PROBABILITY THEORY I **HOMEWORK 7**

Roland Bauerschmidt Fall 2024

Exercise 1. Let $(X_n)_{n\geq 1}$ be a sequence of random variables, on the same probability space, with $\mathbb{E}(X_{\ell}) = \mu$ for any ℓ , and a weak correlation in the following sense: $Cov(X_k, X_{\ell}) \leq$ $f(|k-\ell|)$ for all indexes k, ℓ , where the sequence $(f(m))_{m>0}$ converges to 0 as $m \to \infty$. Prove that $(n^{-1}\sum_{k=1}^n X_k)_{n\geq 1}$ converges to μ in \overline{L}^2 .

Exercise 2. A sequence of random variables $(X_i)_{i\geq 1}$ is said to be completely convergent to X if for any $\varepsilon > 0$, we have $\sum_{i\geq 1} \mathbb{P}(|X_i - X| > \varepsilon) < \infty$. Prove that complete convergence implies almost sure convergence.

Exercise 3. Let X and Y be independent Gaussian random variables with null expectation and variance 1. Show that $\frac{X+Y}{\sqrt{2}}$ $\frac{Y}{2}$ and $\frac{X-Y}{\sqrt{2}}$ are also independent $\mathcal{N}(0, 1)$.

Exercise 4. For any $d \geq 1$, we admit that there is only one probability measure μ on \mathbb{S}^d , (the d-dimensional sphere embedded in \mathbb{R}^{d+1}) that is uniform, in the following sense: for any isometry $A \in O(d+1)$ (the orthogonal group in \mathbb{R}^{d+1}) and any continuous function $f : \mathbb{S}^d \to \mathbb{R}$,

$$
\int_{\mathbb{S}^d} f(x) \mathrm{d}\mu(x) = \int_{\mathbb{S}^d} f(Ax) \mathrm{d}\mu(x).
$$

Let $X = (X_1, \ldots, X_{d+1})$ be a vector of independent centered and Gaussian random variables.

a) Prove that the random variable $U = X/||X||_{L^2}$ is uniformly distributed on the sphere.

b) Prove that, as $d \to \infty$, the main part of the globe is concentrated close to the Equator, i.e. for any $\varepsilon > 0$,

$$
\int_{x \in \mathbb{S}^d, |x_1| < \epsilon} \mathrm{d}\mu(x) \to 1.
$$

Exercise 5. Let (X_1, X_2) be a Gaussian vector with mean (m_1, m_2) and non-degenerate covariance matrix $(C_{ij})_{1\leq i,j\leq 2}$. Prove that

$$
\mathbb{E}[X_1 | X_2] = m_1 + \frac{C_{12}}{C_{22}}(X_2 - m_2).
$$

Exercise 6. Let X be a random variable such that $\mathbb{P}(X > t) = \exp(-t)$ for any $t \geq 0$. Let $Y = min(X, s)$, where $s > 0$ is fixed. Prove that, almost surely,

$$
\mathbb{E}[X \mid Y] = Y \mathbb{1}_{Y < s} + (1+s) \mathbb{1}_{Y = s}.
$$

Exercise 7. Let μ and ν be two probability measures such that $\mu \ll \nu$ and $\nu \ll \mu$ (usually abbreviated $\mu \sim \nu$). Let $X = \frac{d\mu}{d\nu}$ $\frac{\mathrm{d}\mu}{\mathrm{d}\nu}$.

- (i) Prove that $\nu(X = 0) = 0$.
- (ii) Prove that $\frac{1}{X} = \frac{d\nu}{d\mu}$ $\frac{d\nu}{d\mu}$ almost surely (for μ or ν).

Exercise 8. Let $(X_n)_{n>0}$ be defined on $(\Omega, \mathcal{A}, \mathbb{P})$. Assume this sequence converges in probability (under \mathbb{P}) to X. Let $\mathbb Q$ be another probability measure on $(\Omega, \mathcal A)$ assumed to be absolutely continuous w.r.t. P. Prove that $X_n \to X$ in probability under Q.