PROBABILITY THEORY I

Roland Bauerschmidt

Fall 2024

Exercise 1. Prove that $f(t) = \frac{\sin t}{t}$ is not integrable on $[0, \infty)$ and that $\lim_{T \to \infty} \int_0^T \frac{\sin t}{t} dt = \frac{\pi}{2}$.

Exercise 2. Let X be a nonnegative random variable with $\mathbb{E}(X) = 0$. Prove that X is 0 almost surely.

Exercise 3. Calculate $\mathbb{E}(X)$ for the following probability measures \mathbb{P}^X .

- (i) \mathbb{P}^X has Gaussian density $\frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/(2\sigma^2)}$, for some $\sigma > 0$ and $\mu \in \mathbb{R}$;
- (ii) \mathbb{P}^X has exponential dentity $\lambda e^{-\lambda x} \mathbb{1}_{x>0}$ for some $\lambda > 0$;
- (iii) $\mathbb{P}^X = p\delta_a + q\delta_b$ where p + q = 1, $p, q \ge 0$ and $a, b \in \mathbb{R}$; (iv) \mathbb{P}^X is the Poisson distribution: $\mathbb{P}^X(\{n\}) = e^{-\lambda} \frac{\lambda^n}{n!}$ for any integer $n \ge 0$, for some $\lambda > 0$.

Exercise 4. Let X be a standard Gaussian random variable. What is the density of $1/X^2$?

Exercise 5. Let X be uniformly distributed on [0, 1] and $\lambda > 0$. Show that $-\lambda^{-1} \log X$ has the same distribution as an exponential random variable with parameter λ .

Exercise 6. A samouraï wants to create a triangle with a (rigid) spaghetti. With his saber, he cuts this spaghetti on two places, chosen uniformly and independently along this traditional pasta. What is the probability that he can create a triangle with sides these three pieces of spaghetti?

Exercise 7. Assume that X_1, X_2, \ldots are independent random variables uniformly distributed on [0, 1]. Let $Y^{(n)} = n \inf\{X_i, 1 \le i \le n\}$. Prove that it converges weakly to an exponential random variable, i.e. for any continuous bounded function $f : \mathbb{R}^+ \to \mathbb{R}$,

$$\mathbb{E}\left(f(Y^{(n)})\right) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}^+} f(u)e^{-u} \mathrm{d}u.$$

Exercise 8. Let $f: [0,1] \to \mathbb{R}$ be continuous. For any $y \in \mathbb{R}$, let $N(y) \in \mathbb{R} \cup \{\infty\}$ be the number of solutions to f(x) = y. Prove that N is measurable.

Exercise 9. Let $f : \mathbb{R} \to \mathbb{R}$ be additive (f(a+b) = f(a) + f(b) for all a, b) and measurable. Prove that it is linear.

What if f is not assumed to be measurable? What about $f : \mathbb{R}^d \to \mathbb{R}$?