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) = lig)"

Sinca Cbt) HO)+ 0t +1P'0) "+ o)
I+ls“c1+0( 25

W&)Uﬁﬁfmﬁn=e Hreh)
i, Yalt) = €257 = P (1)
= ((}’\Sr\) = )\[O/Gl).

\[%
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3 5 Pael-Contelli lemmar and Ko\moacrov's O-1 Jow

BQ“QJ‘COV\\(MK \_QW\W\Q F@( O\V\g Q\(QV\\‘S A\) Az),,..
L Py ceo = Pwr iy 4y, 19)=0)= .

A,‘YWPPQV\S Finﬁ?zl:; oHen
Moreower, 1T e Av ove 'sndQFdeQw’V =

hock 7 PAn)<00 = S)= 4a, () <00 a.e.

SInce ELS]%Q
= Im 14,=0 oce.
Sv*ﬂ?ﬂSQHAQA 0@ vxdf) and Y PA,) =0

NTNRET
~1=TT (1P ) (indep)

L PLA, I'\QPPQV\S &in'\tﬁlj orkq) = 0.
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Defn Given random \vanoldes K)Xz) e et
6tKoka, )= o X RERY))
be the smlles% o~ ﬁel& i V%PQ& to which the

X, o€ all mecgurable.
DQ(;\M 7: G(Xn, nH,w\ , ;:,:\"‘W;)H-JXV\B
=0\ 7 7o=0(UF)

F° is alled the fail o-Feld.

Ko\vnoqorov ¢ O- | lowa :E( PO X, X
e

indepaudent rand ®vv\ VO aDies . ﬂmn on A€9:OO
hos PC‘\\ 0 or = 37:"" mmwgemv\oxm
voroble s cdmo# swe\ conSton

o For OW& AeF, BEF“H BEVQV\ \)5
A={XEA, . XntAn] . ALESR)
B= %wa.e B - XV\‘I‘IGBYWK({ B € BR)
PAND)=PH P(R) bt) ind V\&Qy\CSL of XXz, ..

W\a LDO\/Q A ‘FO RQIO‘ H\qu ?n Y\d
fa chow b o Fed thot guaiitie 7™ Thus
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by vnigueress of edensien 7, o d F™ aw

lwdiqv\d‘l l

< 7n iS "\AGP @'ﬁ ;:DO

> Jo is U\C]QP of 70

JnQ C):ooc?oo, 1%( OW\GAET—OOD
PCA) = P(AOA) = P(A)

= PA=0 o PA)=|
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1.6 Srong Lows of Lomp Nowboers
Storg oo ef Lorgo Nemlgrs Lot Xi)¥a, .. fe Uld,
A% ]=0. Then ~

n|iM 2 = iy A er”*O (A

N m—)oo

Pk 1F EDC]=M <00
EIsi1= g )
-H £ oy e

’ ((|<3<n

snce. EDXOC] - ELOGKE] = EDXK YN0

<AME6(D)M =(h+3r0D) M £3n°M
since. ELXORT=ELK ) ECK)
< E e e=!

+lfpds
/’w\
= ﬁ>8 \/bppqm lefdg efen a.5.
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Bed o quuml coce. Leb V= X digyen.
S|€P| b suffees JrOPTO\lQ V\le —0,

L P[lal>n) < fP [)>£] = B[] <o
5 PLIXGI (Yl lo] =0

2K —LYn| <0 as,

s DA ORUEe

S‘epl th\/onr(\f\< L% |] <0
ar(t) < EL%T =T 2y PLNI> 91 dy
<[ 2 91%1>g) dy
+ TLELRT < T tyen 2y Plkbg)dy
I3, ) 2 PLixI>g) dy

Q n>3
——

< L
< LEIIW]
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|r\>dh?_ \I_u.[ r\d.l Ln.‘
. 1l <9 VY
> lﬂv\%hl Sl o

and f 3@())\) Han also
Y < 5 < \
lLJ %SLY\,_ < 2%—‘%{\1 = Z(l”ro?g) 4,

SleP 3 -,,%k)(\’ﬁr——-*mm\*() £ (k] =lo Ned
Tn(L)

Y PllTa= ETuo|> b)) ¢ 7 iy \or(To)
(k)
< %9_ zl« &Hl %l \/Of(.YM)
= 'tlz V‘f \/ar(\(n): (k)™

K:nkdzin
T/—ISZ < L"z 2k ey
< M < S R
T20N P (-0 R
¢4 T n2 16
- EZ“_'D‘L) )R N VQ((\(V\) < ZIF#)\?’) Elx’\\
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by BorekGonlell, iy Ty~ LTl = O 0.8,

=\ J— —
> k) T — O

Step & it -+tY) =0
WLOG \f'L 20, Than

Tnta ¢ Tnery k
T < T < Ty ¥ rkismenti)

Snce RV — & (k) LS ond RES
(Dnv@rg o 0 as k—=w os.
= T/ MO axs,
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3.1 [nﬁnito, diviside dishkuhions
Defn LeJL(xbecAProB moosue en R ond
e, (x)= e ® L Q- X whae o - koo g

1 +1W\QS

The moosure e_a,(!)&) R Col\rec\ cewx Dowd Poisson
dishbubhen asocioted vaith

b =8 than &S s He dd. Posson dishmbiion
bd €ib)=e ?D% Ry = o2®-)

Roi () = €,0¢) % ey (W)
€a () ~ ea(w)+ -+ eq(x)

T ks
Defn A prob, digfr. b thel con be wonben o
o= Bu* —4Pa
n

for some B od oy n is afintdy divisible.
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beg. Fx ad B ow w\ﬁmbﬂs divisible. then
Ok > (s um\J&\U divisible.

hecse The nermal didh. is V\I;(/\\lt@\ﬂ Jidslde.

(ensider r.v. X <] 4ka{ with dishr, LIRD
Assume, fim 2y Pl¥a;>81 =0 ¥%20.

[_Qj'/u\anH\Qd\S'lT dZXnJ

Accom u\ Q LO\wS Thm, Assoma Eb(ml"-o
for all Pﬁf\j{n‘jﬂ/\w\ X

S e N
LA
O(nl *unk ﬁnl *B“)

Lhe e(O\n) He ossocioled compond
Po&:)n @n i >f

We woill not prove HMS .
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Md/\omd«evshc MOV] o N\ IS
X(’c Tepi

[Z( ) d}%]
=QKP S(ettx—\)dhn\

o [ - 1- kb, + it
wherg O &9 dH,)
and B is ony bd. funchon . Assume
B0 =x +0(<°) .

Defn M is on admissible LQVj moasine i
Jrea dh <.

T Yor o admisuble Ley moaSue M | m() QGR
frare 1o on V\{'Inl@lj dmsﬂlle QISR /u sk

l\/\“ g(l{‘)ﬁ - @(X)) dH+ {-a, o>t
Dengle ,\A*?EIL 6"0). J

6]



T = eMo, 0F,0n) = i mee(Mao)
anc) H’/\Q M\Oooiﬂs Cor\dt\\ﬁ'méb\ hold *

o JFdMa = SRAMC W o B H=O, It
L L
clm |G EING = et M| e sk
;"’“‘[ ¢ ] & * ] M({-£jvie3)0
o G SO

Cor. (eyy-Khinfichy ) Ane inbnikly dvisibe
mcksmégp 2@?% ™ }%=e(M>eré?0\\ |
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Y Gondi Honirlg
. 1. Rodon-Nikadym Thacrem

Dely A s (2.2) st Funchon
NTo R bot s ooty oddfve:

) >\(U An)?-)iXAA for d\ISSD‘\f\JY A,
= ANA) — \A) for AntA of AnLA.

Daople, Leb u avd e Finit posi hive measue
va: A= ,u.—,u/i S a/:tav\w} vv\msfr? .

Hobn— osihon A S\SV\QJ MOaSUe A on
(Q,Y) can be decowxposec\ oS
>\ = P+ = p-

whare Ut O poshve meosures fhat ave %@n&\
2., H\EA(Q o gigoint Q1€ st Q)= e AN

Lemmo. 1T X s slg\r\Qc\ maoswe on (QY) then
) INAY| <00
&005_ FO\d‘S'- /)(—:_Q’rb=> ‘X\Z‘d —Ual
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g MBI & 9 [NB)I <o
B P AC
> 4o N8l - &gP( NBOA) + B0 )

S Bae 1s A st sup AB) =00, Then o
NME%QSQHW cs‘SA CA P(R "~

WAN=N  and u [A(B)| =00

ndw) R Con p\d< ECA o} NP ond 'H/\QV\
o 1) INANEY-IEY < [NA)< NQ)|<0 ore

)\(A\Eﬂ>2j\l AN 2N # N is Sb\fvsr\ue\/\

Thas beth E and ANE sahs fg frsf COV\C\ on
P’S (1) of leas] one of fhon hes to sc&(s

R (Ol/\CJ( CO/\CL |‘K)Vl

lquhv\ﬁa s, tae o A; Sjr AJHCA ord)
INA) \> ond SL)
Thus Ar i< decmos\ng\j\gjr )%A |—>00 o confad.

o ot odd Ry 6(\4@3 >\(A - \A) R
A L A
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oo Suppose NA)>0. Then thare is ACA fret
s Jefnly_pifive, e

I@: AB) 20

sach thad X&) 2 NA)

Pogt Lot m= r@\ NB). Than

« m<NG)=0
© M> = bg Hra DIRVIOUS lenmuma .

WLOG we con assum® m#0, oharwise A=A uork,
Casse BicA ) W@®)<5<0, They

A=A\R, sfishies NA,) 2 NA)
o, 82 3
oty Find A) s b Ay, CA; ond
NA) > XA)  oud B | AB)> &t
A=A, Then WA= NA) ond 1 N8)20.
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Prest (Halhin —{erdon Beccv\np)
g my = S0 N < 00

MOG My >0, efherise NAYSO A and Q=Q),
A =9 wor(@ ‘

Thare are Ay 5.4 NAYZ m -+ ond (losh ‘Qmmo>

J

K ’ro‘ral\tﬁ posiRve ) ANA)S =%
= O{_ tU K& [g 4-@%\0\“3 POS‘\H\(Q
/\(QJ\-\ =MWy,

Coum: 2-=0ON\Q) 4 s ‘rsjra“\j NLB&R\L(’.
Ohharwise e 1s BC QLo st NB)»O,
3 A, 0R) =2, T AR) > My — conhadidhon
Define. e =Alq, -
Defn. I X is S'((cjvuzd meoeue Lt Hohn~ Jordan
c\ocm\Pos\H@m >\=/M+‘ILA— than He waGsure
IN= o+
s the ool vanahon weasue o A.

3



Bomple . Let u R a ox\wo MEOSUR G a)
%%%P_)p be /(ANQS S T‘/\QV\

AA) = 3 F o

defnec a 58v\<zd W\QQS (A= 5?* d/u
Qi=1 %> O >\\(/\ gmdri

Dotn A Snamd MoasR N fs olosdl uftsz\q conhuss
\o«‘r\'\ d JrD Q Pos\h\(Q QA SR /v\ \onHQV\
A ,U\ |{‘

WA=0 = NAY=0 Whe.

Rodon-Nikodun Thm [ A<t on (Q,9) Hhan H/Q*e s
o - Inle R‘MQ (QF)-messuolte  fundion + s

XA = SAfr o\]u VheY
s Mciw‘tj defined O\W\Cﬁ QYQV:j\&\QV?.

Mn 1= \3 e RﬁdOﬂ‘N m denvabve
Ojr \ Wit :?73
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fot Let

A= A-au, Qo) = fofally pes subset o %o
' (e up o s O

Note i %%:1[ o \”r>Cx‘]=D.+(O\\ Uy to maos 0.

o bo s of naasyre O, Oila)C Oii(b)  bea.

WLOG, \remov'mg ] sefs  (,(0) s decreos{n\cﬁ
ale 9 0 €.

Thas Se+
Hoo) = &AP{QG(DJ we Q)]

(ot f is measurable
fLo: flo)> xj ={w: we%\ for somg 3>X,36®)
"' %Z))QQA&) = § iy mosuralde
Clovim = A( Ifl=00) » i Ifl=00}= O
Ac N Qo) = MA\—@A)Z 0 Vael

= =
= /g\\((ﬁ\% by obsolf. cont .

3 NF =100) = alf= o) = O
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AL () =@ Yo = NA -owA)<0 Yoe@
B MA\ 0

> Nf=-0)~ulf- -0%\ 0

Coim* §tdpu <00 ond /\(AJ-«SAS A
let Bz W Q<¥Iw\<b\

C(L( )0Q+(b§ Yal<a b>b.
= au(Al bfdf\\ V AC Eap

= MK - (b \ <6
A (oo *p‘& b&&)

ot E, = [:mn 6+ h for sovg Fixed h>O A
= NAOEA) ~h u(A0Ea) < Y\\‘\/(A(AOEA

e

& Or) h WANER)
& NAOE)+h(ANEL)
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> NAV=hpulh) <] £ & NA) +hylh),

Bereise: Hove that T ic 'WechUQ andl
NAY= I8 c>~4
A

Rk I Fod § o as in the theorem thon §=Y ae
Rk [F MAIZO YA€ than £20 gee.

7



4). (endiRerol expectalion)

Defry Lok (O3 P) be o probabils $pa and BeY
Sohs\:b P(B) >0 . Than Hhe cond ik¥ndl 'Dtoxoah'\[% of
A€ given Rl definad by

AR = RAND) _
P(A ) op)

The condihond apecohion is defned b

\
SUNSL
lof 2 be a rv. oking disdl walues 0y on A
with Q- VA o\\‘ssom, A
> RY)- 3 P PRIA) = T RBIS=a)) P(3=)

oo fo edend s fo N(3<a)=02

I the o % takos disciele values, consider
PRS- {,LU%EE L EC{og1¢ (th o-Feld 9en. by %)
-o (A

J
> PBIZ) t weQ — P(BIAY) if oeA;
FIXI2T : well— E[X\/ﬂ FWEA

are X'~ meosurable rondom vonobles
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o 3¢ e o Sb-o-Feld.

fAu then the RN can be hed on
€,2) and (0,3 g oo dens!fies

-Gl 5~
Nets § i 2 “maos. and ﬂxs St waas, (3 T-mans)
F s not X'amags . in gev\smo\].

Defn. Let X be o '\nkaro\\ole rv. on (QZ,P) 6nd
S'CY o sbh-o-Feld Y Define

EXIZT= Gy wth NA)= [X(w)dP
Thes EIXIY'] i a Yhmeoswoble random vanabe

o () ELTT=1 ae [A-P= BT

G) ELEIT =E) (1%l 6P=[4A| | dPlyi=faN
(K) X20 = BYX12'120 ae.

(v EloXetbo 12T =0 B3 T+ 0. B2 e

\fa‘, G corst
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bep. EIELXIY'Y] € L]
fecr. Lot dk=XdP. Thaw
(X[ dP = § X, dP+TX dP = &%XA\ i \A

fEx]idp= - =%£,Wg;§.k</*\
fop I Z i< o bowded 2 -meos. random vor,
ENXZIZY] = ZEXI2'] e

E(;@d[ LQJY7 iE EG‘Z/ T[(\Qy\
XA =1 iEXdP | XdP=N(AOE).

ANE
5 o R g
Cd o ks To Sl 1o brded.

Towser DWOOQW‘\/\ { Y'Cy'cY than
EIXI3"] - HEX) 21\
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(ordihoro] Jengen neg. let R~ R b comvex.

e 00 13'] 2 ¢(E[m\}> ae.
(0] > H4(EXIYT)]

Poot  Since & is CONVeX,
# sop oy = sup [ye- ¥y
> Bef2] >Elsp [ -1 1]
=¢(E[X[3")
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Lot E(Q\SIW 13 0-R T-meos.: [ o < n A
whare Fog it f=g ae.

[Q,3m) &5 a Hilbert o with inver preduct
(XY) = | XY du

tact. The mop AP HIXIT' | fhe QFH/\CJ&@/‘OJ

proReRon from Q3w o 12(Q, 5 ).

The wondifiond expedohon Y= EIXIZ'] |
% m‘q\f{@ ‘;Dc? O\.Q€§P Y- vvdt)Qgswqb\e (. \(.] sljk

XAXdP= N dP  Ael!

k. 1f ¥ and Y satisfy e condiions
Q=) dP=0 v AeY!

Lot A=1Y-Y'2£>0) Than
s_P(A\ng‘) AP=D = PA)=0.

= P(Y-N">0)=0, likwie POY-Y>0) =0
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3 K 1t
Defna Pl A3 = Bl 1T] (W)
Thw.

() Ao, Q3) =1, P, 1) =0 0.8.-10
() 0 A AN <1 oo~ WAED
(i) Tt ony qownt. disjiat Ac€Z,

P(uo, UAL\Z\) = l:P(w) A;lZ‘) G-~ w

(i) P, A1 IV =450) oe0 YA
Proct. Exercise from Pmperh‘es o H-124

Rk Fach cwse involves pessi b\\») diflerent null
s (Ade3 on the A

n o9 condud o version o e w@d. p(do.
involy ivxg @\\5 ond ol sef feof all P(()@Q(lnfes?,

ﬂ\\\g S Co\\\@c\ x@j\/\(cw CCDV‘CBI\HO(/\Q\ M)llb

LJL\QV\ pbsS‘(iDQ,
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Tw Lot P &prcb, meoswe on (100 o).
lef Y CRDN) be o sh-o-Feld. Then thare
exst prd. digr. Qi xel0 1] o4

x o Q&) s Y-meos, VACKIO0)
IHy) Qudy) = ELSIDT P-ae.

FY s ot gqmrok.c} than
OxA) = 1pl) AR N)

&4



5. Markoy Chauns

5.\ Definihion. lef (¢ F) be a sfake SO,
X IS dld’r CICLQrCX\v‘% b Q P& }A on (%‘F)

\YQV\ Xo Xo, - X)H—Xag We Uﬂk\d M’\Q +®
olehing fhe d\&hnbvhm of Xy tﬁ

(XKQIAVS -I_K(XO) 5 Keet § A\ _
Assoma

* o each (6, X)) The s o Pro\a maas. on (X5

» for each AQ? (o, .- XK.)H Te U, Xieat | A) is
P\Qasmblq Wit (96" ) (proéucjr &Fc@)

e didrbubion & (. Yo
b Pyl e “on (% Shoyr b ooy

PKA"AQ - | T A dp.d

Bj Kolvv\oaorovs wsxskma H/\wx one con dehne a
PEosUre P N %"" iy\ HYis wo 5 (if He condiRons
we Sahshed, which & He w2 X i< a CO()'\PthQ,
SQ\aoraUe e C sPaCQ)
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Defn O(?j s o Markoy DIOCaSS, e frans hion
pobub\ es &ahs

Xkl) \ Tklk()(ml).) \?“r\

It is o hmsz homo%m&@us Movkoy DO )
Uk-\,K(Xlo—(; X = -(T(Xk-l; ) \V'-k )

for o Mackoy procass, dehine
T, keei (X, A’\ = S T, kee (X, dj) Nire ,meﬂ(j , A)
N 5 My ks (X) dfﬁkz—\B "7 Tlhae kaes, (3\<+QJA).
Chqprv\cm* 05,
Tion(,24) = | Tem (0 dy) T (g, ) ¥ K<man

n fhe Fimg—homo JRNOUS COSR, dehine

(A - STM X, 6\3 Ty, A 706N = )=l ).
C\f\uomcm KoWoc?orO\/ eans.

W(‘“"Q\&x A)= h&t (x C\j) Tm A
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PLQP. Let zm’ G'(Xo)...) Xm) T‘r\en
PIXCEA [2m]= T n(Xn, A) 0. i men
Pat Need fo dto fhet
PLHACANB] = LT (o M) P BT, AEF
Bl indecd),
Pl Xﬂ&m nR
:j)é\eA 1B édf“ LTl D6, ) T s, B
P Mo Q)= T, A

Mo O A )
= | Tonn (Xa, A) AP

B
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Twm. lef Pbe o Probo‘ol\ mease on the
rolAééxclr Sh Cx'dx L produ\d‘ o--Reldl .
\.,

() Elq@ IXX]=EG@D)IY] Yg.4~RW

B ELROO 1Y, A [ Y] ¥ dX-Rb

(i) E[F0g@1N]= BN E[g(@1Y]
Ws%@)gﬂ@@ bd.

et Assung G). Thaw Gil) holds -
ELH0 9@ 1) = ELELHN)g(2) [%Y)1Y]
AN DI
LI
Ascr ) MW:E[ 'l] E[%(Z))\(]
ELRBY) Elg@) XM
= E[ 100 bY) 92| = E[ B0 E[HXs ) 1)
YEWER Y Ely@IvY
= E[ b1 )E[g(zm}
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o £ HY) (HgD % Y]- Elg@) 1Y]))=0
Since T ond b are adbiary, also

ELROCY) (Elgl 1Y) -Elg@) 143} =0
Ta\{v\ca W)Y )= "~ Hais ivv\F\iQS

Ela@) X1 = E@D14)  ae.
erelnhon. X=past, N=presen, /= futwie

Defn . A pro. maoswe i on (6, F) is on
YO Moasure fa Fo Markov chain i

WA = ey A) wdy)  AEE
This is nften also as = .
R WXJ\/(LA ond s iy\\/avio\uérj Han P hos

marginal @ oof een time, and (XX, -..) Can
be exlended to o ghonoy proess (Kl -
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5. kppn 9 Hmos ond Sfrom Movkov preperiy

Dﬁn A LOV\CJOM wnoble T: Q"’ NDU{JrOv\ IS G

lvor TWENT i To— moaswrable  ¥n
©{w T@W\ﬁ IS Zwrvmmswa\ole Y |

aanle |
c T=min{n' X e A} ic o s¥opp§v5 g
* T =M ﬂV\: XM,GM S ﬂg_{r A S\‘O[J\d\v\j kg
nd. Lot T e o Sjropp'\n%} Q. Thaw

o< At AT ond AnfTenied, for all |
is 0 O-teld qnd T i¢ Y measwble.

Sh@m Markoy Prooqr{u ld T e & %bpp\nj g,

Than a.e. ov 1T<®97
P [XmeA\ - Xem€A \ZL]

= (. V(X dx,) - lon, dxn)

\ N
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b A€ Ye ond Ac{t<on) Then

e
[A O X €A 10~ A f Xeen %Anﬂ

[A(\ {T= kt\ 0 {XK\-\E‘AJ - {stme Anﬂ

} dP U "'j W(Xk,dxm) - T xk+h-t)dxk+h9
Af\{t=k<] Ay
Ajf\{ tj‘] Q‘ j T(X C\XKH) ka\ ( ,dka))

dP AI"-S 106, k) = T (Xoor, dx ).
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5.3, Counfable sele SpacQ

W P dole X &1L, ond
i e oo, Veoky o

Then T ><5) T (x, {3‘1) XUE—X is o mobmx st
Tf(2<3)>0 ZT()<$> | XX
Sinth mohicos BN ch)ec) Skﬂ‘&@“\(: [@DCQS
T (xy) = vahnes o Hha n-th mobnx power of i
Tl(O)(x,j\: Sy < entnes o ic\»QV\WU Mohnx b5 CENY
D, The shile xeX communiates Lt yek s

T y) >0 for ome n
TL\Q NO\(kOy C\/\CAW\ S (( !Pc)u(,ilo‘@ \\]( Q(\ g*z{tzg

communitelz wth eadh oHar

let Ty be Ha Frst pasiago e Yo x:
tx \r\gr{YP' Xa ‘X(S

r\ "E([ti‘h]'
(_XQ:)(
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2 f)= PUXGAR for [€7¢n-1, K= x]
= 2 TR8) My, ) Tyoa ,X)

3#X
%X

OV\G\ Sr;-\#x

PX(-CXQ()O) = %(T\n()() ¢ \

Detn The shole x is recarrent i B (Tesn)=|
Transient oHerwoise.

et Vx # \(l\SiJfS o x = Li) _)(‘\-

o x is mwrewt@ﬂ\(x 0] =) = E =0
X Is fronsienT & If [\[ OO Qe B [\(]wo

MB@#\Q 5{7‘0‘/\ [\’btrkov pr
PVor]= P[(g 0] 7

V0] ’\W\ P[\()p )=, | P [1.<0]" - i\ feC.

(IR Q frovs.
Ex[v] l PLV >rJ, = P[‘cx«x)] ii.g E’éng
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Defing o Grean's kmdion
Gloy)= BN, ] = L2 m0cy)
Ry For on \NAU\CA‘O\Q &W\ eifhar ol ks e

h'o\w&gvd‘ or ‘ (034 reameyd‘
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Et)[\]tj] by &H@r\& Novkoy mee(B

= B (Tyeoo) £, IV,
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Tw (onsider odic pesihue recsrent
Ha(fkovngcbaiiﬂ T?R\fv:\ ég{ O\?T |>&\§3 o

i T, 5) =qly) =[J\,\‘(3>.
ond q Is o nvanovl distlouhion !
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\Vl
Peoet Fx x and sef J
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Then

r
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FOr (a-Q)/\Q-(O" )(/3)
Mgl 3 ALK Tl

ond 3 Rly=kl = Rt <ao] =1 by recunence. Thus

) ) _
lwm T (xgj\“w LP[ 3,;';3)— Vi{b) Yy

Cawm: % 4ly) =1
Md!@&d) bt} Fa{'w )
);qu)’ %l\y\/\ "I ,3) < IIMQIOV§ %Il &3) |
On tha efter hond |
-\TLWH j()%) _ ; K(M (XJ Z\ T((Z/&)
T 2Yqdalzy by Fabeu
2 lq y) 2 Io\( )12y = 392
+ 49 - Tqelzy)
= qlgl= 2 ql)Tey) ¥ Ll Zqly) = 1.
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Ros of lemman C\Q@r‘lﬂ Pp <l for ol
Oheoe mb&ﬁ 3 Do, = qofhm&ﬂap

ond Prsy — q; fer all (€2
= q.= an ] for oll neZ, e

> 2 q )

S A

Coimn : QJ~<10 ﬁO( CL“J
Note Htad 9 ﬁqfh/v\&;)() D F@( al S
Snce ﬂ>(§ for ol j€S, 9 =% Dy €S bf)()k“)
Than q5=9, Jor J=j,ju. gieS by 6).
Than q =9, for J=j,4 1), §i€S ogan by (*3)
Bj C\&swxpﬁen on D 959, Cor {20
g& (e +.3

Aot Q—L Y-noti-§ = Qs - P_ 43 9
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Chin: ek T3 & Then T, £7j= m ond
ZT PN \ﬁ-l - l PN
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3T =00 fran by Fedou
=9, = nfaf (1o =ldgh 1T,

>, 1T = 9,
2 limp, =0 b2 W,
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h 4. bw\e %\uox W

Defpn A b&wﬂ@l fonchon W2 X— R is hamenic
(it tesped: fo fha travsifon: probobilifies ef a
Mcx«rkov cheun 1

U(x) = 5 T X)dﬁ> U@ \FxeX

Leb L be bownded haemonic. Then
LK)~ 006 5] = 1 0, dy (U -U0)=0
Thus Na= UOG) = W) suhshes
Eln,1=0, Elg7.)=0 ¥n#m
Thus
u(}%% U%)“r“l. T
4 EMOG] = U Bl e -+ L) € sup U
¥ UK is a M Y Seguans w
= 5= lm U X QX\SJFS =131 = (L)

Rk. UM 1S o Moxr’dv\%m ord the Tk exiee XG.
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PDIUU\ an: X=NxIN, W((P)q))(pﬂﬂ))zﬁ%
P T ((pg), (mm): —Pgﬁ |

M- én: an'\‘@n i % iV\ B(_P) OV\d\ Qa-S.

ord iF (P,Q0= (), 3 has dishnbuhion

\ - -
@/ﬁ) Xt (=) dx

Lemmo Tor cmt? xe—(@ I)

lp) = sy 0T, lps= I8
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p&ClHPH ;) t o Ptg Flgt) = T, C])

Lo Tor ony Felol= R confinuous,

Glpa)= [H9 Rlpq) dx
S bow»ded haemonic ond
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Seich,
o ﬂ( XY, (-X )" 5H3') B(Xr U—x)r)Ej 0_3)(|‘?<)F“d\j

-
e — % | :
n! = e, V\ J—Tr)( ~>() )( r(,‘)()(l )()f

%lxm Rj (B " %‘jm Y

F=>00

/

Lo Fxs L><r| sx)bc)ro\

r—=0mn
0

0O unbess S2 | —*O \M\QSS S<|

+ f{x)

Fook of Thm . Siace m[)c}) Pk S bd.\\wvv\@r\ig
3= IW\ WP, QL) - ~P—f§— oagts i L

S(/\CQ FS' ‘|S H hﬂleOVl\lC) 5 Pq\_} K)‘) l{' @%ﬂ-}xy P—)Oq
Mﬂ(%m exsts i 12
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On fha ofker hord
Eon 3= [ E, [P

-3 p.9)
- Wx) P—((frﬁ) K (10" dx

S S E«zln(f),c\\ ,
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6. Moch nqo\es
61 AS(dQ £ SDGCQS

j HS‘ d}i\ < MHL‘)[M \3]\[\ ,“)
ok WG (I LP(M e(00) and than “H\U’(p
Than define o prc)b veas . PA)= SIHP c\/u\
Thos E[X]= | XIFF d/u
By Jonsen, ELIXI] € ENAA
= [kl d/M S :j?llp AR L0 du

= E[ Ell" . ilfrho}

\
N ]/‘7
E[ H_,(p g j—le

o
:Q‘gﬁ/ﬂpg{)"i 1l¥l>o C)ﬂ < “8 “D(Jm)-

*}%ﬂé‘ws meo,\ml@. I3) pﬂGD ) be < }“\)*lq:,.
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Nlﬂkaqu \V\qu\ }\)\
[§4l 5 < HH\LP sl
P Asure p1 cnd e gl <. T
Feglf 4 (4)g)Y < ZPQ‘QW*\E\W)
= “HSHU’ <00 .
S\{:+8lPO‘/LA . j i lhgl""df,\ + S|3) Hdvgl?" o»“
< (|\ H|LP+|\3||L> I |H3|P“ “
\fr’rg\l%

<NHE g s

= lH‘*‘S“LP “I—%S)\ ‘1)

(eorplelenoss . Lot FED\OQ]. fer Gy E)cl®? o

I§,— 5. “LP =0 (\qlu\/\\_;m)
e i Felf sk
“¥/\ "s‘ “Lp — 0
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Reck (&w p%) Bad a Su\aseqv&v@ () st
5= Z M‘mq. ‘s\‘nK\LP Y

S PR 1—
H\Aku;o%(’\i
= |\§. ﬂk-l-\ S'V‘ \ “LP ¢

w\oao\om NV,

= 2: l‘[nut_ghk\ <ol a.e.

= (W) CONNRIGRS bor WEQNN waith WN)=0

Defing Hw%{ lim Irg(w) {g( ﬁ%\‘\\

Shee (Fv\] S CO\U\C]/\:j N LPJ
VG- df,« <¢ for menzn(©).
2 [lhebl du <& for nznf), kzke),

= [lh-51 cha= it 13, &M\Fd{u lwrin 15 W

S Sel®) -, 0. SIS
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(or.
FQF M’{S:Q*R Meos | \\H\L‘,Cooﬁ/w
Lohere )ENS T §=9 ae. is « Bonach e

M. ot oeliea)  Than the oD for Q\l@vgﬂéll
A L — R, NE) = (g du
s baunded it 1N = sap 1A =l ord

i p<.o0 than Yor any bsw\dw(ic\ ineor A on L
thee s %elf‘ S /\=/\8,

from 0w, OSSN (A 1S o finile voasure.
Defny. (g5)c L' s W\iFOfm\% Wegmbb f ik s beunded
and g [l — 0~ (haw)

ILRYRY?

Weal< COmPQd:DQSS. Lot (85)(1.0' be bou\r\Q)QQ)) q>\ ,

Than thare is @ mbsqc‘wmu o3
(§;.0) — (5,9) el

The samg holds 1 (&)CL\ s uniforml ilf\\‘QbVOUe.
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Vikali's @ fhoorem (it neasure verion).
Let () ovd £ be maosurode. TFAE:

0) fieU doral j, Fel' and §24 in L
() () ts wiomly integobe ard 4 in maoge
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). “’brﬁw%o\les ord D@@US | r\eql\/\&[(\b\

Ddn Lot (QF.P) be o probobilihy space. A
machrecle o length N isPo\ Sequgcz‘m& ordom
vcxhc:ﬂ((ifes X Ry anc\ &/\b-G- Ftelds 7{ S.*.

- HIXN<wo, X is F -moswoble
) ;L:ﬂ—??:d ‘?@( QVQVHIL

X = E[Xu | R] ae for vy L=l o=l
An infinite mqrﬁvboJQ RAUR s defned in the
a4 0 o T G s
&l& IHXL) IS W\QFHV\BOJQ) \f;," Xi‘X[-l SO\HSHG.S

E[\{CH E]:O A.€,
Sucm @ 3G UNCL i called M@\n‘go\\g diffepnco
3g1UkQV\CQ..
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Rk let (’F) be Gn V\creo«s\ quue @ oF o-Felds
ad K & oM \I&ﬂO\ E{X\]%O. Thav

X, =HXI%]
E)\\ @\ WV\SO\\Q (wlled M_M‘_\DSQ\Q 0SS,

Rl &, F) 5 o
° 5U\L)W\OF{W\80\\Q |F X E[Xm IQ:] a.<. \YZ‘
SuPQ(MQH‘lVBO\Q \¥ >< 2 E[,XLHU:} Q.e. \‘[K

Lemma. Lef (X,%) be o morfingl
a CD\/\?(QX 1EW\C'\O/\)S O\; IS ﬂl@\ Q(cjg\e {or

oveny 1. Than (LX), ?: ) is submo 8
[V\ "\Cx/\\ar UX “9 T ) ls A S MOAWYBO\\Q nc 'P>

X Jonen,

hﬁmg‘m&;g. et X, % be a Mcxrl\'mgole,ﬂuzn

M o0 D124 < 4 ELIKI g < T

’ [5‘49 MP] (PP ANF] o ongy P21,
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ook Lef S':I%\i\Ph X[, Tha,

[S24)- \)J r, E= i<t e, e,
3 DEV< L LC 1
= P(%) %2 E'(le iEjT < IQ x| 1{;3‘
X[ is o %mgr\‘lr\ﬁc@
= PS¢ < é- > ELK 'lEJ - %E[IXV\\ 1gse)

J

The Seconc\ doim Ic o CONSYUIN of the roxd
lemma.

lewwna. Lok p> . Than for ry X20, 20
Tl €5 XaP

>

> Y < ) £
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= YY) < pIX[T | dy]dP (Rbin]
pﬁ EDETPEYPTS (Hoided
ey
S V< (R ERY i Y]
In Wml) mﬂalﬂ jo YAN fo 8@JL
(YY) < (B BLP
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3 ("lcerr\qcx\Q (e PN Thoorems

Lt Xelf, P>\ ond seJL X=EIXIF,)

Than X[ is a%mo\rh\ao}@ ond  E[JXJF<EIX)
Thwn. [ E[K-XI"] =0

Roet Assvie X is boownded. Than Xel® and
R have QIV'QQ% san Xo =X in 2. lnded,

G- EDGT Bl 1+~ +Hae) 720=X-%
= ) ] E[lxn]\w
= E[OQ—M] )l Hl—= 0 (m—-w)

k=mti

Thas, (%,)s i Cqud«s n L ow\o\ Harefore Y = ling, X

QXlSlLS (b\lj COW\P leahQSg O1r‘ L
Coum * X=Y a5

HdP i ano\P SXdP VAe U5,

T n-»00

X2\ n | C\th’\ o Xa
Q\XY\QT n L]

= Somg for Ae F=of Ukm)= X=Y as
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Sinca X 15 \ac) ako A= X in U VPGUPOB
for ang Xel?, thare io Xel® sk XXl <&
Than %o =ELX(F] sobsRes 1Xa-Xall e <€ ¥n.
SinQ2 Xw‘ =X in LP_,

g o K p <26 ¥£>D
= i, KK p=0

Thn Leb (%) be o mackingale bt is bd in I
sup ELN 1< (>1)
Than Hhae s XelP sb Xo= EX\H

Bot Siace (6] ISMW\ P p> \AA I b duol
of & }ﬁl Hee aonlu Thm
ﬁs MW S Q&x‘o&@glwmz s¥ K

weL\ N L \Q
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for AT s &) Is o mO\er\goJQ‘.
lim SXV\\\dP me aP
e

Thiug
| XndP= (X dP W heRn,

= Xa= EXIFL].

Thn let XelP, p>]. Than Xa=EIXIH]— X g,

Rest  Assume p=I. Ler

M=iXel s BXIFRI=X as).

b Misal Cso it it is dene ord
o i 0 o T Sy B
= Xe L X is Fa-tmeasuable .

Then Mo s o closed sub FL ond UM,
e T

N@%%¥ M CH . g0 UH,,CMOVIJMIS dense
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s subfiss o pove M is desed .

(_eJL\(GH ond Y = §< in L. Need o chew XeM,
XX b X=X as,

B D@@Lm \Aeﬂml% ona Jensen,
Plaop [Kal>€]¢ 3 Hixal< ¢ E[\X\]
Coim: lIN\&)sP )(h [ler\F Xn Q.S,

(SmCQ Xa X in L
I_QJV \(n E[\( l?T] WV\tQ, H’\\S IW\{?‘\QS Xn"x Q S)

X= Y LX—Y
X/\‘ \(“’"j (x/\ \rﬂu)
= ‘W"\nQAP Xv\‘ | W/\V!V'} Xy\ < IIW\‘%MP Yn,j \‘W"}AV\E Ynd
+ I;VVLVS\UP(_&\YV\U) B [iml\/lf (X\(\"YVHD
et s (Yo -linie (-t
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fhare is X sd. Xo= EIX (R ],

o Wl vt e

l

Thm . £ X is o \)w\i?orw\la ir\karo\UQ W\OJ‘HF\Q)O\\QJ €.
than
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64 Decy decompesihon

com \'ln, thoorem et (Kn) be o wb-
rrUrHvxaole. Then Xn= MitAn whare

() Mais o mar‘m%ode
(%) Ai2An ae n . A=O
(i) An iy Fae maaswoble  n2)
The decomposthion & Unique.
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An=Aaw = Xa ~Kao T Mn--\~ My
D A= Agor = E[¥0=Xaa | Faei] 20
& fa=Anat EDG=Xou 1] 2 A
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£ %) ¢ o &\@murhvxqu ]
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v 0Wacevmp Q P(O%SS anmon nicily
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b ld (5 by o ovephve morfgele T

HXd) = EXa] = ELXT

Tow . Let (K b waacm cle . The
H\Tw@ 0o m)V\V\gaCiV\‘\VQ VY\(M‘(“% SO\LQ& ) ond ZVA))
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Proct: For n2 | dqfv\Q
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S (K1) s @ Submoﬁw‘n%cxb )
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S 20 o - E<ED, Ho
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é 5 QOh@V\O\\\ §®D’D|r\0

R&can%\fzé% @Ir s*mpl Fve wed, &)

Exa \e lef T bR a S\TPM Fma ord & on
mcmqs\ fundPon ob. f0)En. Than He) is

ng\r\ o S&Dpp\/\ WLW\Q

Bm_p‘e Lot cmd T S@P\n ey, Than

VG = mox 1T, ) ond TAT, = W\m T ”LzT Qe
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ftod S % CF ¢ Ky, it suffices fo show
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SR AR EVAIATEA
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To Show the daim | et AcF. Defing
E={t§) = Q-U§.

Since AQB €75 the modw'r%oJQ prqpﬁ& Shous
ASQE-X}\ CH) tj Xj dp ’S X‘c CJP

d ACE; AOEJ
:};XKC\P”;XT,QXD V AcH
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S%Ppin% Hma | than
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= E[XU\\J: ED(\:]

Snee Trk—T s, Xoe— % s, and to
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©) for all sepping fines T, XT & o marhingole
d) for all beunded Q@PPRI\% Fmes o<T:
HXc]=El X ]

M. (o) = (b) is the OST QPp\ieo\ with T,=T onel

T.=TAO. Both ove bovnded . <o

J
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ek () be o rourdom PIOGSS , 6<b.
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Debing
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_\ =
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