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Exercise 1. Let (Xn)n≥1 be independent Gaussian such that E(Xi) = mi, var(Xi) = σ2
i ,

i ≥ 1. Let Sn =
∑n

i=1Xi and Fn = σ(Xi, 1 ≤ i ≤ n).
a) Find sequences (bn)n≥1, (cn)n≥1 of real numbers such that (S2

n + bnSn + cn)n≥1 is a
(Fn)n≥1-martingale.

b) Assume moreover that there is a real number λ such that eλXi ∈ L1 for any i ≥ 1. Find

a sequence (a
(λ)
n )n≥1 such that (eλSn−a

(λ)
n )n≥1 is a (Fn)n≥1-martingale.

Exercise 2. Let (Xk)k≥0 be i.i.d. random variables, Fm = σ(X1, . . . , Xm) and Ym =
∏m

k=1Xk.
Under which conditions is (Ym)m≥1 a (Fm)m≥1-submartingale, supermartingale, martingale?

Exercise 3. Let (Fn)n≥0 be a filtration, (Xn)n≥0 a sequence of integrable random variables
with E (Xn | Fn−1) = 0, and assume Xn is Fn-measurable for every n. Let Sn =

∑n
k=0Xk.

Show that (Sn)n≥0 is a (Fn)n≥0-martingale.

Exercise 4. Let a > 0 be fixed, (Xi)i≥1 be iid, Rd-valued random variables, uniformly
distributed on the ball B(0, a). Set Sn = x+

∑n
i=1Xi.

(i) Let f be a superharmonic function. Show that (f(Sn))n≥1 defines a supermartingale.
(ii) Prove that if d ≤ 2 any nonnegative superharmonic function is constant. Does this result

remain true when d ≥ 3?

Exercise 5. Let (Sn)n≥0 be a (Fn)-martingale and τ a stopping time with finite expectation.
Assume that there is a c > 0 such that, for all n, E(|Sn+1 − Sn| | Fn) < c.

Prove that (Sτ∧n)n≥0 is a uniformly integrable martingale, and that E(Sτ ) = E(S0).
Consider now the random walk Sn =

∑n
k Xk, the Xk’s being iid, P(X1 = 1) = P(X1 =

−1) = 1/2. For some a ∈ N∗, let τ = inf{n | Sn = −a}. Prove that

E(τ) = ∞.

Exercise 6. Let X be a standard random walk in dimension 1, and for any positive integer
a, τa = inf{n ≥ 0 | Xτa = a}. For any θ > 0, calculate

E
(
(cosh θ)−τa

)
.

Exercise 7. Let Nn be the size of a population of bacteria at time n. At each time each
bacterium produces a number of offspring and dies. The number of offspring is independent
for each bacterium and is distributed according to the Poisson law with rate parameter λ = 2.
Assuming that N1 = a > 0, find the probability that the population will eventually die, i.e. ,
find P ({there is n such that Nn = 0}).

Exercise 8. Let Xn, n ≥ 0, be iid complex random variables such that E(X1) = 0, 0 <
E(|X1|2) < ∞. For some parameter α > 0, let

Sn =
n∑

k=1

Xk

kα
.
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Prove that if α > 1/2, Sn converges almost surely. What if 0 < α ≤ 1/2 ?

Exercise 9. Let (Yn)n∈N∗ be a sequence of random variables, and assume (Yn) converges
in distribution to a limiting Y . Also, on some probability space (Ω,F ,P), the sequence of
independent random variables X := (Xn)n∈N∗ is defined, and we assume that the sequence of
partial sums (Sn)n∈N (i.e. S0 = 0 and Sn :=

∑n
j=1Xj) converges in distribution. Set (Fn) the

natural filtration of X and Φn(t) = E(exp(itSn)) for t ∈ R.
(i) Establish that (ΦYn(·))n≥1 converges uniformly on every compact, i.e. show that for any

a > 0, maxt∈[−a,a] |ΦYn(t)− ΦY (t)| → 0 as n → ∞. Establish moreover that there exists
a > 0 such that for any n ≥ 1, mint∈[−a,a] |ΦYn(t)| ≥ 1/2.

(ii) Show that there exists t0 > 0 such that if t ∈ [−t0, t0], then (exp(itSn)/Φn(t))n≥0 is a
(Fn)−martingale (i.e. both its real and imaginary parts are martingales).

(iii) Prove that we can choose t0 > 0 such that for any t ∈ [−t0, t0], limn→∞ exp(itSn) exists
P-a.s.

(iv) Set
C = {(t, ω) ∈ [−t0, t0]× Ω : lim

n→∞
exp(itSn(ω)) exists}.

Prove that C is measurable, i.e. in the product of B([−t0, t0]) with F .

(v) Establish that
∫ t0
−t0

1C(t, ω)P(dω)dt = 2t0.

(vi) Prove that limn→∞ Sn exists P-a.s.


