.,

it cannot be written as a nontrivial

convex combination of elements of M.

Proof
. Suppose P = +P + (1-EP

,

P
.
#P

,

tel0
,
1) i.e. P

is not extremal
.
To show P cannot be ergodic

assume it is : For
every
AtI
,

P(A) = O

resp
.

=> P
,
(A) = P2(A) = 0

resp
.

1
.

= P
,

= R on I
.

Claim : Since P
,

and Pe are invariant in fact P=Ron F.

Givenf bounded
,

F-measurable
, by the as ergodic

theorem there is Es .
t

.

P
. (E) =PL(E) = 1

,

for weE
,

hu= him (f(w) + f(Tw) + -- -

+ f(T +w) exists
.
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Stationarity and BCT :

SfdP
,

= ShdP
,

If dPz = ShdR

The RHS are equal since h is I measurable and

P =R on I
.

Thus P
,

=Ps on F
.

For the other direction
,
assume

P is not ergodic :

JAtE st
.

P(A) + (0
,
1)

.

Set
PLETA)

P
,
(E) = -

P(A)
PLE)=A

=> P = +P
,

+ (1-t)P
,

t= P(A)t(0
,
1)

.

Thus P is not extremal.

Fact. Two distinct ergodic invariant probability
measures are orthogonal onI : There is EEIst.

P(E) = 1
,

P(E) = 0.

If
.

Otherwise P
,
(E)= PLE) HEEI .

As in last proof
then P

.

=R on

F

.
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Im. If (
,
F) is a complete separable metric space

invariant

alsocalled aPolishspac thenexenation :
P = SQMp(dQ)

where
Mp
is a prob . measure on Me the set of

ergodic probability measures.

Sketch
.

Denote by Pw the regular cord prob. given I :

EFII](w) = SF dPw

= P = (PwdP

It then suffices to show Pw is ergodic for P-a .
e

.
w.

Then Po defines a
map
1- Me and

up
is the

image under this map
.

One then needs to check Pw is stationary a .
S
.

and ergodic as.
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Example . Let (8,5)
= (10

.
13
,
8)
,
Tx= X+a mod !

(i) If a -IRQ the uniform measure
is the

unique
invariant measure
.

↑ (2TTH) = Jeztinx <P
= Se2inTXqp = eZinG DRTTh)

atRIC = ezina = l if n =0

=P (2) = 0 iff n O
=> P is uniform

withprepriethen forana
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7
.
3
. Stationary Markox chains

Let H(X
, dy) be a transition prob . on (X

,
B)
.

Let 1 =X with F the product o field. Let

Fm=(X
: Mejen),

En =- = 8)X
: jen)

,

Em = Em = o(X
;:

m = j)) .

Detn
.

P is a (two-sided) Markox process on f it

P(Xn+ itAlEn) = T(Xn
,
A) a

.
e
.

HAEB
,

neI
.

Fact
.

Let P be a Markox
process

that is also

stationary
.

Then the distribution
In

defined by

ju(A)
= PIXntA]

is it - invariant : for
every

AEB
,

M(A) = (π(x, A)
,

u((x)
.

Conversely , given any such / , one can construct
a stationary Markov process.
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Refr
.

Let M be the set of it-invariant prob.

distributions
,

i

.
e
.,

~
= (M :

M(H) =Sπ(x,A) ,u(dx) HA
+B) .

Me = [M-M :

M
is an extremal point in

the convex set M)
.

Tm
.

(no proof). Any Meme is ergodic.
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7.
4
. Stationary Gaussian processes

Llefn
.

The joint density on RV of N Gaussian random
variables with mean M

= (vi) and covariance (=(ii)
is given by

ply)=anc

- exp)- z((y- , C
+

(y+u))
provided C is invertible. If ( is only positive

semidefinite
,there isasubspaceScNn

measure is defined by choosing an orthonormal
basis on S and then in the same way

.

Such random variables X = (X
..
...,

XN) are also called

a Gaussian Vector
, X-Nyu, C).

Eact
.

Let X be a Gaussian vector in IRY and

T : IRN- RM a linear map
.

Then TX is a

Gaussian vector in IRM with
mean TM and

covariance TCT*.

Fact
. Any pos . semi-def . matrix (can be written

as TT
*

for some T : IRN-IRN Hence X-Win,C

if X =y
+ T3 with SvNO ; id)

.

T can be chosen

upper triangular.
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Defn
.

X = (Inez is a stationary Gaussian process
if (nmEn is Gaussian for

every
N and

EIXn] = M

Cox(Xn
,
Xm) = Sn-m =

9m-n

for some MER , (Gn)ne

Fact i0 n
,

ze

By a version of Bochner's Thm , there is a measure

M on
S = to

,
CT)/ sit.

9)
ik

Hult) .

Since
&
=

-1 , M
is invariant under - - 25-0

.

The measure is
called the spectral measure

of the Gaussian
process
.

Question
.

Let (n)nzz be i
.
i .d .

standard Gaussians
.

When can a Gaussian process (XnInez be written
&

Xn
=[An-mm ,

Lana

=
=

zajaj
= (a)dul
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Thus XX) has such a "moving average representation"
if the spectral measure has density in L.

&nestion : When does a Gaussian
process

have a

causal representation

*

WeknowwithTheconditio,
9
=
jej

#
Such
a

exists ifi

Glogf(A)dE)-m.
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88. Further topics
8

.
1
.

Gaussian Hilbert
spaces

Petn
.

Let (8
,

F
,
P) be a probability space
.

Then

SCE is a Gaussian
space

it S is a closed

linear subspace and
any
XtS is a Gaussian

random variable
.

Emple .

Let I
,

5
,

P) be a prob space on which
there is a

sequence
X
:
of i

.

i
.

d
.

NO
,
1) r . X.

Then (Xi) is orthonormal in L
,

i
. e

.,

EX
=

Sij
and S= spanX:) is a Gaussian

space
.

Prop .

LetIt be a separable Hilbert
space

and

(8
,

F
,
P) as in the example. Then there is an

isometry I : H
+ S
. Thus

·

ICfleNCO
,

(f
.
f(n) IfEH

·

ELI(f)[(g)] = (f,g) If . gelt.

In fact
,

[laf + Bg) = allfl +BIlg) a .S.
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Defn
.

A white noise on R+ is an isometry WN

from LYCR
+
) into a Gaussian

space
.

For ACR
+

a Borel set
,
write WNCA) =WN(1x).

Prop .

(i) For At B(Rt)
,

lAka
,

WNCA) -NIO
, (A)

(ii) For A
,

B-B(RH)
,

ARB =0
,
WN(A) and WN(B)

are independent.

(ii)

ForAdisjointa ed
as

Rk
.

WN looks like a random measure
,

AEB(IRH 1 WN(A , w),

but it is not
.

(Nullsets depend on the Ai in (iii)

Detr
.

For +20
,
define BIt) =WN(IO

,
t])
·

FactForanyt ,
the vector (B

(i) Bo = 0 a
.

S
.

(ii) ELBsB
+ ]
=

sat

(iii) B
+

-

Bs is independent of O(Br
,
Ks) and

~NO
,

It-sl)
.
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Proof. For example,
E[B(s) Blt)] = ELWNCTo ,s]) WN((o,t])]

= (750
,57
,

750
,
+)) = Sxt .

Cor
. ETIBH)-B(s)/P] = 12p-1) !! It-sIP

By Kolmogorov's continuity thi (next section),
it follows that there is a modification of B(t)

which is continuous
.

Proof
.

B(H)-BIsiv N(0
,

It-s1)
.

For X-NCO
,

11
,

E[X2P] = (2p
- 1) !!

is a direct computation .

154



0
.

2
. Kolmogorov's continuity theorem

Im
.

Let X(t)
,

teto
,
17 be random variables st.

for some a
, B>O, C&,

ETIXIt) -X(s)/B] ECIt-sl't
*

Y OESEtEl .

Then there is a cont
-

version of X with the same

finite dimensional distributions
.

Proof
.

Define Xn : [0 , 13- I by

Xn(H = 24(t - j2
- a

)X((j+)2
-

4)
+ 2x ((j+2

- "

-t)X(j2-) , +etj2- (j+)2-n]

X()+1)2
-

4) · =X(Rj+2)2
-n- 1)

X((j + 1)2
-n-

1)
X(i2) ·=

X(2i2")

jen" Inz-

Sup(nut) -Xut))
=

sup Su (Xn
+

(t) -Xu(t)
EjE24j2-)

|+((2j +1)2-)25-12-
+

)(

EX(() -1)2
-

4) +EX(i]
-

)

[sup max((X((2; +)2- X(5-1)2-)) ,
1j22n

IX(22-- X(j2-4/J .
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=> PESUP(mt-XH2G
= 2n
+

SupP[(X( ;2 -) - X(J+1)2)) 2
-

20)

= 2n
+

SupP[(X( ;2)
- X(J+1)2-1)(2-nUB)

= (2n
+

2
-(+1)()+a)ynBy

Choose y St . BUE. Then

[P[sup (Xn+ (t)
- Xn(t))12-r) =

Thus with prob . 1
.
Xn
converges

unif
.

on [O , 17
.

The limit ** takes the same values on dyadic
points. It follows that in fact

P[X(t) = X
*

(t)) = 1 W +10 , 1]
.
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