
PROBABILITY THEORY I HOMEWORK 5

Roland Bauerschmidt Fall 2024

Exercise 1. Prove that if a sequence of real random variables (Xn) converge in distribution to
X, and (Yn) converges in distribution to a constant c, then Xn + Yn converges in distribution
to X + c.

Exercise 2. Assume that (X, Y ) has joint density

ce−(1+x2)(1+y2),

where c is properly chosen. Are X and Y Gaussian random variables? Is (X, Y ) a Gaussian

vector? [A Gaussian vector on Rn has probability density function proportional to e−
1
2
xTC−1x

for some positive definite matrix C (or a is a weak limit of such distributions).]

Exercise 3. The goal of this exercise is to prove that any function, continuous on an interval of
R, can be approximated by polynomials, arbitrarily close for the L∞ norm (this is Bernstein’s
proof of the Weierstrass approximation theorem). Let f be a continuous function on [0, 1].
The n-th Bernstein polynomial is

Bn(x) =
n∑

k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
.

a) Let Sn(x) = B(n,x)/n, where B(n,x) is a binomial random variable with parameters n and
x: B(n,x) =

∑n
ℓ=1Xi where the Xi’s are independent and P(Xi = 1) = x, P(Xi = 0) = 1− x.

Prove that Bn(x) = E(f(Sn(x))).
b) Prove that ∥Bn − f∥L∞([0,1]) → 0 as n → ∞.

Exercise 4. You toss a coin repeatedly and independently. The probability to get a head is
p, a tail is 1− p. Let Ak be the following event: k or more consecutive heads occur amongst
the tosses numbered 2k, . . . , 2k+1 − 1. Prove that P(Ak i.o.) = 1 if p ≥ 1/2, 0 otherwise.

Here, i.o. stands for “infinitely often”, and Ak i.o. is the event ∩n≥1 ∪m≥n Am.

Exercise 5. Prove the Central Limit Theorem using Lindeberg’s exchange method: Let Xi

be i.i.d. random variables with mean 0 and variance 1 and Zi be i.i.d. standard normal random
variables. For a bounded continuous function f , then consider

E[f(
X1 + · · ·+Xn√

n
)]− E[f(

Z1 + · · ·+ Zn√
n

)]. (0.1)

Then replace one Xi by Zi on the left-hand side at a time and estimate the error using Taylor’s
formula.

Exercise 6. For any probability measure µ supported on [0,∞), one defines the Laplace
transform as

Lµ(λ) =

∫ ∞

0

e−λxdµ(x), λ ≥ 0.

(1) Prove that Lµ is well-defined, continuous on [0,∞) and C∞ on (0,∞).
(2) Prove that Lµ characterizes the probability measure µ supported on [0,∞).
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(3) Assume that for a sequence (µn)n≥1 of probability measure supported on [0,∞), one has
Lµn(λ) → ℓ(λ) for any λ ≥ 0, and ℓ is right-continuous at 0. Prove that (µn)n≥1 is tight,
and that it converges weakly to a measure µ such that ℓ = Lµ.


