

Probability Theory I (Fall 2024)

1	Essentials of measure theory	2
1.1	Definitions	2
1.2	Construction of measures	4
1.3	Uniqueness of measures	8
1.4	Lebesgue–Stieljes measures	11
1.5	Integration	14
1.6	Transformations	23
1.7	Product measures	24
1.8	Distribution and expectation	29
2	Weak convergence	33
2.1	Characteristic functions	33
2.2	Weak convergence	37
2.3	Bochner’s theorem	44
3	Independent sums	49
3.1	Kolmogorov’s consistency theorem	49
3.2	Independence and convolution	52
3.3	Weak law of large numbers	54
3.4	Central limit theorem	57
3.5	Borel–Cantelli lemma and Kolmogorov’s zero-one law	58
3.6	Strong law of large numbers	61
3.7	Infinitely divisible distributions	65
4	Conditioning	69
4.1	Radon–Nikodym theorem	69
4.2	Conditional expectation	77
4.3	Conditional probability	82
5	Markov chains	84
5.1	Definitions	84
5.2	Stopping times and the strong Markov property	89
5.3	Countable state space	91
5.4	Example: Polya urn	102
6	Martingales	106
6.1	Aside: L^p spaces	106
6.2	Martingales and Doob’s inequality	111
6.3	Martingale convergence theorems	115
6.4	Doob decomposition	120
6.5	Optional stopping	122
6.6	Upcrossing inequality	127
6.7	Martingales and Markov processes	131
7	Ergodic theorems	135
7.1	Ergodic theorems	135
7.2	Structure of invariant measures	142
7.3	Example: Stationary Markov chains	146

7.4	Example: Stationary Gaussian processes	148
8	Miscellaneous topics	151
8.1	Gaussian Hilbert spaces	151
8.2	Kolmogorov's continuity criterion	154

Primary reference:
Varadhan, Probability Theory

1. Essentials of measure theory

1.1. Definitions

Defn. Let Ω be a set and \mathcal{F} a set of subsets of Ω .

- \mathcal{F} is a field or algebra if $\emptyset \in \mathcal{F}$ and

$$A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F} \quad (\text{complements})$$

$$A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}. \quad (\text{finite unions})$$

- \mathcal{F} is a σ -field or σ -algebra if \mathcal{F} is also closed under countable unions:

$$(A_i)_{i \in \mathbb{N}}, A_i \in \mathcal{F} \Rightarrow \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F} \quad (\text{countable unions})$$

- $\sigma(\mathcal{F})$ denotes the smallest σ -field containing \mathcal{F} .

Defn. Let \mathcal{F} be a field and let $\mu: \mathcal{F} \rightarrow [0, \infty]$ be a function. Then μ is a finitely additive measure if

$$\mu(\emptyset) = 0$$

$$\mu(A) \geq 0 \quad \forall A \in \mathcal{F}$$

$$\mu(A \cup B) = \mu(A) + \mu(B) \quad \forall A, B \in \mathcal{F} \text{ disjoint}$$

and a finitely additive probability measure if also

$$\mu(\Omega) = 1$$

Defn. Let \mathcal{F} be a σ -field and $\mu: \mathcal{F} \rightarrow [0, \infty]$. Then μ is a (countably additive) measure if in addition

$$\mu\left(\bigcup_{i \in \mathbb{N}} A_i\right) = \sum_{i \in \mathbb{N}} \mu(A_i) \quad \forall (A_i)_{i \in \mathbb{N}}, A_i \in \mathcal{F} \text{ disjoint}$$

Exercise. Countable additivity is equivalent to either of:

- $\forall (A_i), A_{i+1} \supseteq A_i : \mu\left(\bigcup_{i \in \mathbb{N}} A_i\right) = \lim_{i \rightarrow \infty} \mu(A_i)$
- $\forall (A_i), A_{i+1} \subseteq A_i : \mu\left(\bigcap_{i \in \mathbb{N}} A_i\right) = \lim_{i \rightarrow \infty} \mu(A_i)$

Defn. If \mathcal{F} is a σ -field on Ω then (Ω, \mathcal{F}) is called a measurable space. If μ is a (probability) measure on (Ω, \mathcal{F}) then $(\Omega, \mathcal{F}, \mu)$ is a measure (probability) space.

1.2. Construction of measures

Caratheodory Extension Theorem. Let \mathcal{F} be a field and $\mu: \mathcal{F} \rightarrow [0, \infty]$ a count. additive measure. Then μ extends to a measure on $\sigma(\mathcal{F})$.

Proof. Define the outer measure: For $A \subseteq \Omega$,

$$\mu^*(A) = \inf \left\{ \sum_j \mu(A_j) : (A_j)_{j \in \mathbb{N}} \in \mathcal{F}, \bigcup_{j \in \mathbb{N}} A_j \supseteq A \right\}$$

($= +\infty$ if the infimum does not exist).

Define $A \subseteq \Omega$ to be μ^* -measurable if

$$\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c) \quad \forall B \subseteq \Omega$$

and M to be the set of μ^* -measurable A .

We will show that M is a σ -field and that μ^* restricts to a measure on M extending μ .

This proves the theorem.

Step 1. μ^* is count. subadditive, i.e.,

$$\mu^*(B) \leq \sum_{i \in \mathbb{N}} \mu^*(B_i) \quad \text{if } B \subseteq \bigcup_{i \in \mathbb{N}} B_i.$$

WLOG $\mu^*(B_i) < \infty$ for all $i \in \mathbb{N}$. Then given $\varepsilon > 0$ there are $(A_{ij})_{j \in \mathbb{N}} \subset \mathcal{F}$ s.t.

$$B_i \subset \bigcup_j A_{ij}, \quad \sum_j \mu(A_{ij}) \leq \mu^*(B_i) + \varepsilon 2^{-i}$$

$$\Rightarrow B \subset \bigcup_i \bigcup_j A_{ij}, \quad \mu^*(B) \leq \sum_i \mu^*(B_i) + \varepsilon$$

Since $\varepsilon > 0$ is arbitrary, $\mu^*(B) \leq \sum_i \mu^*(B_i)$ follows.

Step 2. μ^* extends μ , i.e., $\mu^*(A) = \mu(A) \quad \forall A \in \mathcal{F}$.

Indeed, for any $A \in \mathcal{F}$ and $(A_i)_{i \in \mathbb{N}} \subset \mathcal{F}$, $\bigcup_i A_i \supseteq A$,

$$\mu(A) \leq \sum_i \mu(A \cap A_i) \leq \sum_i \mu(A_i)$$

\uparrow subadd.
 \uparrow $A \cap A_i \subseteq A_i$

$$\Rightarrow \mu(A) \leq \mu^*(A).$$

Since trivially $\mu^*(A) \leq \mu(A)$ thus $\mu(A) = \mu^*(A)$.

Step 3. \mathcal{M} contains \mathcal{F} :

$$A \in \mathcal{F}, B \subseteq \Omega \Rightarrow \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

By subadditivity enough to show \geq .

WLOG $\mu^*(B) < \infty$. Given $\varepsilon > 0$ there is $(A_i)_{i \in \mathbb{N}} \subset \mathcal{F}$

$$B \subseteq \bigcup_i A_i, \quad \sum_i \mu(A_i) \leq \mu^*(B) + \varepsilon$$

$$\Rightarrow \mu^*(B) + \varepsilon \geq \sum_i \mu(A_i)$$

$$= \sum_i (\mu(A_i \cap B) + \mu(A_i \cap B^c))$$

$$\geq \mu^*(B \cap A) + \mu^*(B \cap A^c)$$

Step 4. \mathcal{M} is a field.

Clearly, $\emptyset \in \mathcal{M}$ and $A^c \in \mathcal{M}$ if $A \in \mathcal{M}$.

Let $A_1, A_2 \in \mathcal{M}$ and $B \subseteq \Omega$. Then

$$\begin{aligned} & \mu^*(B \cap (A_1 \cap A_2)) + \underbrace{\mu^*(B \cap (A_1 \cap A_2)^c)}_{A_1 \in \mathcal{M}} \\ &= \mu^*(B \cap \underbrace{(A_1 \cap A_2)^c \cap A_1}_{(A_1^c \cup A_2^c) \cap A_1}) + \mu^*(B \cap \underbrace{(A_1 \cap A_2)^c \cap A_1^c}_{A_1^c}) \\ &= A_2^c \cap A_1 \\ &= \underbrace{\mu^*(B \cap A_1 \cap A_2)}_{A_2 \in \mathcal{M}} + \mu^*(B \cap A_1 \cap A_2^c) + \mu^*(B \cap A_1^c) = \mu^*(B) \end{aligned}$$

$$\Rightarrow \mu^*(B \cap A_1) = \mu^*(B \cap A_1)$$

$$A_1 \in \mathcal{M}$$

Thus $A_1 \cap A_2 \in \mathcal{M}$. Hence \mathcal{M} is a field.

Step 5. M is a σ -field and μ^* is a measure on M .
 Let $(A_i)_{i \in \mathbb{N}} \subset M$ be disjoint, $A = \bigcup_i A_i$. It suffices to show

$$A \in M \quad \text{and} \quad \mu^*(A) = \sum_i \mu^*(A_i)$$

for any $B \subseteq \Omega$,

$$\begin{aligned} \mu^*(B) &= \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c) \\ &\stackrel{A_1 \in M}{=} \mu^*(B \cap A_1) + \mu^*(B \cap \underbrace{A_1^c \cap A_2}_{A_2 \text{ since } A_2 \cap A_1 = \emptyset}) + \mu^*(B \cap A_1^c \cap A_2^c) \\ &\stackrel{A_2 \in M}{=} \dots \\ &= \sum_{i=1}^n \mu^*(B \cap A_i) + \underbrace{\mu^*(B \cap A_1^c \cap \dots \cap A_n^c)}_{\geq \mu^*(B \cap A^c)} \end{aligned}$$

$$\Rightarrow \mu^*(B) \geq \sum_{i \in \mathbb{N}} \mu^*(B \cap A_i) + \mu^*(B \cap A^c) \quad (*)$$

$$\text{subadd.} \rightarrow \mu^*(B \cap A) + \mu^*(B \cap A^c)$$

OTOH, by subadditivity, \leq holds, so $=$, i.e., $A \in M$.

Take $B = A$ in $(*) \Rightarrow \mu^*(A) = \sum_{i \in \mathbb{N}} \mu^*(A_i)$, i.e., μ^* is a measure on M .

1.3. Uniqueness of measures

Defn. Let \mathcal{A} be a set of subsets of Ω .

- \mathcal{A} is a monotone class if

$$A_i \in \mathcal{A}, A_{i+1} \supseteq A_i \text{ (or } \subseteq \text{)} \Rightarrow \bigcup A_i \in \mathcal{A} \text{ (or } \bigcap \text{)}$$

- \mathcal{A} is a λ -system if it is a monotone class, $\Omega \in \mathcal{A}$,

$$A, B \in \mathcal{A}, A \subseteq B \Rightarrow B \setminus A \in \mathcal{A}.$$

- \mathcal{A} is a π -system (δ -system) if $\emptyset \in \mathcal{A}$ and

$$A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$$

Fact. \mathcal{A} is a σ -field

$\Leftrightarrow \mathcal{A}$ is a field & a monotone class

$\Leftrightarrow \mathcal{A}$ is a π -system & a λ -system.

Monotone class lemma. Let \mathcal{F} be a field. Then the smallest monotone class containing \mathcal{F} equals $\sigma(\mathcal{F})$.

Dynkin's π -system lemma. Let \mathcal{A} be a π -system. Then any λ -system containing \mathcal{A} contains $\sigma(\mathcal{A})$.

Both statements are similar.

Proof (monotone class lemma).

Every σ -field is a monotone class, so $\sigma(\mathcal{F}) \supseteq \mathcal{M}$ if \mathcal{M} denotes the smallest monotone class containing \mathcal{F} .

To show \mathcal{M} is a σ -field, it suffices to prove it is a field (previous fact), i.e.,

$$A, B \in \mathcal{M} \Rightarrow A \setminus B, B \setminus A, A \cap B \in \mathcal{M}.$$

(Note $\Omega \in \mathcal{F}$, so $\Omega \in \mathcal{M}$). Define

$$\mathcal{D}(A) = \{B \in \mathcal{M} : A \setminus B, B \setminus A, A \cap B \in \mathcal{M}\}.$$

It suffices to prove $\mathcal{M} \subseteq \mathcal{D}(A)$, so it is enough to show $\mathcal{D}(A)$ is a monotone class containing \mathcal{F} .

Claim: $\mathcal{D}(B)$ is a monotone class.

- If $A_i \in \mathcal{D}(B)$, $A_{i+1} \supseteq A_i$, $A = \bigcup A_i$ then $A \in \mathcal{D}(B)$:

$$\begin{aligned} B \setminus A_i &= B \cap A_i^c \in \mathcal{M} \text{ is decreasing} \\ \Rightarrow B \setminus A &= \bigcap_i (B \cap A_i^c) \in \mathcal{M} \end{aligned}$$

$$\begin{aligned} A_i \setminus B &= A_i \cap B^c \in \mathcal{M} \text{ is increasing} \Rightarrow A \setminus B \in \mathcal{M} \\ A \cap B &= \bigcup_i A_i \cap B \in \mathcal{M} \end{aligned}$$

- If $A_i \in \mathcal{D}(B)$, $A_{i+1} \subseteq A_i$, $A = \bigcap A_i$ then $A \in \mathcal{D}(B)$:
similar

Claim: $\mathcal{D}(A)$ contains \mathcal{F} , i.e. $B \in \mathcal{F} \Rightarrow B \in \mathcal{D}(A)$

$B \in \mathcal{F} \Rightarrow \mathcal{F} \subset \mathcal{D}(B)$ since \mathcal{F} is a field
 $\Rightarrow \mathcal{M} \subset \mathcal{D}(B)$ since $\mathcal{D}(B)$ is a
monotone class $\supset \mathcal{F}$
 $\Rightarrow A \in \mathcal{D}(B)$ since $A \in \mathcal{M}$
 $\Leftrightarrow B \in \mathcal{D}(A)$

Cor (uniqueness of extension). Let \mathcal{F} be a field and let μ_1 and μ_2 be two count. add. measures on $\sigma(\mathcal{F})$, $\mu_1(\Omega) < \infty$, s.t. $\mu_1(A) = \mu_2(A) \forall A \in \mathcal{F}$. Then $\mu_1(A) = \mu_2(A) \forall A \in \sigma(\mathcal{F})$.

Proof. Let

$$A = \{\mu_1(A) = \mu_2(A) : A \in \sigma(\mathcal{F})\}.$$

Then A is a monotone class: if $A_i \uparrow A$ then

$$\mu_1(A) = \lim_{i \rightarrow \infty} \mu_1(A_i) = \lim_{i \rightarrow \infty} \mu_2(A_i) = \mu_2(A)$$

by countable additivity.

Thus A is a monotone class containing \mathcal{F} , so contains $\sigma(\mathcal{F})$ by the monotone class lemma.

Rk. Same holds for σ -finite measures μ_i .

1.4. The Lebesgue measure

Defn. Let X be a topological space. The Borel σ -field $\mathcal{B}(X)$ is the smallest σ -field on X that contains all open sets of X .

Exercise. If $X = \mathbb{R}$ then $\mathcal{B}(\mathbb{R})$ is generated by

$$I_{a,b} = \{x \in \mathbb{R} : a < x \leq b\}, \quad a \in \mathbb{R} \cup \{-\infty\}, b \in \mathbb{R}$$
$$I_{a,\infty} = \{x \in \mathbb{R} : a < x < \infty\}.$$

The set of finite disjoint unions of the $I_{a,b}$ together with \emptyset is a field \mathcal{F} .

Let $F: \mathbb{R} \rightarrow [0, 1]$ be nondecreasing and satisfy

$$\lim_{x \rightarrow -\infty} F(x) = 0, \quad \lim_{x \rightarrow \infty} F(x) = 1.$$

Then a finitely additive measure $P: \mathcal{F} \rightarrow [0, 1]$ is defined by

$$P(I_{a,b}) = F(b) - F(a).$$

Thm. P is countably additive iff F is right-continuous.

Thus the probability measures on $\mathcal{B}(\mathbb{R})$ are in one to one correspondence with such F called the distribution function of P .

Proof. (\Rightarrow) Suppose P is countably additive. Then

$$F(x) = P((-\infty, x]) = P\left(\bigcap_{i=1}^{\infty} (-\infty, x_i]\right) = \lim_{i \rightarrow \infty} P((-\infty, x_i]) = F(x_i)$$

for any sequence (x_i) with $x_i \downarrow x$.

(\Leftarrow) Suppose F is right-continuous.

Let $A_j \in \mathcal{F}$, $A_j \downarrow \emptyset$. It suffices to show $P(A_j) \downarrow 0$.

By contradiction, assume $P(A_i) \geq \delta > 0$ for all i .

Step 1. It suffices to assume $A_j \subset [-\ell, \ell]$ for some ℓ :

$$P(A_j) - P(A_j \cap [-\ell, \ell]) \leq \underbrace{1 - F(\ell)}_{\rightarrow 0} + \underbrace{F(-\ell)}_{\rightarrow 0} \quad (\ell \rightarrow \infty)$$

Thus we can assume $P(A_j) \geq \frac{\delta}{2}$ and $A_j \subset [-\ell, \ell]$.

Step 2. There are $B_j \in \mathcal{F}$ s.t. $\bar{B}_j \subset A_j$, $P(A_j \setminus B_j) \leq \frac{\delta}{10} 2^{-j}$.

Indeed, since $A_j \in \mathcal{F}$, there are $k_j \in \mathbb{N}$, $a_{j,i}, b_{j,i} \in \mathbb{R}$ s.t.

$$A_j = \bigcup_{i=1}^{k_j} I_{a_{j,i}, b_{j,i}}$$

Take $B_j = \bigcup_{i=1}^{k_j} I_{a_{j,i} + \varepsilon_j, b_{j,i}}$ with $\varepsilon_j > 0$ sufficient small.

$$\Rightarrow P(A_j \setminus B_j) \leq \sum_{i=1}^{k_j} (F(a_{j,i}) - F(a_{j,i} + \varepsilon_j)) \xrightarrow[\text{right-continuity}]{} 0 \text{ as } \varepsilon_j \rightarrow 0.$$

Step 3. Let $E_j = \bigcap_{i=1}^j B_i$ and $\bar{E}_j = \bigcap_{i=1}^j \bar{B}_i$.

Then \bar{E}_j is decreasing, closed, bounded, and $\bar{E}_j \downarrow \emptyset$ since $A_j \supseteq \bar{E}_j$.

Since A_j is decreasing and $B_j \subset A_j$,

$$\begin{aligned} P(E_j) &= P\left(\bigcap_{i=1}^j B_i\right) \\ &= P\left(\bigcap_{i=1}^j A_i \setminus (A_i \setminus B_i)\right) \\ &= P\left(\bigcap_{i=1}^j A_i\right) - P\left(\bigcup_{i=1}^j A_i \setminus B_i\right) \\ &\geq P(A_j) - \sum_{i=1}^j P(A_i \setminus B_i) \geq \frac{\delta}{2} - \frac{\delta}{10} \geq \frac{4}{10} \delta. \end{aligned}$$

Since $P(\bar{E}_j) \geq P(E_j)$ thus each $\bar{E}_j \neq \emptyset$.

This contradicts $\bar{E}_j \downarrow \emptyset$: any intersection of nonempty, bounded, closed, decreasing intervals is nonempty.

Thus the assumption $P(A_i) \geq \delta$ was false and $P(A_j) \downarrow 0$ (note $P(A_j)$ is nonincreasing).

Rk. Can drop condition $\lim_{x \rightarrow \infty} f(x) = 1$. This would lead to Borel measures on \mathbb{R} that are finite on all bounded Borel sets.

1.5. Integration

Defn. Let (Ω, Σ) be a measurable space. Then a measurable function or random variable is a map $f: \Omega \rightarrow \mathbb{R}$ s.t. $f^{-1}(B) \in \Sigma$ for every $B \in \mathcal{B}(\mathbb{R})$.

Fact. For any $A \in \Sigma$ the indicator function

$$1_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$$

is measurable.

Fact. Sums, products, limits, and compositions of measurable functions are measurable.

Simple functions. For any finite collection of disjoint sets $A_j \in \Sigma$ and $a_j \in \mathbb{R}$, the function

$$f = \sum a_j 1_{A_j} \tag{*}$$

is called a simple function (and measurable).

Defn. For a simple function f and a measure μ , set

$$\int f d\mu = \mu(f) = \sum_j a_j \mu(A_j).$$

Rk. The repr. (*) is not unique, but the int. well-defined.

Fact. For f and g simple, so are $af + bg$, $a, b \in \mathbb{R}$, and $|f|$ and $|g|$ and

$$\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu$$

$$|\int f d\mu| \leq \int |f| d\mu \leq \sup |f| \mu(\Omega)$$

From now on, let μ be a finite measure.

Bounded functions. Let f be measurable with $|f| < M$.

Fact There are simple f_j s.t. $\sup |f_j - f| \rightarrow 0$.

Proof. Assume $|f| < M$. Write

$$[-M, M) = \bigcup_{j=1}^n I_j, \quad I_j = a_j + \left[-\frac{M}{n}, \frac{M}{n}\right)$$

where the a_j are s.t. $[-M, M) = \bigcup_{j=1}^n I_j$. Then set

$$f_n = \sum_{j=1}^n a_j \mathbf{1}_{A_j} \text{ where } A_j = f^{-1}(I_j).$$

Clearly, $|f_n(\omega) - f(\omega)| \leq \frac{M}{n} \rightarrow 0$.

Fact. If f_j are simple and $\sup |f_j - f| \rightarrow 0$ then $\int f_j d\mu$ is a Cauchy sequence. The limit

$$\int f d\mu \stackrel{\text{def}}{=} \lim_{j \rightarrow \infty} \int f_j d\mu$$

is independent of the approximating sequence.

Proof. By the properties of simple integrals,

$$|\int f_j d\mu - \int f_k d\mu| \leq \int |f_j - f_k| d\mu \leq \sup |f_j - f_k| \mu(\Omega).$$

Since $\sup |f_j - f| \rightarrow 0$, (f_j) is Cauchy, i.e. $\sup |f_j - f_k| \rightarrow 0$.

Similarly, if $\sup |f_j - f| \rightarrow 0$ and $\sup |\tilde{f}_j - f| \rightarrow 0$,
then $|f_j - \tilde{f}_j| \rightarrow 0$ uniformly.

Fact. The integral for bounded functions has the following properties: If f, g are bounded, $a, b \in \mathbb{R}$,

$$\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu.$$

$$|\int f d\mu| \leq \int |f| d\mu \leq \sup |f| \mu(\Omega).$$

In fact,

$$|\int f d\mu| \leq \mu(\{\omega: |f(\omega)| > 0\}) \sup |f|$$

Proof. Take limits of the corresponding properties for simple functions. For the last property, note

$\tilde{\mu}(A) = \mu(A \cap B)$ where $B = \{\omega: |f(\omega)| > 0\}$
defines a measure and

$$\int f d\mu = \int f d\tilde{\mu}, \quad \int |f| d\mu = \int |f| d\tilde{\mu}, \quad \tilde{\mu}(\Omega) = \mu(B)$$

The last property thus follows from the second.

Aside: Convergence of measurable functions

Defn. Let (f_n) be a sequence of measurable fns.

- $f_n \rightarrow f$ uniformly if $\sup |f_n - f| \rightarrow 0$
- $f_n \rightarrow f$ pointwise or everywhere if $|f_n(\omega) - f(\omega)| \rightarrow 0$ for every $\omega \in \Omega$.

If there is a measure P on (Ω, Σ) also define

- $f_n \rightarrow f$ almost everywhere (or almost surely), written $f_n \rightarrow f$ a.e. or a.s. if there is $N \in \Sigma^t$ s.t.

$$P(N) = 0, \quad |f_n(\omega) - f(\omega)| \rightarrow 0 \text{ for } \omega \in N^c.$$

- $f_n \rightarrow f$ in measure (or in probability) if

$$P(\{\omega : |f_n(\omega) - f(\omega)| \geq \varepsilon\}) \rightarrow 0 \text{ for every } \varepsilon > 0.$$

Fact. $f_n \rightarrow f$ uniformly $\Rightarrow f_n \rightarrow f$ pointwise

$\Rightarrow f_n \rightarrow f$ a.e. $\Rightarrow f_n \rightarrow f$ in measure

Proof. Only the last implication is nontrivial. But note

$$f_n \rightarrow f \text{ a.e.} \Rightarrow \bigcap_n \bigcup_{m \geq n} \{\omega : |f_m(\omega) - f(\omega)| \geq \varepsilon\} \subset N$$

$$\Rightarrow 0 = \lim_{n \rightarrow \infty} P\left[\bigcup_{m \geq n} |f_m(\omega) - f(\omega)| \geq \varepsilon\right]$$

count. add. $\geq \lim_{n \rightarrow \infty} P[|f_n(\omega) - f(\omega)| \geq \varepsilon].$

Notation. Given A a measurable set, define

$$\int_A f d\mu = \int 1_A f d\mu.$$

and note $\int f d\mu = \int_A f d\mu + \int_{A^c} f d\mu$.

Bounded convergence theorem. Let f_n be measurable functions with $|f_n| \leq M$ for some constant M . Then

$$f_n \rightarrow f \text{ in measure} \Rightarrow \lim_{n \rightarrow \infty} \int f_n d\mu = \int f d\mu.$$

Proof. Replacing f_n by $f_n - f$ it suffices to prove that if $f_n \rightarrow 0$ in measure then $\int |f_n| d\mu \rightarrow 0$.

$$\begin{aligned} \int |f_n| d\mu &\leq \underbrace{\int_{|f_n| \leq \varepsilon} |f_n| d\mu}_{\leq \varepsilon} + \underbrace{\int_{|f_n| > \varepsilon} |f_n| d\mu}_{\leq M \mu(\{|f_n| > \varepsilon\})} \\ &\rightarrow 0 \text{ as } n \rightarrow \infty \end{aligned}$$

$$\Rightarrow \limsup_{n \rightarrow \infty} \int |f_n| d\mu \leq \varepsilon \quad \forall \varepsilon > 0$$

$$\Rightarrow \lim_{n \rightarrow \infty} \int |f_n| d\mu = \limsup_{n \rightarrow \infty} \int |f_n| d\mu = 0.$$

Example. $\Omega = [0, 1]$ with Lebesgue measure. Then

- $f_n(x) = x^n$, $|f_n(x)| \leq 1$, $f_n \rightarrow 0$ a.e. $\Rightarrow \int f_n dx = \frac{1}{n+1} \rightarrow 0$.
- $f_n(x) = nx^n$, $f_n \rightarrow 0$ a.e. but $\int f_n dx = 1 \not\rightarrow 0$.

Nonnegative functions.

Defn. f is a nonnegative measurable function if $f: \Omega \rightarrow [0, +\infty]$ is measurable with respect to the Borel σ -field on $[0, +\infty]$.

Defn. Let f be a nonnegative measurable function. Then define

$$\int f d\mu = \sup \left\{ \int g d\mu : g \text{ bounded}, 0 \leq g \leq f \right\}.$$

Fatou's Lemma. Let f_n be nonneg. meas. functions. If $f_n \rightarrow f$ in measure, then

$$\int f d\mu \leq \liminf_{n \rightarrow \infty} \int f_n d\mu.$$

In general,

$$\int \liminf_{n \rightarrow \infty} f_n d\mu \leq \liminf_{n \rightarrow \infty} \int f_n d\mu.$$

Proof. Let g be bounded and $0 \leq g \leq f$. Then $g \wedge f_n$ is bounded and

$$g \wedge f_n \rightarrow g \wedge f = g \text{ in measure.}$$

By the BCT,

$$\int g d\mu = \lim_{n \rightarrow \infty} \int g \wedge f_n d\mu \leq \liminf_{n \rightarrow \infty} \int f_n d\mu.$$

Thus $\int f d\mu \leq \liminf \int f_n d\mu$.

For the general case, replace f_n by $\tilde{f}_n = \inf_{k \geq n} f_k$. Then $\tilde{f}_n \rightarrow \tilde{f} = \liminf f_n$ and $f_n \leq \tilde{f}_n$.

Monotone Convergence Theorem. Let f_n be nonneg. meas. and $f_n \uparrow f$ pointwise. Then

$$\int f_n d\mu \uparrow \int f d\mu.$$

Proof. Clearly $\int f_n d\mu \leq \int f d\mu$, so $\lim_{n \rightarrow \infty} \int f_n d\mu \leq \int f d\mu$. The other direction follows from Fatou:

$$\int f d\mu \leq \liminf_{n \rightarrow \infty} \int f_n d\mu = \lim_{n \rightarrow \infty} \int f_n d\mu$$

fact. For all nonneg. meas. f, g and all $a, b \geq 0$:

$$\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu$$

$$\int f d\mu \leq \int g d\mu \text{ if } f \leq g$$

$$\int f d\mu = 0 \text{ iff } \mu(\{f \geq 0\}) = 0.$$

Proof. Let $f_n = n \wedge f$, $g_n = n \wedge g$. Then f_n, g_n are bounded and $f_n \uparrow f$, $g_n \uparrow g$. The first claim follows from MCT and the corresponding which we already know:

$$\int (af_n + bg_n) d\mu = a \int f_n d\mu + b \int g_n d\mu.$$

The second claim is obvious from the definition.

The third claim follows since

$$f=0 \text{ a.e.} \Leftrightarrow f_n=0 \text{ a.e. } \forall n.$$

and the corresponding claim for bounded functions.

Arbitrary functions.

Defn. $f: \Omega \rightarrow [0, \infty]$ measurable is integrable if

$$\int f d\mu < \infty.$$

$f: \Omega \rightarrow \mathbb{R}$ measurable is integrable if $|f|$ is. Set

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

where $f^+ = f \vee 0$, $f^- = (-f) \vee 0$.

Fact. If f, g are integrable, then $af+bg$, $a, b \in \mathbb{R}$ are integrable and

$$\int (af+bg) d\mu = a \int f d\mu + b \int g d\mu$$

$$|\int f d\mu| \leq \int |f| d\mu$$

Moreover, for any measurable f ,

$$\int |f| d\mu = \int f d\mu = 0 \text{ if } \mu(\{f \neq 0\}) = 0$$

Proof. Only the first claim is slightly nontrivial.

Note that $f+g = (f+g)_+ - (f+g)_- = f_+ - f_- + g_+ - g_-$.

$$\Rightarrow (f+g)_+ + f_- + g_- = (f+g)_- + f_+ + g_+$$

$$\Rightarrow \int (f+g)_+ d\mu + \int f_- d\mu + \int g_- d\mu$$

$$= \int (f+g)_- d\mu + \int f_+ d\mu + \int g_+ d\mu$$

$$\Rightarrow \int (f+g) d\mu = \int f d\mu + \int g d\mu.$$

Similarly $\int a f d\mu = \int a f_+ d\mu - \int a f_- d\mu = a \int f d\mu$.

Dominated Convergence Theorem. Let f_n be meas. and assume $f_n \rightarrow f$ in measure. Let g be integrable and $|f_n| \leq g$ for all n . Then

$$\lim_{n \rightarrow \infty} \int f_n d\mu = \int f d\mu.$$

Proof. $g + f_n$ and $g - f_n$ are nonnegative and

$$g \pm f_n \rightarrow g \pm f \text{ in measure.}$$

By Fatou, $\liminf_{n \rightarrow \infty} \int (g \pm f_n) d\mu \geq \int (g \pm f) d\mu$

$$\Rightarrow \liminf_{n \rightarrow \infty} \pm \int f_n d\mu \geq \pm \int f d\mu$$

$$\Rightarrow \liminf_{n \rightarrow \infty} \int f_n d\mu \geq \int f d\mu \geq \limsup_{n \rightarrow \infty} \int f_n d\mu$$

$$\Rightarrow \lim_{n \rightarrow \infty} \int f_n d\mu = \int f d\mu.$$

1.6. Transformations

Defn. Given two measurable spaces $(\Omega_1, \Sigma_1), (\Omega_2, \Sigma_2)$, $T: \Omega_1 \rightarrow \Omega_2$ is measurable if $T^{-1}(A) \in \Sigma_1$ for every $A \in \Sigma_2$. If μ is a measure on (Ω_1, Σ_1) the induced measure on (Ω_2, Σ_2) , also called pullback or image measure, $T_*\mu = \mu \circ T^{-1}$ is

$$T_*\mu(A) = \mu(T^{-1}(A)) \text{ for every } A \in \Sigma_2.$$

Thm. If $f: \Omega_2 \rightarrow \mathbb{R}$ is measurable, $g = f \circ T: \Omega_1 \rightarrow \mathbb{R}$ is measurable and g is integrable w.r.t. μ iff f is integrable w.r.t. $T_*\mu$ and

$$\int_{\Omega_2} f \, dT_*\mu = \int_{\Omega_1} g \, d\mu.$$

Proof. Recall the simplifying assumption that μ is fin.

1. If $f = 1_A, A \in \Sigma_2$, this is by definition of $T_*\mu$.
2. If f is a simple function, this follows from 1. and linearity of the integral.
3. If f is bounded, it extends by uniform limits.
4. If f is nonnegative, it follows by monotone limits.
5. For general f , decompose into f^+ and f^- .

1.7. Product measures

Defn. Given measurable spaces (Ω_1, Σ_1) , (Ω_2, Σ_2) , the product space (Ω, Σ) is given by $\Omega = \Omega_1 \times \Omega_2$ and Σ the σ -field generated by the rectangles

$$A_1 \times A_2, \quad A_1 \in \Sigma_1, \quad A_2 \in \Sigma_2.$$

Fact. The finite disjoint unions of the rectangles $A_1 \times A_2$ form a field \mathcal{F} and so $\Sigma = \sigma(\mathcal{F})$.

Given two finite measures μ_1 and μ_2 on (Ω_1, Σ_1) , (Ω_2, Σ_2) , define a finitely additive measure on \mathcal{F} by

$$\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$$

Fact. μ is well-defined, i.e., if

$$E = \bigcup_i (A_1^i \times A_2^i) = \bigcup_j (B_1^j \times B_2^j)$$

$$\text{then } \sum_i \mu_1(A_1^i)\mu_2(A_2^i) = \sum_j \mu_1(B_1^j)\mu_2(B_2^j).$$

Prop. μ is countably additive on \mathcal{F} .

In particular, μ extends to a measure on $\Sigma = \sigma(\mathcal{F})$.
Also write $\mu = \mu_1 \otimes \mu_2$.

Proof. For $E \in \mathcal{F}$ and $\omega_2 \in \Omega_2$, define

$$E_{\omega_2} = \{\omega_1 \in \Omega_1 : (\omega_1, \omega_2) \in E\}.$$

Then $\omega_2 \mapsto \mu_1(E_{\omega_2})$ is a simple function, so measurable, and

$$\mu(E) = \int_{\Omega_2} \mu_1(E_{\omega_2}) \, d\mu_2$$

Let $E_n \in \mathcal{F}$, $E_n \downarrow \emptyset$. Need to show $\mu(E_n) \downarrow 0$.

Since $E_n \in \mathcal{F}$, $E_n \downarrow \emptyset$, $E_{n, \omega_2} \downarrow \emptyset$ for all $\omega_2 \in \Omega_2$.

Since μ_1 is countably additive,

$$\mu_1(E_{\omega_2}) \downarrow 0 \quad \forall \omega_2 \in \Omega_2.$$

Since μ_1 is a finite measure, $\mu_1(E_{\omega_2})$ is bounded. By the BCT therefore

$$\mu(E_n) = \int \mu_1(E_{n, \omega_2}) \, d\mu_2 \rightarrow 0.$$

Thus μ is countably additive.

Aside: Monotone Class Theorem. Let (Ω, Σ) be a measurable space and \mathcal{F} a field s.t. $\Sigma = \sigma(\mathcal{A})$. Let $\mathcal{V} \subset \{f: \Omega \rightarrow \mathbb{R} \text{ bounded}\}$ s.t.

- (i) $1 \in \mathcal{V}$, $1_A \in \mathcal{V} \nRightarrow A \in \mathcal{F}$.
- (ii) $f_n \in \mathcal{V}$, $f_n \geq 0$, f is bounded, $f_n \uparrow f \Rightarrow f \in \mathcal{V}$.

Then \mathcal{V} contains all bounded measurable functions.

Proof. Note that $1_A \in \mathcal{V}$ for all $A \in \Sigma$ by the monotone class lemma for sets.

Since \mathcal{V} is a vector space, it contains all simple functions. Therefore, given $f \geq 0$ bounded,

$$f_n = 2^{-n} \lfloor 2^n f \rfloor \in \mathcal{V}.$$

Since $f_n \uparrow f$, hence $f \in \mathcal{V}$. For $f: \Sigma \rightarrow \mathbb{R}$ bounded, decompose as $f = f^+ - f^-$ with $f^\pm \geq 0$ bounded.

Prop. Let f be a measurable function on (Ω, Σ) . Then $\omega_1 \mapsto f(\omega_1, \omega_2)$ is measurable for each $\omega_2 \in \Omega_2$.

Proof. Let \mathcal{V} be the set of bounded f for which the claim holds. The assumptions of the MCT apply, so \mathcal{V} contains all bounded measurable f . Finally, approximate f as limit $n \wedge f$ and take $n \rightarrow \infty$.

Prop. Let f be a bounded or nonnegative measurable function on (Ω, Σ) . Then

$$f_1(\omega_1) = \int f(\omega_1, \omega_2) d\mu_2$$

is again a bounded resp. nonnegative measurable function on (Ω_1, Σ_1) .

Proof. Apply MCT.

Fubini's Theorem. (a) Let f be nonneg. meas. on (Ω, Σ) .

$$\Rightarrow \int f d\mu = \int \left(\int_{\Omega_2} f(\omega_1, \omega_2) d\mu_2 \right) d\mu_1$$

(b) Let f be meas. on (Ω, Σ) and μ -integrable. Let

$$A_1 = \left\{ \omega_1 \in \Omega_1 : \int |f(\omega_1, \omega_2)| d\mu_2 < \infty \right\}.$$

For $\omega_1 \in A_1$, define $f_1 : \Omega_1 \rightarrow \mathbb{R}$ by

$$f_1(\omega_1) = \begin{cases} \int f(\omega_1, \omega_2) d\mu_2 & \text{if } \omega_1 \in A_1, \\ 0 & \text{if } \omega_1 \notin A_1. \end{cases}$$

Then $\mu_1(A_1^c) = 0$, f_1 is μ_1 -integrable, $\mu_1(f_1) = \mu(f)$.

Proof. (a) The usual pattern (variations possible):

- For $f = 1_{A_1}$, $A = A_1 \times A_2$ this is the definition of μ .
- By linearity it extends to $f = 1_A$, $A \in \mathcal{F}$.
- By the monotone class theorem (and using the monotone convergence theorem to verify its assumption), the assertion follows for $f \geq 0$ bounded meas.
- For general $f \geq 0$ meas. it follows from monotone convergence.

(b) Let f be μ -integrable. Then by (a),

$$\int |f| d\mu = \int_{\Omega_1} \int_{\Omega_2} |f(\omega_1, \omega_2)| d\mu_2 d\mu_1 < \infty$$

so that $\mu(A_1^c) = 0$. Let

$$\begin{aligned} f_i^{(\pm)}(\omega_1) &= \int f^{\pm}(\omega_1, \omega_2) d\mu_2 \\ \Rightarrow f_i &= (f_i^{(+)} - f_i^{(-)}) 1_{A_1} \end{aligned}$$

By (a), therefore

$$\begin{aligned} \int f d\mu &= \int f^+ d\mu - \int f^- d\mu = \int f_i^{(+)} d\mu_i - \int f_i^{(-)} d\mu_i \\ &= \int f_i d\mu_i \end{aligned}$$

as needed.

1.8. Distribution and expectation

Defn. Let (Ω, Σ, P) be a probability space and $X: \Omega \rightarrow \mathbb{R}$ a random variable.

$$X_* P = \alpha$$

is a probability measure on $\mathcal{B}(\mathbb{R})$ called the distribution of X and its distribution function

$$F(x) = \alpha((-\infty, x]) = P[X \leq x]$$

is called the distribution function of X .

Defn. The expectation and variance of X are

$$E[X] = \int X(\omega) dP = \int x d\alpha$$

$$\text{Var}[X] = E[X^2] - E[X]^2 = E[(X - E[X])^2]$$

provided $\int |x| d\alpha < \infty$ resp. $\int x^2 d\alpha < \infty$. Similarly, the p -th moment of X is

$$E[X^p]$$

provided $E[|X|^p] < \infty$ if p is not even.

Aside: Let $\phi: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be convex:

$$\phi(tx + (1-t)y) \leq t\phi(x) + (1-t)\phi(y).$$

where I is an interval.

The Legendre transform of ϕ is defined by

$$\phi^*(p) = \sup_x (px - \phi(x))$$

for $p \in I^*$ where $I^* = \{\phi^*(p) < \infty\}$.

Then for ϕ convex:

$$\phi(x) = \sup_p (px - \phi^*(p)) = \phi^{**}(x)$$

Indeed, for all ϕ , the defn. implies $\phi(x) \geq \phi^{**}(x)$:

$$\phi^*(p) \geq px - \phi(x) \quad \forall x, p \Rightarrow \phi(x) \geq \phi^{**}(x)$$

For convex ϕ , for every x , there is p s.t.

$$\phi(y) \geq \phi(x) + p(y-x) \quad \forall y$$

$$\Leftrightarrow \phi(y) - py \geq \phi(x) - px \quad \forall y$$

$$\Leftrightarrow py - \phi(y) \leq px - \phi(x) \quad \forall y$$

$$\Leftrightarrow \phi^*(p) \leq px - \phi(x)$$

$$\Leftrightarrow \phi(x) \leq px - \phi^*(p) \leq \phi^{**}(x)$$

Ihm (Jensen's inequality). Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be convex and f and $\phi \circ f$ be both integrable. Then if α is a prob. measure on \mathbb{R} :

$$\int \phi \circ f \, d\alpha \geq \phi \left(\int f \, d\alpha \right).$$

In other words, for any random variable X ,

$$\mathbb{E}(\phi(X)) \geq \phi(\mathbb{E}(X)).$$

Proof.

$$p f(x) - \phi^*(p) \leq \phi(f(x))$$

$$\Rightarrow p \int f \, d\alpha - \phi^*(p) \leq \int \phi \circ f \, d\alpha$$

$$\Rightarrow \phi \left(\int f \, d\alpha \right) = \sup_p \left(p \int f \, d\alpha - \phi^*(p) \right) \leq \int \phi \circ f \, d\alpha.$$

Cor. For any $p > 1$, $\mathbb{E}(|X|) \leq \mathbb{E}(|X|^p)^{1/p}$.

Proof. $\phi(x) = x^p$ is convex on $[0, \infty)$.

Defn. For a vector of r.v. $X = (X_1, \dots, X_n)$, $\alpha = X_* P$ is the joint distribution of (X_1, \dots, X_n) . It is a probability measure on $\mathcal{B}(\mathbb{R}^n)$.

Let $\pi_i : \mathbb{R}^n \rightarrow \mathbb{R}$ be the coordinate maps, $\pi_i(X_1, \dots, X_n) = X_i$. Then $\alpha_i = (\pi_i)_* \alpha$ are called the marginals of α .

2. Weak convergence

2.1. Characteristic functions

Defn. If α is a probability measure on $\mathcal{B}(\mathbb{R})$,

$$\phi(t) = \hat{\alpha}(t) = \int e^{ixt} d\alpha$$

is called characteristic function (or Fourier transform) of the measure α .

Thm. ϕ is uniformly continuous and positive definite, i.e.,

$$\sum_{i,j=1}^n \phi(t_i - t_j) \bar{\xi}_i \xi_j \geq 0 \quad \forall \xi \in \mathbb{C}^n, t \in \mathbb{R}^n.$$

Proof.

$$\sum \phi(t_i - t_j) \bar{\xi}_i \xi_j = \underbrace{\int \sum_{i,j} e^{i(t_i - t_j)x} \xi_i \bar{\xi}_j d\alpha}_{\left| \sum_i e^{it_i x} \xi_i \right|^2} \geq 0 \Rightarrow \phi \text{ is p.d.}$$

$$\begin{aligned} |\phi(t) - \phi(s)| &\leq \int \underbrace{|e^{itx} - e^{isx}|}_{= |e^{i(t-s)x} - 1|} d\alpha \xrightarrow{t-s \rightarrow 0} 0 \text{ by BCT} \\ &= |e^{i(t-s)x} - 1| \rightarrow 0 \Rightarrow \phi \text{ is unif. cont.} \end{aligned}$$

How to recover the distribution from ϕ ?

Assume $\alpha = f(x) dx$, $F(x) = \int_{-\infty}^x f(t) dt$, so $F'(x) = f(x)$.

Then ϕ is the Fourier transform of f and the inversion formula (for nice f) gives

$$\begin{aligned} F'(x) &= \frac{1}{2\pi} \int e^{-itx} \phi(t) dt \\ \Rightarrow F(b) - F(a) &= \frac{1}{2\pi} \int_a^b \underbrace{\phi(t)}_{\frac{e^{-itb} - e^{-ita}}{-it}} e^{-itx} dx dt \\ &= \lim_{T \rightarrow \infty} \frac{1}{2\pi} \int_{-T}^T \phi(t) \frac{e^{-itb} - e^{-ita}}{-it} dt \end{aligned}$$

Thm. If a, b are points of continuity for F then

$$F(b) - F(a) = \lim_{T \rightarrow \infty} \frac{1}{2\pi} \int_{-T}^T \phi(t) \frac{e^{-itb} - e^{-ita}}{-it} dt$$

Proof. Let

$$u(T, x) = \int_0^T \frac{\sin(tx)}{t} dt \quad \text{sign } x = \begin{cases} +1 & x > 0 \\ -1 & x < 0 \\ 0 & x = 0 \end{cases}$$

Then $|u(T, x)| \leq C$ and $\lim_{T \rightarrow \infty} u(T, x) = \text{sign}(x) \frac{\pi}{2}$.

$$\begin{aligned}
&\Rightarrow \frac{1}{2\pi} \int_{-T}^T \left(\frac{e^{-itb} - e^{-ita}}{-it} \int e^{itx} d\alpha \right) dt \\
&= \frac{1}{2\pi} \int d\alpha \int_{-T}^T \frac{e^{-it(b-x)} - e^{-it(a-x)}}{-it} dt \\
&= \frac{1}{2\pi} \int d\alpha \int_{-T}^T \frac{\sin(t(x-a)) - \sin(t(x-b))}{t} dt \\
&= \frac{1}{\pi} \int d\alpha (u(T, x-a) - u(T, x-b))
\end{aligned}$$

By the BCT, using $|u(T, x)| \leq C$,

$$\begin{aligned}
\lim_{T \rightarrow \infty} \frac{1}{2\pi} \int_{-T}^T (\dots) &= \frac{1}{2} \int d\alpha \underbrace{(\operatorname{sign}(x-a) - \operatorname{sign}(x-b))}_{\begin{cases} 0 & \text{if } x < a \\ +1 & \text{if } x = a \\ 2 & \text{if } a < x < b \\ +1 & \text{if } x = b \\ 0 & \text{if } x > b \end{cases}} \\
&= 2 \mathbf{1}_{a < x \leq b} + (\mathbf{1}_{x=a} - \mathbf{1}_{x=b}) \\
&= F(b) - F(a) + \underbrace{\frac{1}{2}(F(a) - F(a_-) - F(b) + F(b_-))}_{=0 \text{ at cont. points}}
\end{aligned}$$

Prop. If F is increasing the set of points of discontinuity is countable..

If F_α and F_β are distribution functions of α and β and $F_\alpha = F_\beta$ on all continuity points, then $F_\alpha = F_\beta$, so $\alpha = \beta$.

Hence, ϕ determines the distribution uniquely.

Proof For any increasing F , the set $\{x : F(x_+) \neq F(x_-)\}$ is countable. Indeed, the intervals $(F(x_-), F(x_+))$, $x \in \mathbb{R}$ are disjoint (or empty)

$$\Rightarrow 1 = F(\infty) - F(-\infty) = \sum_x (F(x_+) - F(x_-)).$$

$\Rightarrow \{x : F(x_+) \neq F(x_-)\}$ is countable.

Thus for any x there are $x_i > x$ which are continuity points for F_α and F_β s.t. $x_i \downarrow x$. Thus

$$F_\alpha(x) = \lim_{i \rightarrow \infty} F_\alpha(x_i) = \lim_{i \rightarrow \infty} F_\beta(x_i) = F_\beta(x)$$

right-cont. $F_\alpha = F_\beta$ on right-cont.
cont. points

Hence $F_\alpha = F_\beta$, so $\alpha = \beta$.

2.2. Weak convergence

Example. The total variation distance between two measures μ and ν on (Ω, Σ) is

$$d(\mu, \nu) = \sup_{A \in \Sigma} |\mu(A) - \nu(A)|.$$

Note that if $\mu = \delta_x$ and $\nu = \delta_y$ on $\mathcal{B}(\mathbb{R})$ then

$$d(\mu, \nu) = 1 \text{ whenever } x \neq y.$$

If Ω is a metric space such as \mathbb{R} we would like a distance s.t. $d(\delta_x, \delta_y) \rightarrow 0$ as $x \rightarrow y$.

Defn. A sequence α_n of prob. distr. on \mathbb{R} converges weakly to α (written $\alpha_n \Rightarrow \alpha$ or $\alpha_n \xrightarrow{w} \alpha$) if

$$\lim_{n \rightarrow \infty} \alpha_n(I) = \alpha(I) \quad \forall \text{ interval } I = [a, b] \\ \text{s.t. } \alpha(\{a\}) = \alpha(\{b\}) = 0$$

Equivalently,

$$\lim_{n \rightarrow \infty} F_n(x) = F(x) \text{ for every } x \text{ that is a continuity point for } F.$$

This is also written $F_n \Rightarrow F$.

Lévy-Cramér Continuity Theorem. TFAE:

(i) $\alpha_n \Rightarrow \alpha$ (or $F_n \Rightarrow F$)

(ii) $\lim_{n \rightarrow \infty} \int f d\alpha_n = \int f d\alpha \quad \forall f: \mathbb{R} \rightarrow \mathbb{R}$ bounded continuous

(iii) $\lim_{n \rightarrow \infty} \hat{\alpha}_n(t) = \hat{\alpha}(t) \quad \forall t \in \mathbb{R}$

Moreover, if $\phi(t) = \lim_{n \rightarrow \infty} \hat{\alpha}_n(t)$ exists for all $t \in \mathbb{R}$ and ϕ is continuous at 0 then $\phi = \hat{\alpha}$ for some probability measure α .

Proof of (i) \Rightarrow (ii) \Rightarrow (iii). Let $\varepsilon > 0$.

Step 1. There are cont. points $a < b$ of F s.t.

$$F(a) \leq \varepsilon, \quad 1 - F(b) \leq \varepsilon$$

$$\Rightarrow F_n(a) \leq 2\varepsilon, \quad 1 - F_n(b) \leq 2\varepsilon \quad \text{for } n \geq n_0(\varepsilon).$$

Step 2. Using that f is uniformly continuous on $[a, b]$, for any $\delta > 0$, there is $\varepsilon > 0$ s.t. $|f(x) - f(y)| < \delta$ if $|x - y| < \varepsilon$. Let a_j be cont. pts. of F , $a_{j+1} - a_j < \varepsilon$ s.t.

$$(a, b] = \bigcup_{j=1}^{\infty} I_j, \quad I_j = (a_j, a_{j+1}].$$

Step 3. Let $h = \sum 1_{I_j} f(a_j)$. Then $\sup_{(a, b]} |h - f| < \delta$ and

$$\left| \int f d\alpha - \sum_{j=1}^N f(a_j) [F(a_{j+1}) - F(a_j)] \right| \leq 8 + 2M\epsilon$$

$$\left| \int f d\alpha_n - \sum_{j=1}^N f(a_j) [F_n(a_{j+1}) - F_n(a_j)] \right| \leq 8 + 4M\epsilon$$

where $M = \sup |f|$. Since $F_n(a_j) \rightarrow F(a_j) \ \forall j$,

$$\limsup_{n \rightarrow \infty} \left| \int f d\alpha - \int f d\alpha_n \right| \leq 28 + 6M\epsilon.$$

$$\Rightarrow \lim_{n \rightarrow \infty} \left| \int f d\alpha - \int f d\alpha_n \right| = 0.$$

This proves (i) \Rightarrow (ii).

(ii) \Rightarrow (iii) is trivial since (iii) is (ii) with the special choice $f(x) = e^{itx}$.

Proof of (iii) \Rightarrow (i).

Step 1. Since $F_n \in [0, 1]$, for every r , there is a subsequence s.t. $F_n(r)$ converges. Extract a diag. subsequence $\Lambda \subset \mathbb{N}$ s.t.

$$F_n(r) \rightarrow \tilde{F}(r) \quad \forall r \in \mathbb{Q}, \quad n \in \Lambda, \quad n \rightarrow \infty.$$

Step 2. Let $F(x) = \inf_{\substack{r > x \\ r \in \mathbb{Q}}} \tilde{F}(r)$. Notice F is right-cont. and increasing.

Step 3. For every cont. point x of F ,

$$\lim_{n \rightarrow \infty} F_n(x) = F(x).$$

Indeed, let $r > x$, $r \in \mathbb{Q}$. Then $F_n(x) \leq F_n(r) \rightarrow \tilde{F}(r)$.

$$\Rightarrow \limsup_{n \rightarrow \infty} F_n(x) \leq \tilde{F}(r).$$

$$\Rightarrow \limsup_{n \rightarrow \infty} F_n(x) \leq F(x).$$

To show convergence, let $y < x$ and $r \in \mathbb{Q}$, $y < r < x$.

$$\Rightarrow \liminf F_n(x) \geq \liminf F_n(r) = \tilde{F}(r) \geq F(y).$$

$$\Rightarrow \liminf F_n(x) \geq \inf_{y < x} F(y) = F(x^-) = F(x)$$

since x is a cont. point of F .

Step 4. $\phi(0) = 1$ and ϕ is cont. at 0

$$\Rightarrow F(-\infty) = 0, F(+\infty) = 1.$$

$$\Rightarrow F(x) = \alpha((- \infty, x]) \text{ for some prob. meas. } \alpha.$$

Indeed, we will show

$$1 - \tilde{F}_n\left(\frac{2}{T}\right) + \tilde{F}_n\left(-\frac{2}{T}\right) \leq 2 \left[1 - \frac{1}{2T} \int_{-T}^T \phi_n(t) dt \right]$$

For T s.t. $\frac{2}{T}$ are cont. points for F , take limit:

$$1 - F\left(\frac{2}{T}\right) + F\left(-\frac{2}{T}\right) \leq 2 \left[1 - \frac{1}{2T} \int_{-T}^T \phi(t) dt \right]$$

Let $T \rightarrow 0$ along cont. points,

$$1 - F(0) + F(-\infty) \leq 2[1 - \phi(0)] = 0.$$

Conclusion. Thus $F_n \Rightarrow F$ and $\hat{\alpha}_n = \phi$ as $n \rightarrow \infty$ along a subsequence and ϕ is ch. function of F by (i) \Rightarrow (iii). This works for any subseq., hence the limit is unique.

Lemma. For any prob. dist. α ,

$$1 - F_\alpha\left(\frac{2}{T}\right) + F_\alpha\left(-\frac{2}{T}\right) \leq 2 \left[1 - \frac{1}{2T} \int_{-T}^T \hat{\alpha}(t) dt \right]$$

$$\text{Proof. } \frac{1}{2T} \int_{-T}^T \hat{\alpha}(t) dt = \int \left[\frac{1}{2T} \int_{-T}^T e^{itx} dt \right] d\alpha$$

$\underbrace{\sin(Tx)}_{\frac{\sin(Tx)}{Tx}}$

$$\leq \int_{|x|<\ell} \left| \frac{\sin Tx}{Tx} \right| d\alpha + \int_{|x|\geq \ell} \left| \frac{\sin Tx}{Tx} \right| d\alpha$$

$$\leq \alpha(|x|<\ell) + \frac{1}{T\ell} \alpha(|x|\geq \ell)$$

$$\Rightarrow 1 - \frac{1}{2T} \int_{-T}^T \hat{\alpha}(t) dt \geq \left(1 - \frac{1}{T\ell}\right) \alpha(|x|\geq \ell) = \frac{1}{2} \alpha(|x|\geq \frac{2}{T})$$

$\ell = \frac{2}{T}$ LHS.

Defn. A sequence of r.v. X_n converges in distribution or in law to a r.v. X if the distributions α_n of X_n converge weakly to the distribution α of X .

Thm. Let \mathcal{A} be a family of prob. measures on \mathbb{R} . Suppose \mathcal{A} is uniformly tight:

$$\lim_{\ell \rightarrow \infty} \sup_{\alpha \in \mathcal{A}} \alpha(|x| \geq \ell) = 0.$$

Then for any sequence $\alpha_n \in \mathcal{A}$ there is a subseq. that converges weakly to a limiting prob. measure.

Rk. Uniform tightness is equivalent to

$$\lim_{h \rightarrow 0} \sup_{\alpha \in \mathcal{A}} \sup_{t \leq |h|} |1 - \Phi_\alpha(t)| = 0$$

Proof. Same as last theorem.

Rk. The above can be generalized to prob. measures on a metric space.

- $\alpha_n \Rightarrow \alpha$ then by defn if $\int f d\alpha_n \rightarrow \int f d\alpha \quad \forall f$ bd. cont.
- \mathcal{A} is tight if $\forall \varepsilon > 0 \exists K$ compact st. $\sup_{\alpha \in \mathcal{A}} \alpha(K^c) < \varepsilon$.

Thm. Let $\alpha_n \rightarrow \alpha$. Then

$\forall C \subset \mathbb{R}$ closed: $\limsup_{n \rightarrow \infty} \alpha_n(C) \leq \alpha(C)$

$\forall G \subset \mathbb{R}$ open: $\liminf_{n \rightarrow \infty} \alpha_n(G) \geq \alpha(G)$.

Moreover, if $\alpha(\partial A) = 0$ then $\lim_{n \rightarrow \infty} \alpha_n(A) = \alpha(A)$.

Proof. Let

$$f(x) = \frac{1}{1 + d(x, C)}, \quad d(x, C) = \inf_{y \in C} |x - y|.$$

Since C is closed, $f(x) = 1 \Leftrightarrow x \in C$ and $f(x) < 1$ for $x \notin C$. Therefore

$$f(x)^k \downarrow 1_{C^c}(x) \quad \text{as } k \rightarrow \infty.$$

Since f^k is continuous,

$$\lim_{n \rightarrow \infty} \int f(x)^k d\alpha_n = \int f(x)^k d\alpha$$

$$\Rightarrow \limsup_{n \rightarrow \infty} \alpha_n(C) \leq \lim_{n \rightarrow \infty} \int f(x)^k d\alpha_n = \int f(x)^k d\alpha$$

$$\Rightarrow \limsup_{n \rightarrow \infty} \alpha_n(C) \leq \alpha(C)$$

Since G is open G^c is closed and the second statement follows.

The third statement is immediate since $\partial A = \bar{A} \setminus A^\circ$.

2.3. Bochner's Theorem

Bochner's Theorem. If $\phi: \mathbb{R} \rightarrow \mathbb{C}$ is pos. def, cont. at 0, $\phi(0) = 1$, then $\phi = \hat{\alpha}$ for a probability measure α .

Fact. Let $\phi: \mathbb{R} \rightarrow \mathbb{C}$ be pos. def. Then

- (a) $\phi(t) e^{ita}$ is pos. def. for any $a \in \mathbb{R}$.
- (b) $\phi(-t) = \overline{\phi(t)}$ and $|\phi(t)| \leq \phi(0)$ for all t .
- (c) $|\phi(t) - \phi(s)|^2 \leq 4\phi(0)|1 - \phi(t-s)|$ for all t, s .

Proof. (a) $\sum_{i,j} \phi(t_i - t_j) e^{i(t_i - t_j)a} \bar{\xi}_i \bar{\xi}_j$
 $= \sum_{i,j} \phi(t_i - t_j) \eta_i \bar{\eta}_j \geq 0 \quad , \quad \eta_i = e^{ita} \xi_i$

$$(b) \begin{bmatrix} \phi(0) & \phi(t) \\ \phi(-t) & \phi(0) \end{bmatrix} = \begin{bmatrix} \phi(0) & \phi(t) \\ \phi(-t) & \phi(0) \end{bmatrix}^* \Rightarrow \phi(t) = \overline{\phi(-t)}$$

$$\det \begin{bmatrix} \phi(0) & \phi(t) \\ \phi(-t) & \phi(0) \end{bmatrix} \geq 0 \Rightarrow \phi(0)^2 - \phi(t)\phi(-t) \geq 0 \\ \Rightarrow |\phi(t)| \leq \phi(0)$$

$$(c) \det \begin{bmatrix} \phi(0) & \phi(t-s) & \phi(t) \\ \overline{\phi(t-s)} & \phi(0) & \phi(s) \\ \overline{\phi(t)} & \overline{\phi(s)} & \phi(0) \end{bmatrix} \geq 0$$

$$\begin{aligned}
\Rightarrow 0 &\leq 1 + \phi(t-s)\phi(s)\overline{\phi(t)} + \phi(t)\overline{\phi(t-s)}\overline{\phi(s)} \\
&\quad - |\phi(t-s)|^2 - |\phi(t)|^2 - |\phi(s)|^2 \\
\Rightarrow 0 &\leq | - |\phi(s)-\phi(t)|^2 - |\phi(t-s)|^2 \\
&\quad - (1 - \phi(t-s))\phi(s)\overline{\phi(t)} - (1 - \overline{\phi(t-s)})\phi(t)\overline{\phi(s)} \\
&\leq | - |\phi(s)-\phi(t)|^2 - |\phi(t-s)|^2 + 2|1 - \phi(t-s)| \\
\Rightarrow |\phi(s)-\phi(t)|^2 &\leq | - |\phi(t-s)|^2 + 2|1 - \phi(t-s)| \\
&\quad (1 - |\phi(t-s)|)(1 + |\phi(t-s)|) \\
&\leq |1 - \phi(t-s)| \leq 2 \\
&\leq 4|1 - \phi(t-s)|.
\end{aligned}$$

Fact. If ϕ_α are pos. def. and ν a measure on α , then $\int \phi_\alpha d\nu$ also is pos. def.

Proof of Bochner's Theorem. Let ϕ be pos. def., continuous, and in addition integrable. Let

$$f(x) = \frac{1}{2\pi} \int e^{-itx} \phi(t) dt$$

Step 1. $f(x) \geq 0$.

$$\begin{aligned}
f(x) &= \lim_{T \rightarrow \infty} \frac{1}{2\pi} \int_{-T}^T \left(1 - \frac{|t|}{T}\right) e^{-itx} \phi(t) dt \quad (\text{DCT}) \\
&= \lim_{T \rightarrow \infty} \frac{1}{2\pi T} \int_0^T \int_0^T e^{-i(t-s)x} \phi(t-s) dt ds
\end{aligned}$$

Indeed, the change of variables $\begin{pmatrix} t \\ s \end{pmatrix} \mapsto \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} t-s \\ t+s \end{pmatrix}$
 has Jacobian 2 and thus

$$\begin{aligned} \int_0^T \int_0^T g(t-s) dt ds &= \frac{1}{2} \int_{-T}^T g(u) \left(\int_0^{2T} \underbrace{1_{\frac{u+y}{2} \in [0,T]} 1_{\frac{v-u}{2} \in [0,T]} dy \right) du \\ &\quad \left\{ \begin{array}{l} u+y \in [0,2T] \Rightarrow y \in [-u, 2T-u] \\ v-u \in [0,2T] \Rightarrow v \in [u, 2T+u] \end{array} \right. \\ &\Rightarrow v \in [u, 2T+u] \\ &= \frac{1}{2} \int_{-T}^T g(u) (2T-2u) du \\ &= T \int_{-T}^T g(u) (1 - \frac{|u|}{T}) du \end{aligned}$$

Thus

$$\begin{aligned} f(x) &= \lim_{T \rightarrow \infty} \frac{1}{2\pi T} \int_0^T \int_0^T e^{-itx} e^{+isx} \phi(t-s) dt ds \\ &= \lim_{\substack{\uparrow \\ T \rightarrow \infty}} \frac{1}{2\pi T} \lim_{N \rightarrow \infty} \left(\frac{T}{N} \right)^2 \sum_{i=1}^N \sum_{j=1}^N e^{-it_i x} e^{+it_j x} \phi(t_i - t_j) \geq 0 \\ &\quad \text{Riemann sum} \quad \text{where } t_i = \frac{T}{N} i \\ &\quad \text{approximation} \quad \uparrow \quad \text{pos. def.} \end{aligned}$$

$$\text{Step 2. } \phi(t) = \frac{1}{2\pi} \int e^{itx} f(x) dx$$

Let $f_\sigma(x) = f(x) e^{-\frac{1}{2}\sigma^2 x^2}$. Then

$$\begin{aligned} \int e^{itx} f_\sigma(x) dx &= \int e^{itx} e^{-\frac{1}{2}\sigma^2 x^2} \frac{1}{2\pi} \int e^{-isx} \phi(s) ds dx \\ &= \frac{1}{2\pi} \int \phi(s) \underbrace{\left[\int e^{i(t-s)x} e^{-\frac{1}{2}\sigma^2 x^2} dx \right]}_{\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-s)^2}{2\sigma^2}}} ds \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-s)^2}{2\sigma^2}} = p_{\sigma^2}(t-s) \end{aligned}$$

$$\xrightarrow{t=0} \int f_\sigma(x) dx = \int \phi(s) p_{\sigma^2}(s) ds \leq \phi(0) \int p_{\sigma^2}(s) ds = \phi(0) = 1$$

By Fatou's Lemma,

$$\int f(x) dx \geq \int \lim_{\sigma \rightarrow 0} f_\sigma(x) dx \leq \lim_{\sigma \rightarrow 0} \int f_\sigma(x) dx \leq 1$$

Thus $|f_\sigma(x) e^{itx}| \leq f(x)$ is integrable. By DCT,

$$\begin{aligned} \int e^{itx} f(x) dx &= \lim_{\sigma \rightarrow 0} \int \phi(s) p_{\sigma^2}(t-s) ds \\ &= \lim_{\sigma \rightarrow 0} \int \phi(s+t) p_{\sigma^2}(s) ds \\ &= \lim_{\sigma \rightarrow 0} \int \phi(t+\sigma s) p_1(s) ds = \phi(t) \end{aligned}$$

Step 3. Now assume ϕ is pos. def. and continuous, but not necessarily integrable. Then

$$\phi_\sigma(t) = \phi(t) e^{-\frac{\sigma^2 t^2}{2}} = \underbrace{\int \phi(t) e^{ity} p_{\sigma^2}(y) dy}_{\text{pos. def.}}$$

is also pos. def. and integrable.

By Steps 1 and 2, $\phi_\sigma = \hat{x}_\sigma$ for some prob. measure α . Since $\phi_\sigma(t) \rightarrow \phi(t)$ for all t , the Cont. Theorem implies that $\phi = x$ for some prob. measure α .

3. Independent sums

3.1. Kolmogorov's Consistency Theorem

Defn A family of prob. measures P_n on \mathbb{R}^n is consistent if

$$\pi_* P_{n+1} = P_n \text{ where } \pi(x_1, \dots, x_{n+1}) = (x_1, \dots, x_n).$$

Let $\Omega = \mathbb{R}^{\mathbb{N}} = \{(x_1, x_2, \dots) : x_i \in \mathbb{R}\}$ and $\Sigma = \sigma(\mathcal{F})$ where \mathcal{F} is the field generated by cylinder sets

$$\mathcal{B} = \{\omega : (x_1, \dots, x_n) \in A\}, \quad A \in \mathcal{B}(\mathbb{R}^n).$$

Kolmogorov's Consistency Thm. Given a consistent family of distributions P_n on \mathbb{R}^n there exists a unique prob. measure P on (Ω, Σ) s.t.

$$\pi_* P = P_n \text{ where } \pi(x_1, \dots) = (x_1, \dots, x_n).$$

Proof. By consistency, one can define P on \mathcal{F} by

$$P(B) = P_n(A).$$

To prove countable additivity, let $B_j \in \mathcal{F}$ s.t. $B_j \downarrow \emptyset$. To show $P(B_j) \downarrow 0$ assume $P(B_j) \geq \delta$ for all j , some $\delta > 0$.

$$\Rightarrow B_j = \pi^{-1}(\tilde{B}_j) \text{ for some } \tilde{B}_j \in \mathcal{B}(\mathbb{R}^{n_j}).$$

There is a compact set $\tilde{K}_j \subset \tilde{B}_j$ s.t. (inner reg.).

$$P_{n_j}(\tilde{B}_j; \tilde{K}_j) \leq \delta 2^{-j-1}.$$

Let $K_j = \pi^{-1}(\tilde{K}_j)$

$$D_j = \bigcap_{k=1}^j K_j = \pi^{-1}(\tilde{D}_j) \text{ for some } \tilde{D}_j \subset \tilde{K}_j \subset \mathbb{R}^{n_j}$$

Then $D_j \subset B_j$, so $D_j \downarrow \emptyset$ and $D_j \neq \emptyset$ since

$$\begin{aligned} P(D_j) &= P\left(\bigcap_{k=1}^j K_k\right) \\ &= P\left(\bigcap_{k=1}^j B_k \setminus (B_k \setminus K_k)\right) \\ &= P(B_j \setminus \bigcup_{k=1}^j (B_k \setminus K_k)) \\ &\geq \delta - \sum_{k=1}^j \frac{P(B_k \setminus K_k)}{P_{n_k}(\tilde{B}_k \setminus \tilde{K}_k)} \geq \frac{\delta}{2} > 0 \end{aligned}$$

$$P_{n_k}(\tilde{B}_k \setminus \tilde{K}_k) \leq \delta 2^{-k-1}$$

Note if $\omega^{ij} = (x_1^j, x_2^j, \dots) \in D_j$ then $(x_1^j, \dots, x_{n_k}^j) \in \tilde{D}_k$ for $k \leq j$.

For each i there is a subsequence Λ_i s.t.

$$x_i^j \rightarrow x_i \quad (j \rightarrow \infty, j \in \Lambda_i).$$

Take diagonal subsequence Λ s.t.

$$x_i^j \rightarrow x_i \quad \forall i \quad (j \rightarrow \infty, j \in \Lambda).$$

Then $\omega = (x_1, x_2, \dots) \in D_k$ for all k . Thus $D_k \downarrow \emptyset$.

The proof used the inner regularity of Borel measures.

Thm Let α be a prob. measure on \mathbb{R}^n . Then for any $B \in \mathcal{B}(\mathbb{R})$ there is $K \subset B$ compact s.t.

$$\alpha(B \setminus K) < \varepsilon.$$

Proof. Exercise.

3.2. Independence and convolution

Defn. Events $(A_\alpha)_\alpha$ are independent if for any finite subcollection $\alpha_1, \dots, \alpha_n$:

$$P\left[\bigcap_{i=1}^n A_{\alpha_i}\right] = \prod_i P[A_{\alpha_i}]$$

Random variables $(X_\alpha)_\alpha$ are independent if the events $\{X_\alpha \in A\}_{\alpha \in A}$ where $A \in \mathcal{B}(\mathbb{R})$ are independent, i.e., for any finite subcollection $\alpha_1, \dots, \alpha_n$:

$$P\left[\bigcap_j \{X_{\alpha_j} \in A_j\}\right] = \prod_j P[X_{\alpha_j} \in A_j] \quad \forall A_1, \dots, A_n \in \mathcal{B}(\mathbb{R}).$$

Prop. Let F_1 and F_2 be fields s.t.

$$P(A_1 \cap A_2) = P(A_1)P(A_2) \quad \forall A_1, A_2 \in F_i$$

Then $\sigma(F_1)$ and $\sigma(F_2)$ are independent.

Proof. Given $A_i \in F_i$, define measures

$$\mu(A) = P(A \cap A_i), \quad \nu(A) = P(A)P(A_i).$$

Then $\mu(A) = \nu(A) \quad \forall A \in F_2$. By the uniqueness of the extension this then holds for all $A \in \sigma(F_2)$.

Now repeat with $A \in \sigma(F_1)$ given.

Fact. Random variables X and Y on (Ω, Σ, P) are independent iff the joint distribution on \mathbb{R}^2 is the product measure $\alpha \otimes \beta$ where α, β are the distributions of X and Y .

Fact. If X and Y are independent then the distr. of $X+Y$ is $\alpha * \beta = f_X(\alpha \otimes \beta)$, $f(x, y) = xy$, and

$$(\alpha * \beta)(A) = \int \alpha(A-y) d\beta = \int \beta(A-x) d\alpha$$

Fact. $\widehat{\alpha * \beta}(t) = \widehat{\alpha}(t) \widehat{\beta}(t)$.

$$\begin{aligned} \widehat{\alpha * \beta}(t) &= \int e^{ixt} d(\alpha * \beta) \\ &= \int e^{i(x+y)t} d\alpha d\beta \\ &= \left(\int e^{ixt} d\alpha \right) \left(e^{iyt} d\beta \right) = \widehat{\alpha}(t) \widehat{\beta}(t). \end{aligned}$$

Fact. If X_1, \dots, X_n are independent random variables,

$$\text{Var}[X_1 + \dots + X_n] = \text{Var}[X_1] + \dots + \text{Var}[X_n].$$

$$\begin{aligned} \text{Proof. } \text{Var}[X_1 + \dots + X_n] &= E[(X_1 + \dots + X_n - E[X_1] - \dots - E[X_n])^2] \\ &= \sum_i E[(X_i - E[X_i])^2] + \sum_{i \neq j} E[(X_i - E[X_i])(X_j - E[X_j])] \\ &= \sum_i \text{Var}[X_i]. \end{aligned}$$

\Rightarrow by indep.

3.3. Weak law of large numbers

Thm. Let X_1, X_2, \dots be a sequence of independent identically distributed (i.i.d.) random variables with $E[|X_i|] < \infty$ and $E[X_i] = m$. Then $\frac{1}{n} S_n = \frac{1}{n} (X_1 + \dots + X_n)$ converges to m in probability:

$$P\left[\left|\frac{S_n}{n} - m\right| \geq \delta\right] \rightarrow 0 \quad \forall \delta > 0.$$

Markov Inequality. $P[|X| > \delta] \leq \frac{E[|X|]}{\delta}$

Chebyshov Inequality. $P[|X - E[X]| > \delta] \leq \frac{\text{Var}[X]}{\delta^2}$

Proof. $1_{|X| \geq \delta} \leq \frac{1}{\delta} |X|$ and $1_{|X - E[X]| > \delta} \leq \frac{1}{\delta^2} (X - E[X])^2$

Lemma. Weak LLN holds assuming $\text{Var}[X_i] < \infty$.

Proof. $P\left[\left|\frac{1}{n} S_n - m\right| > \delta\right] \leq \frac{1}{\delta^2} \text{Var}\left(\frac{S_n}{n}\right) = \frac{1}{\delta^2 n^2} \sum_i \text{Var}(X_i)$
 $= \frac{1}{\delta^2 n} \text{Var}(X_i)$
 $\rightarrow 0 \quad (n \rightarrow \infty)$

Proof 1 of weak LLN. Let $X_i^c = X_i 1_{|X_i| \leq c}$

$$m^c = E[X_i^c].$$

$$\Rightarrow \frac{1}{n} \sum_i X_i = \frac{1}{n} \sum_i X_i^c + \frac{1}{n} \sum_i (X_i - X_i^c).$$

$$\begin{aligned} \Rightarrow E\left[\left|\frac{1}{n} \sum_i X_i - m\right|\right] &= E\left[\left|\frac{1}{n} \sum_i X_i^c - m^c\right|\right] \\ &\quad + E\left[\left|\frac{1}{n} \sum_i (X_i - X_i^c) - (m - m^c)\right|\right] \\ &\leq \underbrace{\text{Var}\left(\frac{1}{n} \sum_i X_i^c\right)^{\frac{1}{2}}}_{\leq \frac{C^2}{n} \rightarrow 0} + 2 E\left[|X_i - X_i^c|\right] \end{aligned}$$

$$\Rightarrow \limsup_{n \rightarrow \infty} E\left[\left|\frac{1}{n} \sum_i X_i - m\right|\right] \leq 2 E\left[|X_i - X_i^c|\right].$$

Since $\lim_{C \rightarrow \infty} E[|X_i - X_i^c|] = 0$, therefore

$$\lim_{n \rightarrow \infty} E\left[\left|\frac{1}{n} \sum_i X_i - m\right|\right] = 0$$

$\Rightarrow \frac{1}{n} X_i \rightarrow m$ in probability by Markov's ineq.

Proof 2 of weak LLN. Let ϕ be the characteristic function of X_i . Then $\frac{1}{n} S_n$ has characteristic fnctn.

$$\psi_n(t) = \phi\left(\frac{t}{n}\right)^n.$$

Since $E[X] < \infty$, ϕ is differentiable at 0,

$$\phi'(0) = im, \quad m = E[X_i].$$

$$\Rightarrow \phi\left(\frac{t}{n}\right) = 1 + \frac{imt}{n} + o\left(\frac{1}{n}\right).$$

$$\Rightarrow \lim_{n \rightarrow \infty} \psi_n(t) = \lim_{n \rightarrow \infty} \left(1 + \frac{imt}{n} + o\left(\frac{1}{n}\right)\right)^n = e^{imt} = \hat{S}_m(t).$$

$$\Rightarrow \text{Law}\left(\frac{1}{n}S_n\right) \Rightarrow \delta_m \text{ weakly.}$$

Exercise. Let X_1, X_2, \dots be a sequence of random variables and X a random variable (all on the same probability space).

(a) $X_i \rightarrow X$ in probability $\Rightarrow X_i \rightarrow X$ in law

(b) $X_i \rightarrow 0$ in law $\Rightarrow X_i \rightarrow 0$ in probability.

3.4 Central Limit Theorem

Thm. Let X_1, X_2, \dots be i.i.d., $E[X_i] = 0$, $E[X_i^2] = \sigma^2 \in (0, \infty)$.
 Then the distribution of $\frac{1}{\sqrt{n}} S_n = \frac{1}{\sqrt{n}} (X_1 + X_2 + \dots)$ converges weakly to the normal dist. with dens.

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

Proof. Let ϕ be the characteristic function of X_i .
 Then the characteristic function ψ_n of $\frac{1}{\sqrt{n}} S_n$ is

$$\psi_n(t) = \phi\left(\frac{t}{\sqrt{n}}\right)^n.$$

$$\begin{aligned} \text{Since } \phi(t) &= \phi(0) + \phi'(0)t + \frac{1}{2}\phi''(0)t^2 + o(t^2) \\ &= 1 + \frac{1}{2}\sigma^2 t^2 + o(t^2), \end{aligned}$$

$$\psi_n(t) = \left(1 + \frac{1}{2} \frac{\sigma^2 t^2}{n} + o\left(\frac{t^2}{n}\right)\right)^n = e^{n\left(\frac{1}{2} \frac{\sigma^2 t^2}{n} + o\left(\frac{t^2}{n}\right)\right)}$$

$$\Rightarrow \lim_{n \rightarrow \infty} \psi_n(t) = e^{\frac{1}{2} \sigma^2 t^2} = \hat{p}(t)$$

$$\Rightarrow \text{Law}\left(\frac{1}{\sqrt{n}} S_n\right) \Rightarrow N(0, \sigma^2).$$

3.5 Borel-Cantelli Lemma and Kolmogorov's 0-1 law

Borel-Cantelli Lemma For any events A_1, A_2, \dots

$$\sum_n P(A_n) < \infty \Rightarrow \underbrace{P\left[\omega: \lim_{n \rightarrow \infty} 1_{A_n}(\omega) = 0\right]}_{A_n \text{ happens finitely often}} = 1.$$

Moreover, if the A_i are independent, \Leftrightarrow .

Proof. $\sum_n P(A_n) < \infty \Rightarrow S(\omega) = \sum_n 1_{A_n}(\omega) < \infty$ a.e.
since $E[S] < \infty$.

$$\Rightarrow \lim_{n \rightarrow \infty} 1_{A_n} = 0 \text{ a.e.}$$

Suppose the A_i are indep. and $\sum P(A_n) = \infty$.

$$\begin{aligned} \Rightarrow P\left[\bigcup_{n \geq m} A_n\right] &= 1 - P\left[\bigcap_{n \geq m} A_n^c\right] \\ &= 1 - \prod_{n \geq m} \underbrace{(1 - P[A_n])}_{\leq e^{-P[A_n]}} \quad (\text{indep.}) \\ &\geq 1 - e^{-\sum_{n \geq m} P[A_n]} = 1 \end{aligned}$$

$$\Rightarrow P[A_n \text{ happens finitely often}] = 0.$$

Defn Given random variables X_1, X_2, \dots , let

$$\sigma(X_1, X_2, \dots) = \sigma\left(\bigcup_i X_i^{-1}(\mathcal{B}(\mathbb{R}))\right)$$

be the smallest σ -field with respect to which the X_i are all measurable.

Define $\mathcal{F}^n = \sigma(X_n, X_{n+1}, \dots)$, $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$

$$\mathcal{F}^\infty = \bigcap_n \mathcal{F}^n, \quad \mathcal{F}_\infty = \sigma(\bigcup \mathcal{F}_n)$$

\mathcal{F}^∞ is called the tail σ -field.

Kolmogorov's 0-1 law Suppose X_1, X_2, \dots are independent random variables. Then any $A \in \mathcal{F}^\infty$ has $P(A) = 0$ or $= 1$. Any \mathcal{F}^∞ -measurable random variable is almost surely constant.

Proof For any $A \in \mathcal{F}_n$, $B \in \mathcal{F}^{n+1}$ given by

$$A = \{X_1 \in A_1, \dots, X_n \in A_n\}, \quad A_i \in \mathcal{B}(\mathbb{R})$$

$$B = \{X_{n+1} \in B_{n+1}, \dots, X_{n+k} \in B_{n+k}\}, \quad B_i \in \mathcal{B}(\mathbb{R})$$

$P(A \cap B) = P(A)P(B)$ by independence of X_1, X_2, \dots .

The above A form a field that generates \mathcal{F}_n and the above B a field that generates \mathcal{F}^{n+1} . Thus

by uniqueness of extension F_n and F^{n+1} are independent.

$\Rightarrow F_n$ is indep. of F^∞

$\Rightarrow F_\infty$ is indep. of F^∞ .

Since $F^\infty \subset F_\infty$, for any $A \in F^\infty$,

$$P(A) = P(A \cap A) = P(A)^2$$

$\Rightarrow P(A) = 0$ or $P(A) = 1$.

3.6. Strong Law of Large Numbers

Strong Law of Large Numbers. Let X_1, X_2, \dots be i.i.d., $E[X_i] = \mu$. Then

$$\lim_{n \rightarrow \infty} \frac{S_n}{n} = \lim_{n \rightarrow \infty} \frac{X_1 + \dots + X_n}{n} = \mu \quad \text{a.s.}$$

Proof: if $E[X_i^4] = M < \infty$.

$$\begin{aligned} E[S_n^4] &= E\left[\left(\sum_{i=1}^n X_i\right)^4\right] \\ &= E\left[\sum_{i=1}^n X_i^4 + 6 \sum_{1 \leq i < j \leq n} X_i^2 X_j^2\right] \end{aligned}$$

$$\text{since } E[X_i X_j^3] = E[X_i X_j X_k^2] = E[X_i X_j X_k X_l] = 0$$

$$\leq nM + 6 \binom{n}{2} M = (n + 3n(n-1)) M \leq 3n^2 M$$

$$\text{since } E[X_i^2 X_j^2] = E[X_i^2] E[X_j^2]$$

$$\leq E[X_i^4]^{\frac{1}{2}} E[X_j^4]^{\frac{1}{2}} = M$$

$$\Rightarrow P\left[\underbrace{\frac{S_n}{n} - \mu}_{A_n} > \delta\right] \leq \frac{3n^2 M}{n^4 \delta^4}$$

$\Rightarrow \frac{S_n}{n} - \mu > \delta$ happens finitely often a.s.

Proof of general case. Let $Y_n = X_n 1_{|X_n| \leq n}$.

Step 1. It suffices to prove $\frac{1}{n} \sum Y_n \rightarrow 0$.

$$\sum_{n=1}^{\infty} P[|X_n| > n] \leq \int_0^{\infty} P[|X_1| > t] = E[|X_1|] < \infty$$

$$\Rightarrow P[|X_n| \neq |Y_n| \text{ i.o.}] = 0$$

$$\Rightarrow \left| \sum X_n - \sum Y_n \right| < \infty \text{ a.s.}$$

$$\Rightarrow \left| \frac{1}{n} \sum Y_n - \frac{1}{n} \sum X_n \right| \rightarrow 0$$

Step 2. $\sum_n \frac{1}{n^2} \text{Var}(Y_n) \leq 4 E[|X_1|] < \infty$.

$$\text{Var}(Y_n) \leq E[Y_n^2] = \int_0^{\infty} 2y P[|Y_n| > y] dy$$

$$\leq \int_0^{\infty} 2y P[|X_1| > y] dy.$$

$$\Rightarrow \sum \frac{1}{n^2} E[Y_n^2] \leq \sum \frac{1}{n^2} \int_0^{\infty} 1_{y < n} 2y P[|X_1| > y] dy$$

$$= \int_0^{\infty} \underbrace{\left(\sum_{n > y} \frac{1}{n^2} \right)}_{\leq 4} 2y P[|X_1| > y] dy$$

$$\leq 4 E[|X_1|]$$

Indeed, if $y \geq 1$

$$\sum_{n>y} \frac{1}{n^2} \leq \int_{\lceil y \rceil}^{\infty} \frac{1}{x^2} dx = \frac{1}{\lceil y \rceil} \leq \frac{1}{\lfloor y \rfloor}$$

$$\Rightarrow 2y \sum_{n>y} \frac{1}{n^2} \leq 2 \frac{y}{\lfloor y \rfloor} \leq 4$$

and if $y \in (0,1)$ then also

$$2y \sum_{n>y} \frac{1}{n^2} \leq 2 \sum_{n \geq 1} \frac{1}{n^2} \leq 2 \left(1 + \int_1^{\infty} \frac{1}{x^2} dx \right) \leq 4.$$

Step 3. $\frac{1}{n(k)} \underbrace{\left(Y_1 + \dots + Y_{n(k)} \right)}_{T_{n(k)}} \rightarrow 0 \text{ if } n(k) = \lfloor \alpha^k \rfloor, \alpha > 1$

$$\begin{aligned} \sum_k P(|T_{n(k)} - E T_{n(k)}| > \varepsilon n(k)) &\leq \frac{1}{\varepsilon^2} \sum_k \frac{1}{n(k)^2} \text{Var}(T_{n(k)}) \\ &\leq \frac{1}{\varepsilon^2} \sum_k \frac{1}{n(k)^2} \sum_{m=1}^{n(k)} \text{Var}(Y_m) \\ &= \frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \text{Var}(Y_n) \underbrace{\sum_{k: n(k) \geq n} n(k)^{-2}}_{\leq \sum_{k: n(k) \geq n} (2\alpha^k)^2} \\ &\leq \sum_{k: n(k) \geq n} (2\alpha^k)^2 \leq 4 \sum_{k: \alpha^k \geq n} \alpha^{2k} \leq 4(1-\alpha^2)^{-1} n^{-2} \\ &\leq \frac{4}{\varepsilon^2(1-\alpha^2)} \sum_n n^{-2} \text{Var}(Y_n) \leq \frac{16}{\varepsilon^2(1-\alpha^2)} E|X_1| \end{aligned}$$

By Borel-Cantelli, $\frac{1}{n(k)} T_{n(k)} - \underbrace{\frac{1}{n(k)} E[T_{n(k)}]}_{\rightarrow E[X, J] \text{ by DCT}} \rightarrow 0 \text{ a.s.}$

$$\Rightarrow \frac{1}{n(k)} T_{n(k)} \rightarrow 0$$

Step 4. $\frac{1}{n} (Y_1 + \dots + Y_n) \rightarrow 0$

WLOG $Y_i \geq 0$. Then

$$\frac{T_{n(k)}}{n(k+1)} \leq \frac{T_m}{m} \leq \frac{T_{n(k+1)}}{n(k)} \quad \text{if } n(k) \leq m < n(k+1)$$

Since $n(k+1)/n(k) \rightarrow 1$ ($k \rightarrow \infty$) LHS and RHS converge to 0 as $k \rightarrow \infty$ a.s.

$$\Rightarrow T_m/m \rightarrow 0 \text{ a.s.}$$

3.7. Infinitely divisible distributions

Defn. Let α be a prob. measure on \mathbb{R} and

$$e_\alpha(\alpha) = e^{-\alpha} \sum_{j=0}^{\infty} \frac{\alpha^j}{j!} \alpha^j \quad \text{where } \alpha^j = \underbrace{\alpha * \cdots * \alpha}_{j \text{ times.}}$$

The measure $e_\alpha(\alpha)$ is called compound Poisson distribution associated with α .

If $\alpha = \delta_1$, then $e_\alpha(\delta_1)$ is the std. Poisson distribution.

Fact $\widehat{e_\alpha(\alpha)}(t) = e^{-\alpha} \sum_{j=0}^{\infty} \frac{\alpha^j}{j!} \widehat{\alpha}(t)^j = e^{\alpha(\widehat{\alpha}(t) - 1)}$

$$e_{\alpha+\beta}(\alpha) = e_\alpha(\alpha) * e_\beta(\alpha)$$

$$e_\alpha(\alpha) = \underbrace{e_{\frac{\alpha}{n}}(\alpha) * \cdots * e_{\frac{\alpha}{n}}(\alpha)}_{n\text{-times}}$$

Defn. A prob. distr. β that can be written as

$$\beta = \underbrace{\beta_n * \cdots * \beta_n}_n$$

for some β_n and any n is infinitely divisible.

Exercise. If α and β are infinitely divisible then $\alpha * \beta$ is infinitely divisible.

Exercise. The normal distri. is infinitely divisible.

Consider r.v. $\{X_{n,j} : 1 \leq j \leq k_n\}$ with distr. $\alpha_{n,j}$.

Assume $\lim_{n \rightarrow \infty} \sup_{1 \leq j \leq k_n} P[X_{n,j} > \delta] = 0 \quad \forall \delta > 0$.

Let μ_n be the distr. of $\sum_{j=1}^{k_n} X_{n,j}$.

Accompanying Laws Thm. Assume $E[X_{n,j}] = 0$ for all n, j . Then

$$\mu_n \xrightarrow{\parallel} \mu \Leftrightarrow \lambda_n \xrightarrow{\parallel} \mu$$

$$\alpha_{n,1} * \dots * \alpha_{n,k_n} \quad \beta_{n,1} * \dots * \beta_{n,k_n}$$

where $\beta_{n,j} = e_j(\alpha_{n,j})$ is the associated compound Poisson distribution.

We will not prove this thm.

The characteristic function of λ_n is

$$\begin{aligned}
 \hat{\lambda}_n(t) &= \prod_{j=1}^{k_n} e^{\hat{\beta}_{n,j}(t) - 1} \\
 &= \exp \left[\sum_{j=1}^{k_n} (e^{itx} - 1) d\hat{\beta}_{n,j} \right] \\
 &= \exp \left[\int (e^{itx} - 1) dM_n \right] \\
 &= \exp \left[\int (e^{itx} - 1 - it\theta(x)) dM_n + itb_n \right] \\
 &\quad \text{where } a_n = \int \theta dM_n
 \end{aligned}$$

and θ is any bd. function. Assume

$$\theta(x) = x + O(x^3).$$

Defn. M is an admissible Lévy measure if

$$\int \frac{x^2}{1+x^2} dM < \infty.$$

Thm. For any admissible Lévy measure M , $\sigma^2 > 0, a \in \mathbb{R}$ there is an infinitely divisible measure μ s.t.

$$\hat{\mu}(t) = \exp \left[\int (e^{itx} - 1 - \theta(x)) dM + ita - \frac{\sigma^2 t^2}{2} \right]$$

Denote $\mu = e(M, \sigma^2, a)$.

Thm. $\mu_n = e(M_n, \sigma_n^2, a_n) \Rightarrow \mu$ iff $\mu = e(M, \sigma^2, a)$
 and the following conditions hold:

- $\lim_{n \rightarrow \infty} \int f dM_n = \int f dM \quad \forall f \text{ cont. bd. } f(x)=0, |x|<\varepsilon$
- $\lim_{n \rightarrow \infty} \left[\sigma_n^2 + \int_{-e}^e x^2 dM_n \right] = \left[\sigma^2 + \int_{-e}^e x^2 dM \right] \quad \forall e \text{ s.t. } M(\{-e\} \cup \{e\})=0.$
- $\lim_{n \rightarrow \infty} a_n = a.$

Cor. (Lévy-Khintchine repr.) Any infinitely divisible measure μ is of the form $\mu = e(M, \sigma^2, a)$.

4. Conditioning

4.1. Radon-Nikodym Theorem

Defn A singed measure on (Ω, Σ) is a set function $\lambda: \Sigma \rightarrow \mathbb{R}$ that is countably additive:

$$\lambda(\bigcup A_n) = \sum \lambda(A_n) \quad \text{for disjoint } A_n$$

Exerc. $\lambda(A_n) \rightarrow \lambda(A) \quad \text{for } A_n \uparrow A \text{ or } A_n \downarrow A.$

Example. Let μ_1 and μ_2 be finite positive measures. Then $\lambda = \mu_1 - \mu_2$ is a signed measure.

Hahn-Jordan Decomposition A signed measure λ on (Ω, Σ) can be decomposed as

$$\lambda = \mu_+ - \mu_-$$

where μ_{\pm} are positive measures that are orthogonal, i.e., there are disjoint $\Omega_{\pm} \in \Sigma$ s.t. $\mu_+(\Omega_-) = \mu_-(\Omega_+) = 0$.

Lemma. If λ is a signed measure on (Ω, Σ) then

$$\sup_{A \in \Sigma} |\lambda(A)| < \infty.$$

Proof. Facts: $x = a + b \Rightarrow |x| \geq |a| - |b|$

$$(i) \lambda(\Omega) \in \mathbb{R} \Rightarrow |\lambda(A)| - |\lambda(A^c)| \leq |\lambda(\Omega)| < \infty \quad \forall A \in \Sigma$$

$$(ii) \sup_{B \subset A} |\lambda(B)| < \infty \quad \sup_{B \subset A^c} |\lambda(B)| < \infty$$

$$\Rightarrow \sup_{B \subset A} |\lambda(B)| \leq \sup_B (|\lambda(B \cap A)| + |\lambda(B \cap A^c)|)$$

Suppose there is A s.t. $\sup_{B \subset A} |\lambda(B)| = \infty$. Then for any $N > 0$ there is A, C_A s.t.

$$|\lambda(A)| \geq N \quad \text{and} \quad \sup_{B \subset A} |\lambda(B)| = \infty.$$

Indeed, we can pick $E \subset A$ s.t. $|\lambda(E)| \geq 2N$ and then by (i) $|\lambda(A \setminus E)| - |\lambda(E)| \leq |\lambda(A)| < |\lambda(Q)| < \infty$ and $|\lambda(A \setminus E)| \geq 2N - |\lambda(Q)| \geq N$ if N is sufficiently large.

Thus both E and $A \setminus E$ satisfy the first condition.

By (ii) at least one of them has to satisfy the second condition

Iterating this, there are A_j s.t. $A_{j+1} \subset A_j$ and

$$|\lambda(A_j)| \geq j \quad \text{and} \quad \sup_{B \subset A_j} |\lambda(B)| = \infty.$$

Thus A_j is decreasing but $|\lambda(A_j)| \rightarrow \infty$, a contrad. to count. additivity which gives $\lambda(A_j) \rightarrow \lambda(A) \in \mathbb{R}$ if $A_j \downarrow A$.

Lemma. Suppose $\lambda(A) > 0$. Then there is $\bar{A} \subset A$ that is totally positive, i.e.,

$$\inf_{B \subset \bar{A}} \lambda(B) \geq 0$$

such that $\lambda(\bar{A}) \geq \lambda(A)$.

Proof. Let $m = \inf_{B \subset A} \lambda(B)$. Then

- $m \leq \lambda(\emptyset) = 0$
- $m > -\infty$ by the previous lemma.

WLOG we can assume $m \neq 0$, otherwise $\bar{A} = A$ works.

Choose $B_1 \subset A$ s.t. $\lambda(B_1) \leq \frac{m}{2} < 0$. Then

$A_1 = A \setminus B_1$ satisfies $\lambda(A_1) \geq \lambda(A)$

$$\inf_{B \subset A_1} \lambda(B) \geq \frac{m}{2}$$

Iteratively find A_j s.t. $A_{j+1} \subset A_j$ and

$$\lambda(A_j) \geq \lambda(A) \quad \text{and} \quad \inf_{B \subset A_j} \lambda(B) \geq \frac{m}{2^j}$$

Let $\bar{A} = \bigcap A_j$. Then $\lambda(\bar{A}) \geq \lambda(A)$ and $\inf_{B \subset \bar{A}} \lambda(B) \geq 0$.

Proof (Hahn-Jordan Decomp.)

Let $m_+ = \sup_A \lambda(A) < \infty$.

WLOG $m_+ > 0$, otherwise $\lambda(A) \leq 0 \forall A$ and $\Omega_+ = \Omega$, $\Omega_+ = \emptyset$ works.

There are A_j s.t. $\lambda(A_j) \geq m_+ - \frac{1}{j}$ and (last lemma)
 \bar{A}_j totally positive s.t. $\lambda(\bar{A}_j) \geq m_+ - \frac{1}{j}$.

$\Rightarrow \Omega_+ = \bigcup_j \bar{A}_j$ is totally positive

$$\lambda(\Omega_+) = m_+.$$

Claim: $\Omega_- = \Omega \setminus \Omega_+$ is totally negative

Otherwise there is $B \subset \Omega_-$ s.t. $\lambda(B) > 0$.

$\Rightarrow \lambda(\Omega_+ \cup B) = \lambda(\Omega_+) + \lambda(B) > m_+$ — contradiction.

Define $\mu_{\pm} = \lambda|_{\Omega_{\pm}}$.

Defn If λ is a signed measure with Hahn-Jordan decomposition $\lambda = \mu_+ - \mu_-$ then the measure

$$|\lambda| = \mu_+ + \mu_-$$

is the total variation measure of λ .

Example. Let μ be a positive measure and $f: \Omega \rightarrow \mathbb{R}$ be μ -integrable. Then

$$\lambda(A) = \int_A f d\mu$$

defines a signed measure, $\mu_+(A) = \int f^+ d\mu$, $\Omega_\pm = \{ \pm f \geq 0 \}$, and $|\lambda|(A) = \int_A |f| d\mu$.

Defn. A signed measure λ is absolutely continuous with respect to a positive measure μ , written $\lambda \ll \mu$, if

$$\mu(A) = 0 \Rightarrow \lambda(A) = 0 \quad \forall A \in \Sigma.$$

Radon-Nikodym Thm. If $\lambda \ll \mu$ on (Ω, Σ) then there is a μ -integrable (Ω, Σ) -measurable function f s.t.

$$\lambda(A) = \int_A f d\mu \quad \forall A \in \Sigma.$$

f is uniquely defined almost everywhere.

Defn. $f = \frac{d\lambda}{d\mu}$ is the Radon-Nikodym derivative of λ with respect to μ .

Proof. Let

$\lambda_a = \lambda - a\mu$, $\Omega_+(a) = \text{totally pos. subset of } \lambda_a$.
(defined up to λ -measure 0 set)

Note if $\frac{d\lambda}{d\mu} = f$ then $\{f > a\} = \Omega_+(a)$ up to meas. 0.

Up to sets of measure 0, $\Omega_+(a) \subset \Omega_+(b)$ if $b < a$.

WLOG, by removing null sets, $\Omega_+(a)$ is decreasing along $a \in \mathbb{Q}$.

Thus set

$$f(\omega) = \sup\{a \in \mathbb{Q} : \omega \in \Omega_+(a)\}.$$

Claim: f is measurable

$$\begin{aligned} \{\omega : f(\omega) > x\} &= \{\omega : \omega \in \Omega_+(y) \text{ for some } y > x, y \in \mathbb{Q}\} \\ &= \bigcup_{\substack{y > x \\ y \in \mathbb{Q}}} \Omega_+(y) \Rightarrow f \text{ is measurable.} \end{aligned}$$

Claim: $\lambda(|f| = \infty) = \mu(|f| = \infty) = 0$

$$\begin{aligned} A \subset \bigcap_a \Omega_+(a) &\Rightarrow \lambda(A) - a\mu(A) \geq 0 \quad \forall a \in \mathbb{Q} \\ &\Rightarrow \mu(A) = 0 \\ &\Rightarrow \lambda(A) = 0 \quad \text{by absolute cont.} \end{aligned}$$

$$\Rightarrow \lambda(f = +\infty) = \mu(f = +\infty) = 0$$

$$\begin{aligned}
 A \cap \Omega_+(a) = \emptyset \quad \forall a &\Rightarrow \lambda(A) - a\mu(A) \leq 0 \quad \forall a \in \mathbb{Q} \\
 &\Rightarrow \mu(A) = 0 \\
 &\Rightarrow \lambda(A) = 0 \\
 \Rightarrow \lambda(f = -\infty) = \mu(f = -\infty) &= 0
 \end{aligned}$$

Claim: $\int f \, d\mu < \infty$ and $\lambda(A) = \int_A f \, d\mu$.

$$\begin{aligned}
 \text{Let } E_{a,b} &= \{\omega : a \leq f(\omega) \leq b\} \\
 &\subseteq \Omega_+(a') \cap \Omega_+(b')^c \quad \forall a' < a, b' > b.
 \end{aligned}$$

$$\begin{aligned}
 \Rightarrow a\mu(A) &\leq \lambda(A) \leq b\mu(A) \quad \forall A \in E_{a,b} \\
 \Rightarrow \lambda(A) - (b-a)\mu(A) &\leq a\mu(A) \\
 \lambda(A) + (b-a)\mu(A) &\geq b\mu(A)
 \end{aligned}$$

Let $E_n = E_{nh, (n+1)h}$ for some fixed $h > 0$, $n \in \mathbb{Z}$.

$$\begin{aligned}
 \Rightarrow \lambda(A \cap E_n) - h\mu(A \cap E_n) &\leq nh\mu(A \cap E_n) \\
 &\leq \int_{A \cap E_n} f \, d\mu \\
 &\leq (n+1)h\mu(A \cap E_n) \\
 &\leq \lambda(A \cap E_n) + h(A \cap E_n)
 \end{aligned}$$

$$\Rightarrow \lambda(A) - h\mu(A) \leq \int_A f d\mu \leq \lambda(A) + h\mu(A).$$

Exercise: Prove that f is integrable and

$$\lambda(A) = \int_A f d\mu.$$

Rk. If f and \hat{f} are as in the theorem then $f = \hat{f}$ a.e.

Rk. If $\lambda(A) \geq 0 \quad \forall A \in \Sigma$ then $f \geq 0$ a.e.

4.2. Conditional expectation

Defn. Let (Ω, Σ, P) be a probability space and $B \in \Sigma$ satisfy $P(B) > 0$. Then the conditional probability of $A \in \Sigma$ given B is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

The conditional expectation is defined by

$$E[X|A] = \frac{\int_A X(\omega) dP}{P(A)}.$$

Let \bar{z} be a r.v. taking discrete values a_j on A_j with $\Omega = \bigcup A_i$ disjoint.

$$\Rightarrow P(B) = \sum_j P(A_j) P(B|A_j) = \sum_j P(B|\bar{z}=a_j) P(\bar{z}=a_j)$$

How to extend this to $P(\bar{z}=a)=0$?

In the case \bar{z} takes discrete values, consider

$$\begin{aligned} \Sigma' &= \{\{\bar{z} \in E\} : E \subset \{a_j\}\} \quad (\text{the } \sigma\text{-field gen. by } \bar{z}), \\ &= \sigma(A_j) \end{aligned}$$

$$\Rightarrow P(B|\Sigma') : \omega \in \Omega \mapsto P(B|A_j) \quad \text{if } \omega \in A_j$$

$$E[X|\Sigma'] : \omega \in \Omega \mapsto E[X|A_j] \quad \text{if } \omega \in A_j$$

are Σ' -measurable random variables.

Let $\Sigma' \subset \Sigma$ be a sub- σ -field.

If $\lambda \ll \mu$ then the RN thm can be applied on (Ω, Σ) and (Ω, Σ') giving two densities

$$f = \frac{d\lambda}{d\mu} \Big|_{\Sigma} \quad f' = \frac{d\lambda}{d\mu} \Big|_{\Sigma'}$$

Note f is Σ -meas. and f' is Σ' -meas. ($\Rightarrow \Sigma$ -meas), but f is not Σ' -meas. in general.

Defn. Let X be a integrable r.v. on (Ω, Σ, P) and $\Sigma' \subset \Sigma$ a sub- σ -field. Define

$$E[X|\Sigma'] = \frac{d\lambda}{dP} \Big|_{\Sigma'} \text{ with } \lambda(A) = \int_A X(\omega) dP$$

Thus $E[X|\Sigma']$ is a Σ' -measurable random variable.

Fact. (i) $E[1|\Sigma'] = 1$ a.e. $[\lambda = P \Rightarrow \frac{d\lambda}{dP} \Big|_{\Sigma'} = 1]$

(ii) $E[E[X|\Sigma']] = E[X]$ $[\int \frac{d\lambda}{dP} \Big|_{\Sigma'} dP = \int \frac{d\lambda}{dP} \Big|_{\Sigma'} dP \Big|_{\Sigma'} = \int d\lambda]$

(iii) $X \geq 0 \Rightarrow E[X|\Sigma'] \geq 0$ a.e.

(iv) $E[a_1 X_1 + b_1 X_2 |\Sigma'] = a_1 E[X_1|\Sigma'] + b_1 E[X_2|\Sigma']$ a.e.
 $\forall a_1, a_2 \text{ const}$

Prop $E[|E[X|\Sigma]|] \leq E[|X|]$

Proof. Let $d\lambda = X dP$. Then

$$\int |X| dP = \int X_+ dP + \int X_- dP = \sup_{A \in \Sigma} \lambda(A) - \inf_{A \in \Sigma} \lambda(A)$$

$$\int |E[X|\Sigma]| dP = \dots = \sup_{A \in \Sigma'} \lambda(A) - \inf_{A \in \Sigma'} \lambda(A).$$

Prop If Z is a bounded Σ' -meas. random var.,

$$E[XZ|\Sigma'] = Z E[X|\Sigma'] \text{ a.e.}$$

Proof. Let $Z = 1_E$, $E \in \Sigma'$. Then

$$\lambda^{XZ}(A) = \int_A 1_E X dP = \int_A X dP = \lambda^X(A \cap E).$$

$$\Rightarrow \frac{d\lambda^{XZ}}{dP|_{\Sigma'}} = \frac{d\lambda^X}{dP|_{\Sigma'}} 1_E$$

Extend from indicator to simple to bounded.

Tower property. If $\Sigma'' \subset \Sigma' \subset \Sigma$ then

$$E[X|\Sigma''] = E[E[X|\Sigma']|\Sigma'']$$

$$\text{Proof. } E[X|\Sigma'] = \frac{d\lambda}{dP} \Big|_{\Sigma'}$$

$$\Rightarrow E[X|\Sigma']|_{\Sigma''} = \frac{d\lambda}{dP} \Big|_{\Sigma''}, \quad \mu(A) = \int_A \frac{d\lambda}{dP} \Big|_{\Sigma'} dP$$

$$= \int \frac{d\lambda}{dP} dP = \int X dP$$

$$= \frac{d\lambda}{dP} \Big|_{\Sigma''}$$

Conditional Jensen ineq. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be convex.

Then

$$E[\phi(X)|\Sigma'] \geq \phi(E[X|\Sigma']) \quad \text{a.e.}$$

$$E[\phi(X)] \geq E[\phi(E[X|\Sigma'])]$$

Proof. Since ϕ is convex,

$$\phi = \sup_{y \in \mathbb{R}} [yX - \phi^*(y)] = \sup_{y \in \mathbb{R}} [yX - \phi^*(y)]$$

$$\Rightarrow E[\phi(X)|\Sigma] \geq E\left[\sup_{y \in \mathbb{R}} [yX - \phi^*(y)]|\Sigma'\right]$$

$$\geq \sup_{y \in \mathbb{R}} E[yX - \phi^*(y)|\Sigma'] \quad \text{a.e.}$$

$$= \phi(E[X|\Sigma'])$$

Let $L^2(\Omega, \Sigma, \mu) = \{f: \Omega \rightarrow \mathbb{R}, \Sigma\text{-meas.}: \int |f|^2 d\mu < \infty\}/\sim$
 where $f \sim g$ if $f = g$ a.e.

$L^2(\Omega, \Sigma, \mu)$ is a Hilbert space with inner product

$$(X, Y) = \int XY d\mu$$

Fact. The map $X \mapsto E[X|\Sigma']$ is the orthogonal projection from $L^2(\Omega, \Sigma, \mu)$ to $L^2(\Omega, \Sigma', \mu)$.

Prop. The conditional expectation $Y = E[X|\Sigma']$ is the unique (up to a.e.) Σ' -measurable r.v. st.

$$\int_A X dP = \int_A Y dP \quad \forall A \in \Sigma'$$

Proof. If Y and Y' satisfy the conditions,

$$\int_A (Y - Y') dP = 0 \quad \forall A \in \Sigma'$$

Let $A = \{Y - Y' \geq \varepsilon > 0\}$. Then

$$\varepsilon P(A) \leq \int_A (Y - Y') dP = 0 \Rightarrow P(A) = 0.$$

$\Rightarrow P(Y - Y' > 0) = 0$, likewise $P(Y' - Y > 0) = 0$.

4.3. Conditional probability

Define $P(\omega, A|\Sigma') = E[1_A|\Sigma'](\omega)$.

Thm.

(i) $P(\omega, \Omega|\Sigma') = 1, P(\omega, \emptyset|\Sigma') = 0$ a.e.- ω

(ii) $0 \leq P(\omega, A|\Sigma') \leq 1$ a.e.- $\omega \quad \forall A \in \Sigma$

(iii) For any count. disjoint $A_i \in \Sigma$,

$$P(\omega, \bigcup A_i|\Sigma') = \sum_i P(\omega, A_i|\Sigma') \quad \text{a.e.-}\omega$$

(iv) $P(\omega, A|\Sigma') = 1_A(\omega) \quad \text{a.e.-}\omega \quad \forall A \in \Sigma'$

Proof. Exercise from properties of $E[\cdot|\Sigma']$

Rk. Each case involves possibly different null sets (depending on the A_i).

Can one construct a version of the cond. prob. involving only one null set for all properties?

This is called regular conditional probability when possible.

Thm. Let P be a prob. measure on $([0,1], \mathcal{B}([0,1]))$. Let $\Sigma' \subset \mathcal{B}([0,1])$ be a sub- σ -field. Then there exist prob. distr. Q_x , $x \in [0,1]$ s.t.

$x \mapsto Q_x(A)$ is Σ' -meas. $\forall A \in \mathcal{B}([0,1])$

$$\int f(y) Q_x(dy) = E[f | \Sigma] \quad P\text{-a.e.}$$

If Σ' is count. generated then

$$Q_x(A) = 1_A(x) \quad \forall A \in \mathcal{B}([0,1]).$$

5. Markov Chains

5.1. Definition. Let (X, \mathcal{F}) be a state space.

X_0 is distr. according to some prob. μ_0 on (X, \mathcal{F}) .

Given $X_0 = x_0, \dots, X_{k-1} = x_{k-1}$, we would like to define the distribution of X_k by

$$P(X_k \in A) = \pi_k(x_0, \dots, x_{k-1}; A).$$

Assume:

- for each (x_0, \dots, x_{k-1}) , π_k is a prob. meas. on (X, \mathcal{F}) .
- for each $A \in \mathcal{F}$, $(x_0, \dots, x_{k-1}) \mapsto \pi_k(x_0, \dots, x_{k-1}; A)$ is measurable w.r.t. (X^k, \mathcal{F}^k) (product space).

Then if μ_{k-1} is the distribution of (X_0, \dots, X_{k-1}) on (X^k, \mathcal{F}^k) define μ_k on $(X^{k+1}, \mathcal{F}^{k+1}) = (X^k, \mathcal{F}^k) \times (X, \mathcal{F})$ by

$$\mu_k(A \times A_k) = \int \pi_k(\cdot, A_k) d\mu_{k-1}.$$

By Kolmogorov's consistency thm, one can define a measure P on X^N in this way (if the conditions are satisfied, which is the case if X is a complete separable metric space).

Defn. (X_k) is a Markov process if the transition probabilities satisfy

$$\pi_k(x_0, \dots, x_{k-1}; \cdot) = \pi_{k-1, k}(x_{k-1}; \cdot) \quad \forall k$$

It is a time-homogeneous Markov process if

$$\pi_{k-1, k}(x_{k-1}; \cdot) = \pi(x_{k-1}; \cdot) \quad \forall k.$$

For a Markov process, define

$$\begin{aligned} \pi_{k, k+e+1}(x, A) &= \int \pi_{k, k+e}(x, dy) \pi_{k+e, k+e+1}(y, A) \\ &= \int \pi_{k, k+1}(x, dy_{k+1}) \cdots \pi_{k+e, k+e+1}(y_{k+e}, A). \end{aligned}$$

Chapman-Kolmogorov eqns.

$$\pi_{k, n}(x, A) = \int \pi_{k, m}(x, dy) \pi_{m, n}(y, A) \quad \forall k < m < n$$

In the time-homogeneous case, define

$$\pi^{(k+1)}(x, A) = \int \pi^{(k)}(x, dy) \pi(y, A), \quad \pi^{(1)}(x, A) = \pi(x, A).$$

Chapman-Kolmogorov eqns.

$$\pi^{(k+e)}(x, A) = \int \pi^{(k)}(x, dy) \pi^{(e)}(y, A)$$

Prop. Let $\Sigma_m = \sigma(X_0, \dots, X_m)$. Then

$$P[X_n \in A | \Sigma_m] = \pi_{m,n}(X_m, A) \text{ a.e. if } m < n$$

Proof. Need to show that

$$P[\{X_n \in A\} \cap B] = \int_B \pi_{m,n}(X_m, A) dP \quad \forall B \in \mathcal{I}_m, A \in \mathcal{F}.$$

But indeed,

$$\begin{aligned} & P[\{X_n \in A\} \cap B] \\ &= \int_{\{X_n \in A\} \cap B} dP = \int_B d\mu_0(x_0) \pi_{0,1}(x_0, dx_1) \cdots \pi_{m-1,m}(x_{m-1}, dx_m) \\ & \quad \times \underbrace{\int \pi_{m,m+1}(x_m, dx_{m+1}) \cdots \pi_{n-1,n}(x_{n-1}, A)}_{\pi_{m,n}(X_m, A)} \\ &= \int_B \pi_{m,n}(X_m, A) dP. \end{aligned}$$

Thm. Let P be a probability measure on the product space $X \times Y \times Z$ with product σ -field. TFAE:

- (i) $E[g(Z) | X, Y] = E[g(Z) | Y] \quad \forall g: Z \rightarrow \mathbb{R}$ bd.
- (ii) $E[f(X) | Y, Z] = E[f(X) | Y] \quad \forall f: X \rightarrow \mathbb{R}$ bd.
- (iii) $E[f(X)g(Z) | Y] = E[f(X) | Y]E[g(Z) | Y]$
 $\forall f: X \rightarrow \mathbb{R}, g: Z \rightarrow \mathbb{R}$ bd.

Proof. Assume (i). Then (iii) holds:

$$\begin{aligned} E[f(X)g(Z) | Y] &= E[\underbrace{E[f(X)g(Z) | X, Y]}_{\stackrel{(i)}{=} f(X)E[g(Z) | X, Y]} | Y] \\ &\stackrel{(i)}{=} f(X)E[g(Z) | Y] \end{aligned}$$

Assume (iii). Then $= E[f(X) | Y]E[g(Z) | Y]$

$$\begin{aligned} &E[f(X)b(Y)E[g(Z) | X, Y]] \\ &= E[f(X)b(Y)g(Z)] = E[b(Y)\underbrace{E[f(X)g(Z) | Y]}_{\stackrel{(iii)}{=} E[b(Y)E[f(X) | Y]E[g(Z) | Y]}]} \\ &= E[b(Y)f(X)E[g(Z) | Y]] \end{aligned}$$

$$\Leftrightarrow E[f(X)b(Y)(E[g(Z)|X,Y] - E[g(Z)|Y])] = 0$$

Since f and b are arbitrary, also

$$E[h(X,Y) \underbrace{(E[g(Z)|X,Y] - E[g(Z)|Y])}] = 0$$

Taking $h(X,Y) = \dots$, this implies

$$E[g(Z)|X,Y] = E[g(Z)|Y] \text{ a.e.}$$

Interpretation. X = past, Y = present, Z = future

Defn. A prob. measure μ on (X, \mathcal{F}) is an invariant measure for the Markov chain if

$$\mu(A) = \int \pi(y, A) \mu(dy) \quad \forall A \in \mathcal{F}.$$

This is written also as $\mu = \mu\pi$.

Rk. If $X_0 \sim \mu$ and μ is invariant, then P has marginal μ at every time, and (X_0, X_1, \dots) can be extended to a stationary process $(X_n)_{n \in \mathbb{Z}}$.

5.2. Stopping times and strong Markov property

Defn. A random variable $\tau: \Omega \rightarrow \mathbb{N}_0 \cup \{\infty\}$ is a stopping time if

$\{\omega: \tau(\omega) \leq n\}$ is Σ_n -measurable $\forall n$

$\Leftrightarrow \{\omega: \tau(\omega) = n\}$ is Σ_n -measurable $\forall n$.

Example.

- $\tau = \min\{n: X_n \in A\}$ is a stopping time.
- $\tau = \min\{n: X_{n+1} \in A\}$ is not a stopping time.

Fact. Let τ be a stopping time. Then

$$\Sigma_\tau = \{A: A \in \Sigma_\infty \text{ and } A \cap \{\tau \leq n\} \in \Sigma_n \text{ for all } n\}$$

is a σ -field and τ is Σ_τ -measurable.

Strong Markov Property. Let τ be a stopping time. Then a.e. on $\{\tau < \infty\}$:

$$P[X_{\tau+1} \in A_1, \dots, X_{\tau+n} \in A_n | \Sigma_\tau]$$

$$= \int_{A_1} \dots \int_{A_n} \pi(X_\tau, dx_1) \dots \pi(X_{n-1}, dx_n)$$

Proof. Let $A \in \Sigma_{\tau}$ and $A \subset \{\tau < \infty\}$. Then

$$\begin{aligned}
 & P[A \cap \{X_{\tau+1} \in A_1\} \cap \dots \cap \{X_{\tau+n} \in A_n\}] \\
 &= \sum_k P[A \cap \{\tau = k\} \cap \{X_{k+1} \in A_1\} \cap \dots \cap \{X_{k+n} \in A_n\}] \\
 &= \sum_k \int_{A \cap \{\tau = k\}} dP \left(\int_{A_1} \dots \int_{A_n} \pi(x_k, dx_{k+1}) \dots \pi(x_{k+n-1}, dx_{k+n}) \right) \\
 &= \sum_k \int_{A \cap \{\tau = k\}} dP \left(\int_{A_1} \dots \int_{A_n} \pi(x_{\tau}, dx_{k+1}) \dots \pi(x_{k+n-1}, dx_{k+n}) \right) \\
 &= \int_A dP \int_{A_1} \dots \int_{A_n} \pi(x_{\tau}, dx_1) \dots \pi(x_{n-1}, dx_n).
 \end{aligned}$$

5.3. Countable state space

We assume the state space \mathcal{X} is $\{1, 2, \dots\}$ and consider time-homogeneous Markov chains.

Then $\pi(x, y) = \pi(x, \{y\})$, $x, y \in \mathcal{X}$, is a matrix s.t.

$$\pi(x, y) \geq 0, \quad \sum_y \pi(x, y) = 1 \quad \forall x.$$

Such matrices are called stochastic matrices.

$\pi^{(n)}(x, y)$ = entries of the n -th matrix power of π .

$\pi^{(0)}(x, y) = \delta_{x,y}$ = entries of identity matrix by conv

Defn. The state $x \in \mathcal{X}$ communicates with $y \in \mathcal{X}$ if

$$\pi^{(n)}(x, y) > 0 \quad \text{for some } n.$$

The Markov chain is irreducible if all states communicate with each other.

Let τ_x be the first passage time to x :

$$\tau_x = \inf\{n \geq 1 : X_n = x\}$$

Let $f_n(x) = \underset{\substack{\uparrow \\ X_0=x}}{P_x} [\tau_x = n]$.

$$\begin{aligned} f_n(x) &= P_x[X_j \neq x \text{ for } 1 \leq j \leq n-1, X_n = x] \\ &= \sum_{\substack{y_1 \neq x \\ y_2 \neq x \\ \vdots \\ y_{n-1} \neq x}} \pi(x, y_1) \pi(y_1, y_2) \cdots \pi(y_{n-1}, x) \end{aligned}$$

and

$$P_x(\tau_x < \infty) = \sum_n f_n(x) \leq 1.$$

Defn. The state x is recurrent if $P_x(\tau_x < \infty) = 1$
transient otherwise.

$$\text{Let } V_x = \# \text{ visits to } x = \sum_{n=0}^{\infty} 1_{X_n=x}$$

Fact. x is recurrent $\Leftrightarrow P_x[V_x = \infty] = 1 \Leftrightarrow E_x[V_x] = \infty$
 x is transient $\Leftrightarrow P_x[V_x = \infty] = 0 \Leftrightarrow E_x[V_x] < \infty$

Proof. By the strong Markov property,

$$P_x[V_x > r] = P_x[\tau_x < \infty]^r$$

$$P_x[V_x = \infty] = \lim_{r \rightarrow \infty} P_x[V_x > r] = \lim_{r \rightarrow \infty} P_x[\tau_x < \infty]^r = \begin{cases} 1 & \text{rec.} \\ 0 & \text{trans.} \end{cases}$$

$$E_x[V_x] = \sum_{r \geq 1} P[V_x > r] = \frac{1}{1 - P_x[\tau_x < \infty]} \begin{cases} = \infty & \text{rec} \\ < \infty & \text{trans.} \end{cases}$$

Define the Green's function

$$G(x, y) = E_x[V_y] = \sum_n \pi^{(n)}(x, y)$$

Prop. For an irreducible chain, either all states are transient or all are recurrent.

$$G(x, x) = \infty \text{ for some } x \Rightarrow G(x, x) = \infty \text{ for all } x.$$

Proof. By irreducibility there exist n, m s.t.

$$\pi^{(n)}(x, y) > 0, \pi^{(m)}(y, x) > 0.$$

$$\Rightarrow \pi^{(r+n+m)}(x, x) \geq \pi^{(n)}(x, y) \pi^{(r)}(y, y) \pi^{(m)}(y, x).$$

$$\Rightarrow \underbrace{\sum_r \pi^{(r)}(y, y)}_{G(y, y)} \leq \frac{1}{\pi^{(n)}(x, y) \pi^{(m)}(y, x)} \underbrace{\sum_r \pi^{(r)}(x, x)}_{G(x, x)}$$

Therefore $G(y, y) = \infty \Rightarrow G(x, x) = \infty$ and vice versa.

Lemma. $G(x, x) = \frac{1}{1 - P_x(T_x < \infty)}$

$$G(x, y) = P_x(T_y < \infty) G(y, y)$$

and if the chain is irreducible it is recurrent iff

$$G(x, y) = \infty \text{ & } P_x(T_y < \infty) = 1 \quad \text{for all } x, y.$$

Proof. $G(x, x) = 1_{\{\tau_x < \infty\}}$ was shown in last pf.

$$E_x[V_y] = E_x[\underbrace{E[V_y | \Sigma_y]}_{E_y[V_y]} 1_{\tau_y < \infty}]$$

$E_y[V_y]$ by strong Markov property

$$= P_x(\tau_y < \infty) E_y[V_y]$$

If the chain is irreducible then for any y there is n s.t.

$$P_x(\tau_y < \infty) \geq \pi^{(n)}(x, y) > 0.$$

Moreover, if the chain is recurrent,

$$1 = P_x[V_x = \infty] = P_x\left[\sum_k 1_{X_k=x} = \infty\right]$$

$$\leq P_x\left[\sum_{k \geq n+1} 1_{X_k=x} > 0\right]$$

$$\begin{aligned} \text{(Markov prop.)} &= \underbrace{\sum_z P_x[X_n=z]}_{\pi^{(n)}(x, z)} \underbrace{P_z\left[\sum_{k \geq 1} 1_{X_k=x} > 0\right]}_{P_z[\tau_x < \infty]} \end{aligned}$$

Since $\sum \pi^{(n)}(x, z) = 1$ and $\pi^{(n)}(x, y) > 0$,

$$P_y[\tau_x < \infty] = 1.$$

Fact. If $P_x[\tau_y < \infty] > 0$ then $P_x[\tau_y < \tau_x] > 0$.

Proof. Suppose $P_x[\tau_y < \tau_x] = 0$. Then $P_x[\tau_y < \infty] = 0$ by the strong Markov property.

Let $m(x) = E_x[\tau_x]$ be the expected return time.

Defn. The recurrent state x is

positive recurrent if $m(x) < \infty$

null recurrent if $m(x) = \infty$.

Prop. For an irreducible recurrent chain, all states are of the same recurrence type.

Proof.

$$\begin{aligned} E_x[\tau_x] &\geq E_x[\tau_x 1_{\tau_y < \tau_x}] \\ &= E_x[E_y[\tau_x] 1_{\tau_y < \tau_x}] = E_y[\tau_x] \underbrace{P(\tau_y < \tau_x)}_{P > 0} \\ \Rightarrow E_y[\tau_x] &\leq \frac{1}{P} E_x[\tau_x] \end{aligned}$$

In the other direction,

$$E_x[\tau_y] \leq E_x[\tau_x 1_{\tau_y \leq \tau_x}] + \underbrace{E_x[\tau_y 1_{\tau_x < \tau_y}]}_{}$$

$$E_x[(\tau_x + E_x[\tau_y]) 1_{\tau_x < \tau_y}]$$

$$= E_x[\tau_x] + E_x[\tau_y] (1-p)$$

$$\Rightarrow E_x[\tau_y] \leq \frac{1}{p} E_x[\tau_x]$$

Thus

$$E_y[\tau_y] \leq E_y[\tau_y 1_{\tau_y > \tau_x}] + E_y[\tau_x 1_{\tau_y \leq \tau_x}]$$

$$= E_y[(\tau_x + E_x[\tau_y]) 1_{\tau_y > \tau_x}] + E_y[\tau_x 1_{\tau_y \leq \tau_x}]$$

$$\leq E_y[\tau_x] + E_x[\tau_y] \leq \frac{2}{p} E_x[\tau_x]$$

Thus if x is pos. rec. so is y .

Defn. A state x is a periodic if $\pi^{(n)}(x, x) > 0$ for all $n \geq n_0(x)$. A Markov chain is a periodic if all states are aperiodic.

Exercise. For an irreducible Markov chain, if there is an aperiodic state, all states are aperiodic.

Thm. Consider an aperiodic positive recurrent Markov chain. Then, for all $x, y,$

$$\lim_{n \rightarrow \infty} \pi^{(n)}(x, y) = q(y) = \frac{1}{m(y)}.$$

and q is an invariant distribution:

$$\sum q(x) = 1, \quad q\pi = q \quad (\text{i.e. } \sum_x q(x)\pi(x,y) = q(y))$$

Proof. Fix x and set

$$f_n = P_x[\tau_x = n], \quad p_n = \pi^{(n)}(x, x), \quad m = m(x).$$

Then:

$$(k) \left\{ \begin{array}{l} f_n \geq 0 \text{ for all } n, \quad f_n > 0 \\ \sum_n f_n = 1, \quad \sum_n n f_n = m \\ p_n = \sum_{j=1}^n f_j p_{n-j}, \quad p_0 = 1 \end{array} \right. \quad \begin{array}{l} \text{for } n \in S \text{ where} \\ S \text{ is such that} \\ \text{every } n \geq n_0 \text{ can be} \\ \text{written } n = j_1 + \dots + j_k, \quad j_i \in S \end{array}$$

Lemma. If (f) holds then

$$\lim_{n \rightarrow \infty} p_n = \frac{1}{m}$$

The lemma implies $\lim_{n \rightarrow \infty} \pi^{(n)}(x, x) = \frac{1}{m(x)}$.

For general x, y ,

$$\pi^{(n)}(x, y) = \sum_k P_x[\tau_y = k] \pi^{(n-k)}(y, y)$$

and $\sum_k P_x[\tau_y = k] = P_x[\tau_y < \infty] = 1$ by recurrence. Thus

$$\lim_{n \rightarrow \infty} \pi^{(n)}(x, y) \stackrel{\text{(DT)}}{=} \sum_k P_x[\tau_y = k] \frac{1}{m(y)} = \frac{1}{m(y)} \quad \forall x, y.$$

Claim: $\sum_y q(y) = 1$.

Indeed, by Fatou,

$$\sum_y q(y) = \sum_y \lim_{n \rightarrow \infty} \pi^{(n)}(x, y) \leq \liminf_{n \rightarrow \infty} \sum_y \pi^{(n)}(x, y) = 1.$$

On the other hand,

$$\pi^{(n+1)}(x, y) = \sum_z \pi^{(n)}(x, z) \pi(z, y)$$

$$\Rightarrow q(y) \geq \sum_z q(z) \pi(z, y) \quad \text{by Fatou}$$

$$\Rightarrow \sum_y q(y) \geq \sum_{z,y} q(z) \pi(z, y) = \sum_z q(z)$$

$$\Rightarrow q(y) = \sum_z q(z) \pi(z, y)$$

$$\Rightarrow q(y) = \sum_z q(z) \pi^{(n)}(z, y) \stackrel{(n \rightarrow \infty)}{=} \sum_z q(z) \sum_y q(y) = 1.$$

Proof. of lemma. Clearly $p_n \leq 1$ for all n .

Choose a subseq. s.t. $p_{n_k} \rightarrow q_0 = \limsup_n p_n$.

and $p_{n_k+j} \rightarrow q_j$ for all $j \in \mathbb{Z}$.

$$\Rightarrow q_n = \sum_{j=1}^{\infty} f_j q_{n-j} \text{ for all } n \in \mathbb{Z}. \quad (*_n)$$

$$\Rightarrow q_0 = \sum_{j=1}^{\infty} f_j q_{-j} \quad (*_0)$$

Claim: $q_j = q_0$ for all j

Note that $q_j \leq q_0 = \limsup p_n$ for all j .

Since $f_j > 0$ for all $j \in S$, $q_{-j} = q_0$ for $j \in S$ by $(*_0)$.

Then $q_{-j} = q_0$ for $j = j_1 + j_2, j_i \in S$ by $(*_j)$.

Then $q_{-j} = q_0$ for $j = j_1 + \dots + j_k, j_i \in S$ again by $(*_j)$.

By assumption on S , $q_{-j} = q_0$ for $j \geq n_0$.

By $(*_{{-n_0+1}})$,

$$q_{-n_0+1} = \sum_{j=1}^{\infty} f_j q_{-n_0+1-j} = q_0 \sum_{j=1}^{\infty} f_j = q_0$$

By induction $q_n = q_0$ for all $n \in \mathbb{Z}$.

Claim: Let $T_j = \sum_{i=j}^{\infty} f_i$. Then $T_1 = 1$, $\sum_{j=0}^{\infty} T_j = m$ and

$$\sum_{j=1}^N T_j P_{N-j+1} = 1 - P_N$$

Indeed, $P_n = \sum_{j=1}^n f_j P_{n-j}$ implies

$$\begin{aligned} \sum_{n=1}^N P_n &= \sum_{n=1}^N \sum_{j=1}^n f_j P_{n-j} = \sum_{n=1}^N \sum_{j=0}^{n-1} f_{n-j} P_j \\ &= \sum_{j=0}^{N-1} P_j \sum_{n=j+1}^N f_{n-j} \\ &= \sum_{j=0}^{N-1} P_j \sum_{i=1}^{N-j} f_i = \sum_{j=0}^{N-1} P_j (1 - T_{N-j+1}) \end{aligned}$$

$$\Rightarrow 1 - P_N = \sum_{j=1}^N T_j P_{N-j+1}$$

Conclusion: Recall that $P_{n_k+j} \rightarrow q_0$, $P_{n_k+j} \leq q_0$.

If $\sum_{j=0}^{\infty} T_j = m < \infty$ then by DCT,

$$1 - q_0 = q_0 \sum_{j=1}^{\infty} T_j \Rightarrow m = \sum_{j=0}^{\infty} T_j = \frac{1}{q_0}$$

$$\Rightarrow \limsup P_n = \frac{1}{m}$$

An analogous argument shows

$$\liminf P_n = \frac{1}{m}.$$

If $\sum T_j = \infty$ then by Fatou

$$1 - q_0 = \liminf_{k \rightarrow \infty} (1 - p_{n_k}) = \liminf_{k \rightarrow \infty} \sum T_j p_{n_k - j + 1} \geq q_0 \sum T_j \Rightarrow q_0 = 0.$$

$\Rightarrow \lim p_n = 0.$

Example. Simple random walk on \mathbb{Z}^d

$d \leq 2$, symmetric: recurrent (null recurrent)

$d > 2$ or asymmetric: transient

5.4. Example: Polya urn

Defn A bounded function $U: \mathcal{X} \rightarrow \mathbb{R}$ is harmonic with respect to the transition probabilities of a Markov chain if

$$U(x) = \int \pi(x, dy) U(y) \quad \forall x \in \mathcal{X}.$$

Let U be bounded harmonic. Then

$$E[U(X_{n+1}) - U(X_n) | \mathcal{F}_n] = \int \pi(X_n, dy) (U(y) - U(X_n)) = 0.$$

Thus $\gamma_n = U(X_n) - U(X_{n-1})$ satisfies

$$E[\gamma_n] = 0, \quad E[\gamma_n \gamma_m] = 0 \quad \forall n \neq m.$$

Thus

- $U(X_n) = U(X_0) + \gamma_1 + \cdots + \gamma_n$
- $\Rightarrow E_x[U(X_n)^2] = U(x)^2 + E_x[\gamma_1^2] + \cdots + E_x[\gamma_n^2] \leq \sup U$
- $\Rightarrow U(X_n)$ is a Cauchy sequence in L^2
- $\Rightarrow \bar{U} = \lim_{n \rightarrow \infty} U(X_n)$ exists, $E_x[\bar{U}] = U(x)$

Rk. $U(X_n)$ is a martingale and the limit exists a.s.

Polya urn: $\mathcal{X} = \mathbb{N} \times \mathbb{N}$, $\pi((p,q), (p+1,q)) = \frac{p}{p+q}$
 $\pi((p,q), (p, q+1)) = \frac{q}{p+q}$.

Thm. $\bar{\xi}_n = \frac{P_n}{P_n + Q_n} \rightarrow \bar{\xi}$ in $L^2(P)$ and a.s.

and, if $(P_0, Q_0) = (p, q)$, $\bar{\xi}$ has distribution

$$\frac{1}{\beta(p,q)} x^{p-1} (1-x)^{q-1} dx$$

Lemma. For any $x \in (0,1)$,

$$F_x(p,q) = \frac{1}{\beta(p,q)} x^{p-1} (1-x)^{q-1}, \quad \beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

is bounded harmonic and so is $\frac{P}{p+q}$.

Proof. $\frac{P}{p+q} F(p+1, q) + \frac{q}{p+q} F(p, q+1) = F(p, q)$

Lemma For any $f: [0,1] \rightarrow \mathbb{R}$ continuous,

$$F_f(p,q) = \int f(x) F_x(p,q) dx$$

is bounded harmonic and

$$\lim_{\substack{p,q \rightarrow \infty \\ \frac{p+q}{p} \rightarrow x}} F_f(p,q) = f(x).$$

Sketch.

$$\begin{aligned}
 \lim_{r \rightarrow \infty} F_f(xr, (1-x)r) &= \lim_{r \rightarrow \infty} \int_0^1 f(y) \underbrace{\frac{1}{B(xr, (1-x)r)} y^{xr-1} (1-y)^{(1-x)r-1}}_{n! = \sqrt{2\pi r} e^{-r} r^r} dy \\
 &\sim \frac{1}{\sqrt{2\pi r x(1-x)}} x^{xr} (1-x)^{(1-x)r} \\
 &\approx \lim_{r \rightarrow \infty} \int_0^1 f(y) \left(\frac{y}{x}\right)^{xr} \left(\frac{1-y}{1-x}\right)^{(1-x)r} dy \\
 &\approx \lim_{r \rightarrow \infty} \int_0^x f(xs) s^{xr} \left(\frac{1-sx}{1-x}\right)^{(1-x)r} ds \\
 &\rightarrow 0 \text{ unless } s \geq 1 \quad \rightarrow 0 \text{ unless } s \leq 1 \\
 &\rightarrow f(x)
 \end{aligned}$$

Proof of Thm. Since $U(p, q) = \frac{p}{p+q}$ is bd. harmonic,

$$\bar{z} = \lim_{n \rightarrow \infty} U(P_n, Q_n) = \frac{P_n}{P_n + Q_n} \text{ exists in } L^2.$$

Since F_f is bd. harmonic, $F_f(p, q) \rightarrow f(x)$ if $\frac{p}{p+q} \rightarrow x, p \rightarrow \infty$,

$$\lim_{n \rightarrow \infty} F_f(P_n, Q_n) \text{ exists in } L^2$$

$$\lim_{n \rightarrow \infty} F_f(P_n, Q_n) = f(\bar{z})$$

On the other hand

$$\begin{aligned} E_{p,q}[F(\xi)] &\rightarrow \lim_{n \rightarrow \infty} E_{p,q}[F_f(P_n, Q_n)] \\ &= F_f(p, q) \\ &= \int f(x) \frac{1}{B(p, q)} x^{p-1} (1-x)^{q-1} dx \end{aligned}$$

$$\Rightarrow \xi \sim \text{Beta}(p, q).$$

6. Martingales

6.1. Aside: L^p spaces

Let $\|f\|_{L^p(\mu)} = \|f\|_p = \left(\int |f|^p d\mu \right)^{1/p}$.

Hölder's inequality. Let $p, q \in [1, \infty]$ be s.t. $\frac{1}{p} + \frac{1}{q} = 1$.
Then

$$\int |fg| d\mu \leq \|f\|_{L^p(\mu)} \|g\|_{L^q(\mu)}.$$

Proof. WLOG $\|f\|_{L^p(\mu)} \in (0, \infty)$ and then $\|f\|_{L^p(\mu)} = 1$.

Then define a prob. meas. $P(A) = \int_A |f|^p d\mu$.

Thus $E[X] = \int X |f|^p d\mu$.

By Jensen, $E[|X|] \leq E[|X|^q]^{1/q}$.

$$\begin{aligned} \Rightarrow \int |fg| d\mu &= \int \frac{|g|}{|f|^{p-1}} |f|^p 1_{|f|>0} d\mu \\ &= E\left[\frac{|g|}{|f|^{p-1}} 1_{|f|>0} \right] \\ &\leq E\left[\frac{|g|^q}{|f|^{(p-1)q}} 1_{|f|>0} \right]^{1/q} \\ &= \left(\int |g|^q \frac{|f|^p}{|f|^{(p-1)q}} 1_{|f|>0} d\mu \right)^{1/q} \leq \|g\|_{L^q(\mu)}. \end{aligned}$$

Minkowski Inequality.

$$\|f+g\|_{L^p} \leq \|f\|_{L^p} + \|g\|_{L^p}$$

Proof. Assume $p > 1$ and $\|f\|_{L^p} + \|g\|_{L^p} < \infty$. Then

$$|f+g|^p \leq (|f| + |g|)^p \leq 2^p (|f|^p + |g|^p)$$

$$\Rightarrow \|f+g\|_{L^p} < \infty.$$

$$\begin{aligned} \int |f+g|^p d\mu &\leq \int |f| |f+g|^{p-1} d\mu + \int |g| |f+g|^{p-1} d\mu \\ &\leq \left(\|f\|_{L^p} + \|g\|_{L^p} \right) \underbrace{\| |f+g|^{p-1} \|_{L^q}}_{\|f+g\|_{L^p}^{p/q}} \end{aligned}$$

$$\Rightarrow \|f+g\|_{L^p} = \|f+g\|_{L^p}^{p(1-\frac{1}{q})} \leq \|f\|_{L^p} + \|g\|_{L^q}.$$

Completeness. Let $p \in [1, \infty]$. For any $(f_n) \subset L^p$ s.t.

$$\|f_n - f_m\|_{L^p} \rightarrow 0 \quad (n, m \rightarrow \infty)$$

there is $f \in L^p$ s.t.

$$\|f_n - f\|_{L^p} \rightarrow 0.$$

Proof (for $p < \infty$). Find a subsequence (n_k) s.t.

$$S = \sum_{k=1}^{\infty} \|f_{n_{k+1}} - f_{n_k}\|_{L^p} < \infty$$

$$\Rightarrow \left\| \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}| \right\|_{L^p} \leq S$$

Minkowski

$$\Rightarrow \left\| \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}| \right\|_{L^p} \leq S$$

monotone conv.

$$\Rightarrow \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}| < \infty \text{ a.e.}$$

$\Rightarrow f_{n_k}(\omega)$ converges for $\omega \in \Omega \setminus N$ with $\mu(N) = 0$

Define $f(\omega) = \begin{cases} \lim f_{n_k}(\omega) & \text{for } \omega \in \Omega \setminus N \\ 0 & \text{for } \omega \in N. \end{cases}$

Since (f_n) is Cauchy in L^p ,

$$\int |f_n - f_m|^p d\mu \leq \varepsilon \text{ for } m \geq n \geq n(\varepsilon).$$

$$\Rightarrow \int |f_n - f_{n_k}|^p d\mu \leq \varepsilon \text{ for } n \geq n(\varepsilon), k \geq k(\varepsilon).$$

$$\Rightarrow \int |f_n - f|^p d\mu = \int \liminf |f_n - f_{n_k}|^p d\mu \leq \liminf \int |f_n - f_{n_k}|^p d\mu$$

$$\Rightarrow f \in L^p, \|f - f_n\|_{L^p} \rightarrow 0. \quad \text{Fatou} \quad \leq \varepsilon$$

Cor.

$$L^p(\Omega, \mathcal{F}, \mu) = \{ f: \Omega \rightarrow \mathbb{R} \text{ meas.}, \|f\|_{L^p} < \infty \} / \sim$$

where $f \sim g$ if $f = g$ a.e. is a Banach space.

Duality. Let $g \in [1, \infty]$. Then the map for every $g \in L^q$,

$$\Lambda_g: L^p \rightarrow \mathbb{R}, \quad \Lambda_g(f) = \int fg \, d\mu$$

is bounded with $\|\Lambda_g\| = \sup_{\|f\|_{L^p} \leq 1} |\Lambda_g(f)| = \|g\|_{L^q}$ and if $p < \infty$ then for any bounded linear Λ on L^p there is $g \in L^q$ s.t. $\Lambda = \Lambda_g$.

From now, assume μ is a finite measure.

Defn. $(g_j) \subset L^1$ is uniformly integrable if it is bounded and $\sup_j \int_{|g_j| > t} |g_j| \, d\mu \rightarrow 0 \quad (t \rightarrow \infty)$.

Weak compactness. Let $(g_j) \subset L^q$ be bounded, $q > 1$. Then there is a subsequence s.t.

$$(g_j, f) \rightarrow (g_j, f) \quad \forall f \in L^p.$$

The same holds if $(g_j) \subset L^1$ is uniformly integrable.
($q > 1$: Banach-Alaoglu, $q = 1$: Dunford-Pettis)

Vitali's convergence theorem (finite measure version).

Let (f_j) and f be measurable. TFAE:

(i) $f_j \in L'$ for all j , $f \in L'$ and $f_j \rightarrow f$ in L'

(ii) (f_j) is uniformly integrable and $f_j \rightarrow f$ in measure.

6.2. Martingales and Doob's inequality

Defn. Let (Ω, \mathcal{F}, P) be a probability space. A martingale of length n is a sequence of random variables X_1, \dots, X_n and sub- σ -fields \mathcal{F}_i s.t.

- $E[X_i] < \infty$, X_i is \mathcal{F}_i -measurable
- $\mathcal{F}_{i+1} \supseteq \mathcal{F}_i$ for every i
- $X_i = E[X_{i+1} | \mathcal{F}_i]$ a.e. for every $i=1, \dots, n-1$.

An infinite martingale sequence is defined in the same way.

Rk. Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $X_0 = E[X_i]$ (which is indep. of i). Then X_0, X_1, \dots is a martingale as well.

Rk. If (X_i) is a martingale, $Y_i = X_i - X_{i-1}$ satisfies

$$E[Y_{i+1} | \mathcal{F}_i] = 0 \text{ a.e.}$$

Such a sequence is called martingale difference sequence.

Rk. Let (\mathcal{F}_i) be an increasing sequence of σ -fields and X a random variable s.t. $E|X| < \infty$. Then

$$X_i = E[X | \mathcal{F}_i]$$

is a martingale (called Doob martingale ass. with X).

Defn. (X_i, \mathcal{F}_i) is a

- submartingale if $X_i \leq E[X_{i+1} | \mathcal{F}_i]$ a.e. $\forall i$
- supermartingale if $X_i \geq E[X_{i+1} | \mathcal{F}_i]$ a.e. $\forall i$

Lemma. Let (X_i, \mathcal{F}_i) be a martingale and φ a convex function s.t. $\varphi(X_i)$ is integrable for every i . Then $(\varphi(X_i), \mathcal{F}_i)$ is submartingale.

In particular, $(|X_i|^p, \mathcal{F}_i)$ is a submartingale if $p \geq 1$.

Pf. Jensen.

Doob's Inequality. Let X_1, \dots, X_n be a martingale. Then

$$P\left[\sup_{1 \leq j \leq n} |X_j| \geq \ell\right] \leq \frac{1}{\ell} E[|X_n| 1_{\sup_{1 \leq j \leq n} |X_j| \geq \ell}] \leq \frac{1}{\ell} E[|X_n|]$$

&

$$E\left[\sup_{1 \leq j \leq n} |X_j|^p\right] \leq \left(\frac{p}{p-1}\right)^p E[|X_n|^p] \quad \text{for any } p > 1.$$

Proof. Let $S = \sup_{1 \leq j \leq n} |X_j|$. Then

$$\{S \geq \ell\} = \bigcup_j E_j, \quad E_j = \{|X_1| < \ell, \dots, |X_{j-1}| < \ell, |X_j| \geq \ell\}.$$

$$\Rightarrow P(E_j) \leq \frac{1}{\ell} E[|X_j| 1_{E_j}] \leq \frac{1}{\ell} E[|X_n| 1_{E_j}]$$

$|X_j|$ is a submartingale

$$\Rightarrow P[S \geq \ell] \leq \frac{1}{\ell} \sum_j E[|X_n| 1_{E_j}] = \frac{1}{\ell} E[|X_n| 1_{S \geq \ell}]$$

The second claim is a consequence of the next general lemma.

Lemma. Let $p > 1$. Then for r.v. $X \geq 0, Y \geq 0$,

$$P[Y \geq \ell] \leq \frac{1}{\ell} \int_{Y \geq \ell} X \, dP$$

$$\Rightarrow E[Y^p] \leq \left(\frac{p}{p-1}\right)^p E[X^p]$$

Proof. Let $T(y) = P[Y > y]$. Then

$$E[Y^p] = p \int_0^\infty y^{p-1} T(y) \, dy$$

$$\leq p \int_0^\infty \frac{dy}{y} y^{p-1} \int_{y > y} X \, dP \quad (\text{assumption})$$

$$\begin{aligned}
 \Rightarrow E[Y^p] &\leq p \int X \left[\int_0^y y^{p-2} dy \right] dP \quad (\text{Fubini}) \\
 &= \frac{p}{p-1} \int X Y^{p-1} dP \\
 &\leq \frac{p}{p-1} E[X^p]^{\frac{1}{p}} \underbrace{E[Y^{q(p-1)}]^{\frac{1}{q}}}_{E[Y^p]^{1-\frac{1}{p}}} \quad (\text{Hölder})
 \end{aligned}$$

$$\Rightarrow E[Y^p] \leq \left(\frac{p}{p-1} \right)^p E[X^p] \quad \text{if } E[Y^p] < \infty$$

In general, apply to $Y \wedge N$ to get

$$E[(Y \wedge N)^p] \leq \left(\frac{p}{p-1} \right)^p E[X]^p$$

$$\xrightarrow{N \rightarrow \infty} E[Y^p] \leq \left(\frac{p}{p-1} \right) E[X^p].$$

6.3. Martingale Convergence Theorems

Let $X \in L^p$, $p \geq 1$ and set $X_n = E[X | \mathcal{F}_n]$.

Then $|X_n|^p$ is a submartingale and $E[|X_n|^p] \leq E[|X|^p]$.

Thm. $\lim_{n \rightarrow \infty} E[|X_n - X|^p] \rightarrow 0$

Proof. Assume X is bounded. Then $X \in L^2$ and we have already seen $X_n \rightarrow X$ in L^2 . Indeed,

$$E[X_n^2] = E[X_0^2] + E[\eta_1^2] + \cdots + E[\eta_n^2], \quad \eta_n = X_n - X_{n-1}.$$

$$\Rightarrow \sum_n E[\eta_n^2] \leq E[|X|^2] < \infty$$

$$\Rightarrow E[(X_n - X_m)^2] \leq \sum_{k=m+1}^n E[\eta_k^2] \rightarrow 0 \quad (n, m \rightarrow \infty)$$

Thus $(X_n)_n$ is Cauchy in L^2 and therefore $Y = \lim_{n \rightarrow \infty} X_n$ exists (by completeness of L^2).

Claim: $X = Y$ a.s.

$$\int_A Y dP \stackrel{\substack{\uparrow \\ n \rightarrow \infty}}{=} \int_A X_n dP \stackrel{\substack{\uparrow \\ A}}{=} \int_A X dP \quad \forall A \in \bigcup_m \mathcal{F}_m$$

$\begin{matrix} X_n \rightarrow Y \text{ in } L^2 \\ \Rightarrow X_n \rightarrow Y \text{ in } L^1 \end{matrix} \quad \begin{matrix} \text{defn. of } X_n \\ \text{defn. of } X \end{matrix}$

\Rightarrow Same for $A \in \mathcal{F} = \sigma(\bigcup_m \mathcal{F}_m) \Rightarrow X = Y$ a.s.

Since X is bd, also $X_n \rightarrow X$ in $L^p \ \forall p \in [1, \infty)$.

For any $X \in L^p$, there is $X' \in L^\infty$ st. $\|X - X'\|_{L^p} < \varepsilon$.

Then $X'_n = E[X | \mathcal{F}_n]$ satisfies $\|X'_n - X_n\|_{L^p} < \varepsilon \ \forall n$.

Since $X'_n \rightarrow X'$ in L^p ,

$$\limsup_{n \rightarrow \infty} \|X_n - X\|_{L^p} < 2\varepsilon \quad \forall \varepsilon > 0$$

$$\Rightarrow \lim_{n \rightarrow \infty} \|X_n - X\|_{L^p} = 0.$$

Thm. Let (X_n) be a martingale that is bd in L^p :
 $(p > 1)$.

$$\sup_n E[|X_n|^p] < \infty$$

Then there is $X \in L^p$ st. $X_n = E[X | \mathcal{F}_n]$.

Proof. Since (X_n) is bd in $L^p, p > 1$, which is the dual space of L^q , $\frac{1}{p} + \frac{1}{q} = 1$, the Banach-Alaoglu Thm implies that there is a subsequence st. $X_n \rightarrow X$ weakly in L^p , i.e.,

$$E[X_n Y] \rightarrow E[X Y] \quad \forall Y \in L^q$$

$$\Rightarrow \int_A X_n; dP \rightarrow \int_A X dP \quad \forall A$$

For $A \in \mathcal{F}_m$, since (X_n) is a martingale:

$$\lim_{j \rightarrow \infty} \int_A X_{n_j} dP = \int_A X_m dP$$

Thus

$$\int_A X_m dP = \int_A X dP \quad \forall A \in \mathcal{F}_m.$$

$$\Rightarrow X_m = \mathbb{E}[X | \mathcal{F}_m].$$

Thm. Let $X \in L^p$, $p \geq 1$. Then $X_n = \mathbb{E}[X | \mathcal{F}_n] \rightarrow X$ a.s.

Proof. Assume $p=1$. Let

$$M = \{X \in L^1 : \mathbb{E}[X | \mathcal{F}_n] \rightarrow X \text{ a.s.}\}.$$

Note M is a linear space, so if it is dense and closed in L^1 then $M = L^1$ proving the result.

Let $M_n = \{X \in L^1 : X \text{ is } \mathcal{F}_n\text{-measurable}\}.$

Then M_n is a closed subspace of L^1 and $\bigcup_n M_n$ is dense in L^1 .

Note that $M_n \subset M$, so $\bigcup_n M_n \subset M$ and M is dense in L^1 .

It thus suffices to prove M is closed.

Let $Y_j \in M$ and $Y_j \rightarrow X$ in L' . Need to show $X \in M$,
i.e., if $X_n = E[X|F_n]$ then $X_n \rightarrow X$ a.s.

By Doob's inequality and Jensen,

$$P\left[\sup_{1 \leq n \leq N} |X_n| \geq \epsilon\right] \leq \frac{1}{\epsilon} E[|X_N|] \leq \frac{1}{\epsilon} E[|X|].$$

Claim: $\limsup X_n = \liminf X_n$ a.s.

Let $Y_{n,j} = E[Y_j|F_n]$. Write (Since $X_n \rightarrow X$ in L'
this implies $X_n \rightarrow X$ a.s.).

$$X = Y_j - (X - Y_j)$$

$$X_n = Y_{n,j} - (X_n - Y_{n,j})$$

$$\begin{aligned} \Rightarrow \limsup_n X_n - \liminf_n X_n &\leq \limsup_n Y_{n,j} - \liminf_n Y_{n,j} \\ &\quad + \limsup_n (X_n - Y_{n,j}) - \liminf_n (X_n - Y_{n,j}) \\ Y_j \in M \rightarrow &= \limsup_n (X_n - Y_{n,j}) - \liminf_n (X_n - Y_{n,j}) \\ &\leq 2 \sup_n |X_n - Y_{n,j}| \end{aligned}$$

$$\begin{aligned} \Rightarrow P\left[\limsup_n X_n - \liminf_n X_n \geq \epsilon\right] &\leq P\left[\sup_n |X_n - Y_{n,j}| \geq \frac{\epsilon}{2}\right] \\ \text{Doob} \rightarrow &\leq \frac{2}{\epsilon} E[|X - Y_j|] \rightarrow 0. \end{aligned}$$

Thm. If X_n is a uniformly integrable martingale, i.e.

$$\sup_n E[|X_n| 1_{|X_n|>t}] \rightarrow 0 \text{ as } t \rightarrow \infty,$$

then there is X s.t. $X_n = E[X | \mathcal{F}_n]$.

Proof. Uniform integrability implies weak compactness in L^1 . The rest is the same.

6.4. Doob decomposition

Doob decomposition theorem Let (X_n) be a submartingale. Then $X_n = M_n + A_n$ where

- (i) M_n is a martingale
- (ii) $A_{n+1} \geq A_n$ a.e. $\forall n$, $A_1 = 0$
- (iii) A_n is \mathcal{F}_{n-1} measurable $\forall n \geq 2$

The decomposition is unique.

Proof. The condition implies

$$\begin{aligned} A_n - A_{n-1} &= X_n - X_{n-1} + M_{n-1} - M_n \\ \Rightarrow A_n - A_{n-1} &= E[X_n - X_{n-1} | \mathcal{F}_{n-1}] \geq 0 \\ \Leftrightarrow A_n &= A_{n-1} + E[X_n - X_{n-1} | \mathcal{F}_{n-1}] \geq A_{n-1} \end{aligned}$$

Thus the decomposition is unique and $A_n \geq A_{n-1}$ if (X_n) is a submartingale.

Rk. Such a decomposition without monotonicity holds for any adapted process (X_n) .

Fact. Let (X_n) be a nonnegative martingale. Then (X_n) is bounded in L^1 :

$$E[|X_n|] = E[X_n] = E[X_1]$$

Thm. Let (X_n) be an L^1 bounded martingale. Then there are nonnegative martingales (Y_n) and (Z_n) s.t. $X_n = Y_n - Z_n$.

Proof. For $n \geq j$ define

$$Y_{j,n} = E[|X_n| | \mathcal{F}_j].$$

Since $(|X_n|)$ is a submartingale,

$$\begin{aligned} Y_{j,n+1} - Y_{j,n} &= E[|X_{n+1}| - |X_n| | \mathcal{F}_j] \\ &= E[E[|X_{n+1}| - |X_n| | \mathcal{F}_n] | \mathcal{F}_j] \geq 0 \text{ a.s.} \end{aligned}$$

Since $Y_{j,n} \geq 0$ and $E[Y_{j,n}] = E[|X_n|] \leq E[|X_1|]$, there is $Y_j \in L^1$ s.t. $Y_{n,j} \xrightarrow{n \rightarrow \infty} Y_j$ in L^1 (by mon. conv.).

Limits of martingales are martingales and $Y_{j,n}$ is a martingale for $j \leq n$. Thus Y_j is a mart.

$$Y_j + X_j = \lim_{n \rightarrow \infty} E[|X_n| + X_n | \mathcal{F}_j] \geq 0$$

Thus $X_j = (X_j + Y_j) - Y_j$ with $X_j + Y_j$ and Y_j nonneg.

6.5. Optional stopping

Recall the defn. of stopping time w.r.t. (\mathcal{F}_n) .

Example. Let τ be a stopping time and f an increasing function s.t. $f(n) \leq n$. Then $f(\tau)$ is again a stopping time.

Example Let τ_1 and τ_2 be stopping times. Then $\tau_1 \vee \tau_2 = \max\{\tau_1, \tau_2\}$ and $\tau_1 \wedge \tau_2 = \min\{\tau_1, \tau_2\}$ are stopping times. Thus $\tau_n = \tau \wedge n$ is a bounded stopping time such that $\tau_n \rightarrow \tau$.

Optional stopping theorem. Let (X_n) be a martingale. Let $0 \leq \tau_1 \leq \tau_2 \leq N$ be two bounded stopping times.

Then $E[X_{\tau_2} | \mathcal{F}_{\tau_1}] = X_{\tau_1}$ a.s.

Proof. Since $\mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2} \subset \mathcal{F}_N$, it suffices to show

$$E[X_k | \mathcal{F}_{\tau}] = X_{\tau}$$

if τ is a stopping time s.t. $\tau \leq k$. Indeed then

$$\underbrace{E[X_k | \mathcal{F}_{\tau_1}]}_{X_{\tau_1}} = \underbrace{E[E[X_k | \mathcal{F}_{\tau_2}] | \mathcal{F}_{\tau_1}]}_{X_{\tau_2}}.$$

To show the claim, let $A \in \mathcal{F}_\tau$. Define

$$E_j = \{\tau = j\} \Rightarrow \Omega = \bigcup_{j=1}^k E_j.$$

Since $A \cap E_j \in \mathcal{F}_j$ the martingale property shows

$$\begin{aligned} \int \limits_{A \cap E_j} X_k dP &= \int \limits_{A \cap E_j} X_j dP = \int \limits_{A \cap E_j} X_\tau dP \\ \Rightarrow \int \limits_A X_k dP &= \int \limits_A X_\tau dP \quad \forall A \in \mathcal{F}_\tau. \end{aligned}$$

Cor. The optional stopping theorem extends to sub- and supermartingales (by Doob decomposition).

Cor. If (X_n) is a martingale and τ a bounded stopping time, then

$$E[X_\tau] = E[X_0]$$

Ex. Boundedness is important: if ξ_i are i.i.d., uniform on ± 1 , then $X_n = \xi_1 + \dots + \xi_n$, $X_0 = 0$, is a martingale, $\tau = \inf\{n \geq 0 : X_n = 1\}$ is stopping time, $P[\tau < \infty] = 1$, but $E[X_\tau] = 1 \neq 0 = E[X_0]$.

Rk. If τ is an unbounded stopping time, can apply OST to $\tau \wedge k$.

$$\Rightarrow E[X_{\tau \wedge k}] = E[X_\tau].$$

Since $\tau \wedge k \rightarrow \tau$ a.s., $X_{\tau \wedge k} \rightarrow X_\tau$ a.s., and to pass to the limit it suffices to show that $(X_{\tau \wedge k})_k$ is uniformly integrable. This is the case if, e.g.,

$$S = \sup_{0 \leq n \leq k} |X_n| \in L^1$$

Indeed, then $|X_{\tau \wedge k}| \leq S$.

Defn. Given a random process $(X_n)_n$ and a stopping time τ the stopped process X^τ is defined by $X_n^\tau = X_{n \wedge \tau}$.

Thm. Given an adapted integrable process (X_n) , i.e., $X_n \in \mathcal{F}_n$ and $E[|X_n|] < \infty$ for all n , TFAE:

(a) X is a martingale

(b) for all bounded stopping times τ and all stopping times σ ,

$$E[X_\tau | \mathcal{F}_\sigma] = X_{\tau \wedge \sigma} \text{ a.s.}$$

(c) for all stopping times τ , X^τ is a martingale

(d) for all bounded stopping times $\sigma \leq \tau$:

$$E[X_\tau] = E[X_\sigma]$$

Proof. (a) \Rightarrow (b) is the OST applied with $\tau_1 = \tau$ and $\tau_2 = \tau \wedge \sigma$. Both are bounded, so

$$E[X_\tau | \mathcal{F}_\sigma] = E[X_\tau | \mathcal{F}_{\tau \wedge \sigma}] = X_{\tau \wedge \sigma}.$$

(b) with $\sigma = n \geq m$ and τ replaced by $\tau \wedge m$ implies (c):

$$E[X_m^\tau | \mathcal{F}_n] = E[X_{\tau \wedge m} | \mathcal{F}_n] = X_{\tau \wedge m}$$

(d) also follows from (b) or OST.

(d) \Rightarrow (a) Let $A \in \mathcal{F}_m$ and $n \geq m$.

Then $\tau = m \mathbf{1}_A + n \mathbf{1}_{A^c}$ is a stopping time, $\tau \leq n$.

$$\Rightarrow E[X_n \mathbf{1}_A] - E[X_m \mathbf{1}_A] = E[X_n] - E[X_\tau] = 0$$

↑
(d)

$$\Rightarrow E[X_n | \mathcal{F}_m] = X_m \text{ a.s.}$$

Cor. Let X be a uniformly integrable martingale, and let τ, σ be any stopping times (not bounded)

Then

$$E[X_\tau] = E[X_0]$$

and

$$E[X_\tau | \mathcal{F}_\sigma] = X_{\tau \wedge \sigma}.$$

Proof. Similar to earlier remark.

6.6. Upcrossing inequality

Let (X_n) be a random process, $a < b$.

An upcrossing of $[a, b]$ is an interval $\{j, j+1, \dots, k\}$ s.t. $X_j < a$ and $X_k > b$.

Let $U_n(a, b)$ be the number of completed upcrossings up to time n .

Upcrossing inequality. Let X_1, \dots, X_n be a martingale. Then

$$E[U_n(a, b)] \leq \frac{1}{b-a} E[(a - X_n)_+] \leq \frac{1}{b-a} (|a| + E[|X_n|]).$$

Proof. Define $\tau_1 = n \wedge \inf \{k : X_k \leq a\}$

$$\tau_2 = n \wedge \inf \{k \geq \tau_1 : X_k \geq b\}$$

$$\tau_3 = n \wedge \inf \{k \geq \tau_2 : X_k \leq a\}$$

⋮

Since $\tau_k \geq \tau_{k-1} + 1$ and $\inf \emptyset = \infty$, $\tau_n = n$.

Define

$$D = \sum_{j=1}^n (X_{\tau_{2j}} - X_{\tau_{2j-1}}).$$

Each if $\tau_{2j} < n$, the interval $[\tau_{2j-1}, \tau_{2j}]$ corresponds to an upcrossing, $X_{\tau_{2j}} - X_{\tau_{2j-1}} \geq b-a$, and there are $U_n(a, b)$ upcrossings.

$$\Rightarrow D \geq (b-a) U_n(a, b) + R_n$$

$$R_n \geq \begin{cases} 0 & \text{if } \tau_{2e} < n = \tau_{2e+1} \quad (\text{incomplete downcr.}) \\ (X_n - a) & \text{if } \tau_{2e-1} < n = \tau_{2e} \quad (\text{incomplete upcross}) \end{cases}$$

By OST, $E[D] = 0$. Thus

$$E[U_n(a, b)] \leq \frac{1}{b-a} E[-R_n] \leq \frac{1}{b-a} E[(a - X_n)_+].$$

Cor. Let (X_n) be a martingale bounded in L^1 .
Then X_n has a limit a.s. and the limit is in L^1 .

Proof. The number of upcrossings of $[a, b]$ is finite a.s.
By Doob's ineq., $|X_n|$ is bounded almost surely:

$$\begin{aligned} P\left[\sup_n |X_n| > \ell\right] &\leq \frac{1}{\ell} \sup_n E[|X_n|] \\ \Rightarrow P\left[\sup_n |X_n| = \infty\right] &= 0. \end{aligned}$$

Let

$$\Omega_0 = \left\{ \sup_n |X_n| < \infty \right\} \cap \left(\bigcap_{\substack{a < b \\ a, b \in \mathbb{Q}}} \{U(a, b) < \infty\} \right)$$

$$\Rightarrow P(\Omega_0) = 1$$

and X_n converges on Ω_0 (otherwise, $\limsup X_n > \liminf X_n$ and there would be an interval with infinitely many upcrossings).

Let $X_\infty = \lim_{n \rightarrow \infty} X_n 1_{\Omega_0}$. Then Fatou gives

$$E[|X_\infty|] = E[\liminf_n |X_n| 1_{\Omega_0}] \leq \liminf_n E[|X_n|].$$

so X_∞ is integrable.

Defn. $(\hat{\mathcal{F}}_n)_{n \geq 0}$ is a backward filtration if

$$\mathcal{F} \supseteq \hat{\mathcal{F}}_n \supseteq \hat{\mathcal{F}}_{n+1}, \quad \hat{\mathcal{F}}_\infty = \bigcap_{n \geq 0} \hat{\mathcal{F}}_n$$

Alternatively we can consider $(\mathcal{F}_n)_{n \geq 0}$, $\mathcal{F}_n = -\hat{\mathcal{F}}_n$.

Then $(\hat{X}_n)_{n \geq 0}$ or $(X_n)_{n \geq 0}$ given by $X_n = \hat{X}_{-n}$ is a backward martingale if (X_n) satisfies the usual martingale defn: $X_n \in L^1$ for all n and

$$X_n = E[X_{n+1} | \mathcal{F}_n]$$

Backward martingale convergence thm. Let $(X_n)_{n \geq 0}$ be a backwards martingale. Then X_n converges a.s. and in L' as $n \rightarrow \infty$.

Rk. L' convergence is automatic.

Proof. Let $U_n(a, b)$ denote the number of upcrossings of $[a, b]$ by X_n, \dots, X_0 . Then

$$E[U_n(a, b)] \leq \frac{1}{b-a} E[(a-X_0)^+].$$

$\Rightarrow E[U(a, b)] < \infty$ by monotone convergence.

The rest of the proof is as in the almost sure martingale convergence theorem.

Note $X_n = E[X_0 | \mathcal{F}_n]$ so (X_n) is uniformly int. Thus $X_n \rightarrow X_{-\infty}$ as $n \rightarrow \infty$ also in L' .

6.7. Martingales and Markov chains

Thm. Let $(X_n)_{n \geq 0}$ be an adapted process. Then (X_n) is a Markov chain with transition prob. π iff

$$M_n^f = f(X_n) - f(X_0) - \sum_{k=0}^{n-1} (\pi f(X_k) - f(X_k))$$

is a martingale for all bounded cont. f.

$$\int \pi(X_k) f(y) dy$$

Cor. If f is bd. harmonic ($\pi f = f$) then $f(X_n)$ is a martingale as we have seen before.

Proof. (X_n) MC $\Rightarrow (M_n^f)_n$ martingale: similar to argument we have seen if f is harmonic.

In the other direction,

$$\begin{aligned} E[f(X_n) | \mathcal{F}_{n-1}] &= \underbrace{E[M_n^f | \mathcal{F}_{n-1}]}_{M_{n-1}^f} + f(X_0) + \sum_{k=0}^{n-1} (\pi f(X_k) - f(X_k)) \\ &= f(X_{n-1}) - f(X_0) - \sum_{k=0}^{n-2} (\dots) \\ &= f(\cancel{X_{n-1}}) + \pi f(X_{n-1}) - \cancel{f(\cancel{X_{n-1}})} \\ &= \pi f(X_{n-1}). \end{aligned}$$

Defn. Given a measurable set A in the state space, the hitting time of A is

$$\tau_A = \inf\{n \geq 0 : X_n \in A\}.$$

The function

$$U_A(x) = P_x[\tau_A < \infty]$$

is the exit probability from A^c .

Fact. For $x \in A$, $U_A(x) = 1$, and for $x \notin A$,

$$\begin{aligned} U_A(x) &= \pi(x, A) + \int_{A^c} \pi(x, dy) U_A(y) \\ &= \int_X \pi(x, dy) U_A(y) \end{aligned}$$

Thus U_A solves the Dirichlet problem

$$(*) \quad \begin{cases} (\pi - I)V = 0 & \text{on } A^c \\ V = 1 & \text{on } A \end{cases}$$

Thm. $U_A(x) = P_x[\tau_A < \infty]$ is the smallest solution to

Proof. Let V be a nonneg. soln to (*) .

Define $W = \min\{V, 1\}$. Then $0 \leq W \leq 1$ and $W(x) = 1$ for $x \in A$. For $x \notin A$,

$$\pi W(x) = \int \pi(x, dy) W(y) \leq \int \pi(x, dy) V(y) = V(x)$$

Since also $\pi W(x) \leq 1$, hence for $x \notin A$,

$$\pi W(x) \leq W(x) = \min\{V(x), 1\}$$

This also holds for $x \in A$. Thus $\pi W(x) \leq W(x)$ for all $x \in X$.

Thus $(W(X_n))_n$ is a supermartingale. Therefore, for any bounded stopping time τ ,

$$E_x[W(X_\tau)] \leq E_x[W(X_0)] = W(x).$$

We would like to take $\tau = \tau_A$ but τ_A is not bounded. Thus take $\tau = \tau_A \wedge N$. Then

$$E_x[W(X_{\tau_A \wedge N})] \leq E_x[W(X_0)] = W(x).$$

On $\{\tau_A < \infty\}$, $\tau \wedge N \rightarrow \tau$ and $W(X_{\tau \wedge N}) \rightarrow W(X_\tau) = 1$ as $N \rightarrow \infty$.

$$\Rightarrow W(x) \geq \limsup_{N \rightarrow \infty} E[W(X_{\tau_A \wedge N}) 1_{\tau_A < \infty}] = P[\tau_A < \infty].$$

$$\Rightarrow V(x) \geq W(x) \geq U_A(x).$$

Prop. For x s.t. $U_A(x)=1$, and any bounded soln to

$$(\ast\ast) \begin{cases} (\pi-1)V=0 & \text{on } A^c \\ V=f & \text{on } A \end{cases}$$

it follows that

$$V(x) = E_x[V(\tau_A)].$$

Proof. Let X be a bd. soln to $(\ast\ast)$ and $h=(\pi-1)V$

$\Rightarrow V(X_n) - V(X_0) - \sum_{j=1}^n h(X_{j-1})$ is a martingale

Since $h(x)=0$ for $x \notin A$, $h(X_{j-1})=0$ for $j \leq \tau_A$,

$$V(x) \stackrel{\text{ost}}{=} E_x[V(X_{\tau_A \wedge N})].$$

If x is s.t. $U_A(x) = P_x[\tau_A < \infty] = 1$, then can take $N \rightarrow \infty$ to get

$$V(x) \stackrel{\text{DCT}}{=} E_x[V(X_{\tau_A})].$$

7. Stationary processes

7.1. Ergodic theorems

Defn. A sequence of random variables $(\xi_n)_{n \in \mathbb{Z}}$ is a stationary stochastic process if the joint distr. of $(\xi_{n_1}, \dots, \xi_{n_k})$ and $(\xi_{n+n_1}, \dots, \xi_{n+n_k})$ are the same for all $k \geq 1$ and $n, n_1, \dots, n_k \in \mathbb{Z}$.

Examples. I.i.d. sequences, Markov chains starting from invariant measure extended to negative n .

In general, the ξ_n can take values in a measurable space (X, \mathcal{B}) . We assume (X, \mathcal{B}) is such that Kolmogorov's consistency theorem applies. Then there is a measure P on $\Omega = X^{\mathbb{Z}}$ with the same finite-dimensional distributions. Define

$$T: \Omega \rightarrow \Omega, (T\omega)_n = \omega_{n+1}.$$

Stationarity now means $T_* P = P$.

Defn. Given a prob. space (Ω, \mathcal{F}, P) , $T: \Omega \rightarrow \Omega$ is a measure preserving transformation if $T_* P = P$. Given $T: \Omega \rightarrow \Omega$, a measure is T -invariant if $T_* P = P$.

From now assume (Ω, \mathcal{F}, P) is a probability space,
 $T: \Omega \rightarrow \Omega$ is an invertible P -preserving map.

For any measurable map $\xi: (\Omega, \mathcal{F}) \rightarrow (X, \mathcal{B})$,

$$\xi_n(\omega) = \xi(T^n \omega)$$

then defines a stationary process.

For $f: \Omega \rightarrow \mathbb{R}$ define

$$Uf(\omega) = f(T\omega).$$

Fact. U is an isometry on L^p , i.e.

$$\|Uf\|_{L^p} = \left(\int |f(T\omega)|^p dP \right)^{1/p} = \left(\int |f(\omega)|^p dP \right)^{1/p} = \|f\|_{L^p},$$

and $\int Uf dP = \int f dP$.

Moreover, U is unitary on L^2 with inverse

$$U^{-1}f(\omega) = \int f(T^{-1}\omega) dP.$$

Mean ergodic theorem. Let H be a Hilbert space and U unitary on H . Then for any $f \in H$,

$$\frac{1}{n}(f + Uf + \dots + U^{n-1}f) \rightarrow \pi(f) \quad \text{in } H$$

where $\pi: H \rightarrow H_0 = \{f \in H: Uf = f\}$ is the orth. proj.

Proof. H_0 is a closed subspace. Define

$$H_0^\perp = \{g : (g, f) = 0 \ \forall f : U^* f = f\} = \ker((I - U)^*)^\perp$$

$= \overline{\text{im}(I - U)}$

$$Uf = f \Leftrightarrow U^* f = U^* f = f$$

where we used that $(\ker T^*)^\perp = \overline{\text{im } T}$.

Indeed, if $f \in \ker T^*$ then $(f, Tg) = (T^* f, g) = 0$.
 $\Rightarrow \text{im } T \subset (\ker T^*)^\perp \Rightarrow \overline{\text{im } T} \subset (\ker T^*)^\perp$

If $f \in (\text{im } T)^\perp \Rightarrow (f, Tg) = 0 \ \forall g \Rightarrow (T^* f, g) = 0 \ \forall g$
 $\Rightarrow (\text{im } T)^\perp \subset \ker T^*$

Since $\overline{H} = \overline{(\text{im } T)} \oplus (\text{im } T)^\perp = (\ker T^*) \oplus (\ker T^*)^\perp$ one has $\overline{\text{im } T} = (\ker T^*)^\perp$.

$$\text{Let } A_n f = \frac{1}{n}(f + Uf + \cdots + U^{n-1}f)$$

$$\Rightarrow \|A_n f\| \leq \|f\| \quad \forall f \in H$$

$$A_n f = f \quad \forall f \in H_0$$

$$\Rightarrow A_n f \rightarrow \pi(f) = f \quad \forall f \in H_0$$

$$\text{If } f = g - Ug \text{ then } A_n f = \frac{1}{n}(g - U^n g)$$

$$\Rightarrow \|A_n f\| \leq 2 \frac{\|g\|}{n} \rightarrow 0$$

$$\Rightarrow A_n f \rightarrow 0 = \pi(f) \quad \forall f \in H^+ = \overline{\text{im}(I-U)H}.$$

$$\text{Altogether, } A_n f \rightarrow \pi(f) \quad \forall f \in H = H_0 \oplus H^+$$

Defn. An event A is invariant if $T^{-1}(A) = A$ and quasi-invariant if $P(A \Delta T^{-1}(A)) = 0$. Let

$$I = \{A \in \mathcal{F} : T^{-1}(A) = A\}$$

be the σ -field of invariant sets.

Fact $\pi(f) = E[f | I]$.

Defn. P is ergodic for T if for every $A \in I$,

$$P(A) \in \{0, 1\}.$$

Fact. If P is ergodic then $E[f | I] = E[f]$.

Fact. Any product measure is ergodic.

Proof. This follows from the Kolmogorov 0-1 law. Let $A \in I$. There are $A_n \in X^{\mathbb{Z}}$ depending only on coordinates $[-n, n]$ s.t. $P(A \Delta A_n) \leq \frac{1}{n}$. Since $A \in I$, $P(A \Delta T^{\pm 2n} A_n) \leq \frac{1}{n}$ as well. Thus A is in the tail σ -field, so Kolmogorov's 0-1 law implies $P(A) \in \{0, 1\}$.

Cor. Let $f \in L^p(\mathbb{P})$, $1 \leq p < \infty$. Then

$$\frac{1}{n}(f + \dots + U^{n-1}f) \rightarrow E[f|I] \text{ in } L^p.$$

Proof. Let $f \in L^\infty$. Then $A_n f \rightarrow \pi f$ in L^2 and thus in L^p , $1 \leq p < \infty$. The extension to $f \in L^p$ follows by a limiting argument, using that A_n and $E[\cdot|I]$ are bounded on L^p .

Maximal Ergodic Lemma Let $f \in L^1(P)$, and set

$$E_n^0 = \left\{ \omega : \sup_{1 \leq j \leq n} \underbrace{[f(\omega) + \dots + f(T^{j-1}\omega)]}_{S_j f(\omega)} \geq 0 \right\}.$$

Then $\int_{E_n^0} f \, dP \geq 0$.

Proof. Let $S_n^* = \max_{0 \leq j \leq n} S_j$. Then

$$S_j = f + S_{j-1} \circ T \Rightarrow S_n^* = f + (S_{n-1}^* \circ T) \vee 0.$$

Since $S_n^* \geq 0$ on E_n^0 ,

$$\begin{aligned} f &= S_n^* - (S_{n-1}^* \circ T) \vee 0 = (S_n^* \vee 0) - (S_{n-1}^* \circ T) \vee 0. \\ \Rightarrow \int_{E_n^0} f \, dP &= \int_{E_n^0} [(S_n^* \vee 0) - (S_{n-1}^* \circ T) \vee 0] \, dP \\ &\geq \int_{E_n^0} [S_n^* \vee 0 - (S_{n-1}^* \circ T) \vee 0] \, dP \\ &= \int_{E_n^0} (S_n^* \vee 0) \, dP - \underbrace{\int_{T E_n^0} (S_{n-1}^* \vee 0) \, dP}_{\geq 0} \\ &\leq \int_{S_n^* > 0} (S_n^* \vee 0) \, dP \\ &= \int_{E_n^0} (S_n^* \vee 0) \, dP. \end{aligned}$$

Maximal ineq. Let $f \in L^1(P)$, $\ell > 0$. Then

$$P\left[\left\{ \omega : \sup_{1 \leq j \leq n} |A_j f(\omega)| \geq \ell \right\}\right] \leq \frac{1}{\ell} \int_{\tilde{E}_n} |f| dP.$$

Proof. WLOG $f \geq 0$. Applying the Maximal Ergodic Lemma to $f - \ell$ gives $E_n \rightsquigarrow \tilde{E}_n$,

$$\int_{E_n} [f - \ell] dP \geq 0 \Leftrightarrow \int_{\tilde{E}_n} f dP \geq \ell P[\tilde{E}_n].$$

$$\Rightarrow P[E_n] \leq \frac{1}{\ell} \int_{\tilde{E}_n} f dP.$$

Almost sure ergodic thm. Let $f \in L^1(P)$. Then

$$\frac{f(\omega) + \dots + f(T^{n-1}\omega)}{n} \rightarrow g(\omega) \quad \text{a.s.}$$

Sketch. Convergence holds if $f \in H_0$ and if $f = g - Ug$ with $g \in L^\infty$ as then

$$A_n f = \frac{1}{n} (g(\omega) - U^n g(\omega)) \leq \frac{2\|g\|_{L^\infty}}{n} \rightarrow 0.$$

The functions f_1, f_2 , $f_1 \in H_0$, $f_2 = g - Ug$, $g \in L^\infty$ are dense in $L^1(P)$. It remains to show the space for which a.s. holds is closed. Similar to mart.

7.2. Structure of invariant measures

Defn. Let \mathcal{M} denote the set of T -invariant prob. meas. on $(\mathbb{Q}, \mathcal{F})$ and \mathcal{M}_e the set of ergodic ones.

Fact. \mathcal{M} is convex (or empty), i.e., if $P, Q \in \mathcal{M}$ then $tP + (1-t)Q \in \mathcal{M} \quad \forall t \in [0, 1]$.

Thm. $P \in \mathcal{M}$ is ergodic iff P is an extreme point of \mathcal{M} , i.e., it cannot be written as a nontrivial convex combination of elements of \mathcal{M} .

Proof. Suppose $P = tP_1 + (1-t)P_2$, $P_1 \neq P_2$, $t \in (0, 1)$, i.e. P is not extremal. To show P cannot be ergodic, assume it is: for every $A \in \mathcal{I}$,

$$P(A) = 0 \text{ resp. } 1 \quad \Rightarrow \quad P_1(A) = P_2(A) = 0 \text{ resp. } 1.$$
$$\Rightarrow P_1 = P_2 \text{ on } \mathcal{I}.$$

Claim: Since P_1 and P_2 are invariant in fact $P_1 = P_2$ on \mathcal{F} .

Given f bounded, \mathcal{F} -measurable, by the a.s. ergodic theorem there is E s.t. $P_1(E) = P_2(E) = 1$, for $\omega \in E$,

$$h(\omega) = \lim_{n \rightarrow \infty} \frac{1}{n} (f(\omega) + f(T\omega) + \dots + f(T^{n-1}\omega)) \text{ exists.}$$

Stationarity and BCT:

$$\int f dP_1 = \int h dP_1$$

$$\int f dP_2 = \int h dP_2$$

The RHS are equal since h is \mathcal{I} measurable and $P_1 = P_2$ on \mathcal{I} . Thus $P_1 = P_2$ on \mathcal{F} .

For the other direction, assume P is not ergodic:

$$\exists A \in \mathcal{I} \text{ s.t. } P(A) \in (0, 1).$$

Set

$$P_1(E) = \frac{P(E \cap A)}{P(A)}, \quad P_2(E) = \frac{P(E \cap A^c)}{P(A^c)}$$

$$\Rightarrow P = tP_1 + (1-t)P_2, \quad t = P(A) \in (0, 1).$$

Thus P is not extremal.

Fact. Two distinct ergodic invariant probability measures are orthogonal on \mathcal{I} : There is $E \in \mathcal{I}$ s.t.

$$P_1(E) = 1, \quad P_2(E) = 0.$$

Pf. Otherwise $P_1(E) = P_2(E) \quad \forall E \in \mathcal{I}$. As in last proof then $P_1 = P_2$ on \mathcal{F} .

Thm. If (Ω, \mathcal{F}) is a complete separable metric space (also called a Polish space) then every invariant measure P has an ergodic decomposition:

$$P = \int Q \mu_p(dQ)$$

where μ_p is a prob. measure on M_e the set of ergodic probability measures.

Sketch. Denote by P_ω the regular cond. prob. given \mathcal{I} :

$$E[F|\mathcal{I}](\omega) = \int F dP_\omega$$

$$\Rightarrow P = \int P_\omega dP$$

It then suffices to show P_ω is ergodic for P -a.e. ω . Then P_ω defines a map $\Omega \rightarrow M_e$ and μ_p is the image under this map.

One then needs to check P_ω is stationary a.s. and ergodic a.s.

Example. Let $(Q, \mathcal{F}) = ([0, 1], \mathcal{B})$, $Tx = x + a \bmod 1$.

(i) If $a \in \mathbb{R} \setminus \mathbb{Q}$ the uniform measure is the unique invariant measure.

$$\hat{P}(2\pi n) = \int e^{2\pi i n x} dP = \int e^{2\pi i n T x} dP = e^{2\pi i n a} \hat{P}(2\pi n)$$

$$a \in \mathbb{R} \setminus \mathbb{Q} \Rightarrow e^{2\pi i n a} = 1 \text{ iff } n = 0$$

$$\Rightarrow \hat{P}(2\pi n) = 0 \text{ iff } n \neq 0$$

$\Rightarrow P$ is uniform

(ii) If $a = \frac{p}{q}$ (with p, q rel. prime) then for any x ,
 $P_x = \text{Uniform}\{x, x+a, \dots, x+(q-1)a\}$ is ergodic.

7.3. Stationary Markov chains

Let $\pi(x, dy)$ be a transition prob. on (X, \mathcal{B}) .

Let $\Omega = X^{\mathbb{Z}}$ with \mathcal{F} the product σ -field. Let

$$\mathcal{F}_n^m = \sigma(X_j : m \leq j \leq n),$$

$$\mathcal{F}_n = \mathcal{F}_n^{-\infty} = \sigma(X_j : j \leq n),$$

$$\mathcal{F}^m = \mathcal{F}_{\infty}^m = \sigma(X_j : m \leq j).$$

Defn. P is a (two-sided) Markov process on Ω if

$$P(X_{n+1} \in A | \mathcal{F}_n) = \pi(X_n, A) \text{ a.e. } \forall A \in \mathcal{B}, n \in \mathbb{Z}.$$

Fact. Let P be a Markov process that is also stationary. Then the distribution μ defined by

$$\mu(A) = P[X_n \in A]$$

is π -invariant: for every $A \in \mathcal{B}$,

$$\mu(A) = \int \pi(x, A) \mu(dx).$$

Conversely, given any such μ , one can construct a stationary Markov process.

Defn. Let $\tilde{\mathcal{M}}$ be the set of π -invariant prob. distributions, i.e.,

$$\tilde{\mathcal{M}} = \left\{ \mu : \mu(A) = \int \pi(x, A) \mu(dx) \quad \forall A \in \mathcal{B} \right\}.$$

$$\tilde{\mathcal{M}}_e = \left\{ \mu \in \tilde{\mathcal{M}} : \mu \text{ is an extremal point in the convex set } \tilde{\mathcal{M}} \right\}.$$

Thm. (no proof). Any $\mu \in \tilde{\mathcal{M}}_e$ is ergodic.

7.4. Stationary Gaussian processes

Defn. The joint density on \mathbb{R}^N of N Gaussian random variables with mean $\mu = (\mu_i)$ and covariance $C = (C_{ij})$ is given by

$$p(y) = \frac{1}{\sqrt{\det(2\pi C)}} \exp\left[-\frac{1}{2}((y-\mu, C^{-1}(y-\mu))\right]$$

provided C is invertible. If C is only positive semi-definite, there is a subspace $S \subset \mathbb{R}^N$ on which C is strictly pos. def. and the Gaussian measure is defined by choosing an orthonormal basis on S and then in the same way.

Such random variables $X = (X_1, \dots, X_N)$ are also called a Gaussian vector, $X \sim \mathcal{N}(\mu, C)$.

Fact. Let X be a Gaussian vector in \mathbb{R}^N and $T: \mathbb{R}^N \rightarrow \mathbb{R}^M$ a linear map. Then TX is a Gaussian vector in \mathbb{R}^M with mean $T\mu$ and covariance TCT^* .

Fact. Any pos. semi-def. matrix C can be written as TT^* for some $T: \mathbb{R}^N \rightarrow \mathbb{R}^N$. Hence $X \sim \mathcal{N}(\mu, C)$ if $X = \mu + T\zeta$ with $\zeta \sim \mathcal{N}(0, \text{id})$. T can be chosen upper triangular.

Defn. $X = (X_n)_{n \in \mathbb{Z}}$ is a stationary Gaussian process if $(X_n)_{n \leq N}$ is Gaussian for every N and

$$E[X_n] = \mu$$

$$\text{Cov}(X_n, X_m) = \gamma_{n-m} = \gamma_{m-n}$$

for some $\mu \in \mathbb{R}$, $(\gamma_n)_{n \in \mathbb{Z}}$.

Fact. $\sum_{k,j=1}^n \gamma_{j-k} z_j \bar{z}_k \geq 0 \quad \forall n, z \in \mathbb{C}^n$

By a version of Bochner's Thm, there is a measure μ on $S^1 = [0, 2\pi) / \sim$ s.t.

$$\gamma_k = \int_0^{2\pi} e^{ik\theta} d\mu(\theta).$$

Since $\gamma_k = \gamma_{-k}$, μ is invariant under $\theta \rightarrow 2\pi - \theta$.
The measure μ is called the spectral measure of the Gaussian process.

Question. Let $(\xi_n)_{n \in \mathbb{Z}}$ be i.i.d. standard Gaussians. When can a Gaussian process $(X_n)_{n \in \mathbb{Z}}$ be written

$$X_n = \sum_{m=-\infty}^{\infty} a_{n-m} \xi_m, \quad \sum a_n^2 < \infty?$$

$$\Rightarrow \gamma_k = \sum_j a_j a_{j+k} = (a * a)_k \Leftrightarrow d\mu(\theta) = \underbrace{\left[\sum_j a_j e^{ij\theta} \right]^2}_{= f \in L^1} \frac{d\theta}{2\pi}$$

Thus (X) has such a "moving average representation" if the spectral measure has density in L^1 .

Question: When does a Gaussian process have a causal representation

$$X = \sum_{j \geq 0} a_j \xi_{n-j}, \quad \sum_{j \geq 0} a_j^2 < \infty ?$$

We know $\mu = f \frac{d\theta}{2\pi}$ with $f \in L^1$. The condition is equivalent to the existence of $g \in L^2$ s.t. $f = |g|^2$,

$$g = \sum_{j \geq 0} a_j e^{ij\theta}.$$

Thm. Such a g exists iff

$$\int_0^{2\pi} \log f(\theta) d\theta > -\infty.$$

8. Further topics

8.1. Gaussian Hilbert spaces

Defn. Let (Ω, \mathcal{F}, P) be a probability space. Then $S \subset L^2$ is a Gaussian space if S is a closed linear subspace and any $X \in S$ is a Gaussian random variable.

Example. Let (Ω, \mathcal{F}, P) be a prob. space on which there is a sequence X_i of i.i.d. $\mathcal{N}(0, 1)$ r.v. Then (X_i) is orthonormal in L^2 , i.e.,

$$E[X_i X_j] = \delta_{ij}$$

and $S = \overline{\text{span}\{X_i\}}$ is a Gaussian space.

Prop. Let H be a separable Hilbert space and (Ω, \mathcal{F}, P) as in the example. Then there is an isometry $I: H \rightarrow S$. Thus

- $I(f) \sim \mathcal{N}(0, (f, f)_H) \quad \forall f \in H$
- $E[I(f) I(g)] = (f, g)_H \quad \forall f, g \in H$.

In fact, $I(\alpha f + \beta g) = \alpha I(f) + \beta I(g)$ a.s.

Defn. A white noise on \mathbb{R}_+ is an isometry WN from $L^2(\mathbb{R}_+)$ into a Gaussian space. For $A \subset \mathbb{R}_+$ a Borel set, write $WN(A) = WN(1_A)$.

Prop. (i) For $A \in \mathcal{B}(\mathbb{R}_+)$, $|A| < \infty$, $WN(A) \sim N(0, |A|)$

(ii) For $A, B \in \mathcal{B}(\mathbb{R}_+)$, $A \cap B = \emptyset$, $WN(A)$ and $WN(B)$ are independent.

(iii) For $A = \bigcup_{i=1}^{\infty} A_i$, $A_i \in \mathcal{B}(\mathbb{R}_+)$ disjoint,

$$WN(A) = \sum_{i=1}^{\infty} WN(A_i) \text{ in } L^2 \text{ and a.s.}$$

Rk. WN looks like a random measure,

$$A \in \mathcal{B}(\mathbb{R}_+) \mapsto WN(A, \omega),$$

but it is not. (Nullsets depend on the A_i in (iii).)

Defn. For $t \geq 0$, define $B(t) = WN([0, t])$.

Fact. For any t_1, \dots, t_n , the vector $(B(t_i))_{i=1}^n$ is Gaussian and

(i) $B_0 = 0$ a.s.

(ii) $E[B_s B_t] = s \wedge t$

(iii) $B_t - B_s$ is independent of $\sigma(B_r, r < s)$ and $\sim N(0, |t-s|)$.

Proof. For example,

$$\begin{aligned} E[B(s)B(t)] &= E[WN([0,s])WN([0,t])] \\ &= (1_{[0,s]}, 1_{[0,t]}) = s \wedge t. \end{aligned}$$

Cor. $E[|B(t) - B(s)|^{2p}] = (2p-1)!! |t-s|^p$

By Kolmogorov's continuity theorem (next section), it follows that there is a modification of $B(t)$ which is continuous.

Proof. $B(t) - B(s) \sim N(0, |t-s|)$. For $X \sim N(0, 1)$,

$$E[X^{2p}] = (2p-1)!!$$

is a direct computation.

8.2. Kolmogorov's continuity theorem

Thm. Let $X(t)$, $t \in [0, 1]$ be random variables s.t. for some $\alpha, \beta > 0$, $C < \infty$,

$$E[|X(t) - X(s)|^\beta] \leq C |t-s|^{1+\alpha} \quad \forall 0 \leq s \leq t \leq 1.$$

Then there is a cont. version of X with the same finite dimensional distributions.

Proof. Define $X_n: [0, 1] \rightarrow \mathbb{R}$ by

$$X_n(t) = 2^n(t - j2^{-n})X((j+1)2^{-n}) + 2^n((j+1)2^{-n} - t)X(j2^{-n}), \quad t \in [j2^{-n}, (j+1)2^{-n}]$$

$$\begin{aligned} \sup_{t \in [0, 1]} |X_{n+1}(t) - X_n(t)| &= \sup_{1 \leq j \leq 2^n} \sup_{t \in [(j-1)2^{-n}, j2^{-n}]} |X_{n+1}(t) - X_n(t)| \\ &\quad |X_{n+1}((2j-1)2^{-n-1}) - X_n((2j-1)2^{-n-1})| \\ &\leq \sup_{1 \leq j \leq 2^n} \max \left\{ |X((2j-1)2^{-n-1}) - X((j-1)2^{-n})|, \right. \\ &\quad \left. |X((2j-1)2^{-n-1}) - X(j2^{-n})| \right\}. \end{aligned}$$

$$\begin{aligned}
&\Rightarrow P\left[\sup_{0 \leq t \leq 1} |X_{n+1}(t) - X_n(t)| \geq 2^{-n\gamma}\right] \\
&\leq 2^{n+1} \sup_j P\left[|X(j2^{-n-1}) - X((j+1)2^{-n-1})| \geq 2^{-n\gamma}\right] \\
&\leq 2^{n+1} \sup_j P\left[|X(j2^{-n-1}) - X((j+1)2^{-n-1})|^{\beta} \geq 2^{-n\gamma\beta}\right] \\
&\leq C 2^{n+1} 2^{-(n+1)(1+\alpha)} 2^{n\beta\gamma}
\end{aligned}$$

Choose γ s.t. $\beta\gamma \leq \alpha$. Then

$$\sum_n P\left[\sup |X_{n+1}(t) - X_n(t)| \geq 2^{-n\gamma}\right] < \infty$$

Thus with prob. 1. X_n converges unif. on $[0, 1]$.

The limit X^* takes the same values on dyadic points. It follows that in fact

$$P[X(t) = X^*(t)] = 1 \quad \forall t \in [0, 1].$$