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1. Continuous-time simple random walk. Given Λ finite and rates 𝐽𝑥𝑦 = 𝐽𝑦𝑥 > 0, define the
continuous-time simple 𝑋 = (𝑋𝑡 )𝑡>0 random walk with initial condition 𝑋0 = 𝑥 ∈ Λ as in class. Show that
𝑋 has generator Δ𝐽 , i.e., for any 𝑓 : Λ → R,

𝜕

𝜕𝑡
𝑓𝑡 = Δ𝐽 𝑓𝑡 , 𝑓𝑡 (𝑥) = E𝑥 ( 𝑓 (𝑋𝑡 )). (0.1)

2. Local time of simple random walk. Let (𝐿𝑥 (𝑡))𝑥∈Λ be the local time (or occupation time) of the
continuous-time simple random walk 𝑋 defined by 𝐿𝑥 (𝑡) =

∫ 𝑡

0 1𝑋𝑠=𝑥 𝑑𝑠. Show that for any sufficiently
nice function 𝑓 : Λ × RΛ → R,

𝜕

𝜕𝑡
𝑓𝑡 (𝑥, ℓ) = L 𝑓𝑡 (𝑥, ℓ), 𝑓𝑡 (𝑥, ℓ) = E𝑥 ( 𝑓 (𝑋𝑡 , ℓ + 𝐿𝑡 )) (0.2)

where L 𝑓 (𝑥, ℓ) = Δ𝐽 𝑓 (𝑥, ℓ) + 𝜕
𝜕ℓ𝑥

𝑓 (𝑥, ℓ) and the discrete Laplacian Δ𝐽 applies in the first argument of 𝑓 .
3. No transversal magnetisation. Consider the 𝑂 (𝑛) model (with free or periodic boundary condi-

tions) on Λ ⊂ Z𝑑 . Let 𝑒 = (1, 0, . . . , 0) denote the direction of the external field ℎ. Show that

〈𝑒′ · 𝜎〉Λ𝛽,ℎ = 0, for any 𝑒′ ∈ R𝑛 with 𝑒 · 𝑒′ = 0. (0.3)

4. Ward identity. For the 𝑂 (𝑛) model as in the previous question, show the Ward identity∑︁
𝑦∈Λ

〈𝜎2
𝑥𝜎

2
𝑦〉𝛽,ℎ =

〈𝜎1
𝑥〉𝛽,ℎ
ℎ

. (0.4)

[Hint: Only consider 𝑛 = 2. The general case is the same but notationally more cumbersome. It is helpful
to integrate by parts.]

5. Rotationally invariant random vectors. Let 𝑀 be anR𝑛-valued random variable whose distribution
is rotationally invariant, i.e., for any 𝑅 ∈ 𝑆𝑂 (𝑛), the distribution of 𝑅𝑀 is the same as that of 𝑀 . Show
that the distributions of 𝑀/|𝑀 | and |𝑀 | are independent. Here |𝑀 | is the Euclidean norm of 𝑀 .

6. Tetrahedral representation of the Potts model. The 𝑞-state Potts models is an analogue of the
Ising model in which spins can take 𝑞 values (with 𝑞 = 2 corresponding to the Ising model). This definition
amounts to the following definition of the measure of the Potts model: For 𝜃 ∈ {1, . . . , 𝑞}Λ,

P𝛽 (𝜃) ∝ 𝑒𝛽
∑

𝑥𝑦 1𝜃𝑥=𝜃𝑦 .

Show that there are 𝑞 vectors 𝑣1 ∈ R𝑞−1, . . . , 𝑣𝑞 ∈ R𝑞−1 with the property that

𝑣𝑖 · 𝑣 𝑗 =

{
𝑞 − 1 (𝑖 = 𝑗)
−1 (𝑖 ≠ 𝑗).

The set of these 𝑞 points forms a tretrahedron 𝑇𝑞. [Hint: Use induction in 𝑞.]
The configurations 𝜃 ∈ {1 . . . , 𝑞}Λ can thus be identified with spin configurations 𝜎 ∈ (𝑇𝑞)Λ ⊂ (R𝑛)Λ.
Deduce that the 𝑞-state Potts model is reflection positive.

7. Reflection positivity through sites. Let Λ be a discrete torus with an odd number of vertices along
every coordinate direction, and let 𝑃 ⊂ Λ be a plane of vertices (as opposed to edges considered in class)
so that Λ = Λ+ ∪ 𝑃 ∪ Λ−. The corresponding reflection 𝜃 : Λ± → Λ∓ now leaves 𝑃 invariant. Show that
any product measure 𝜇⊗Λ is reflection positive for this reflection.
As a consequence, show that the Ising model is reflection positive also with respect to planes of vertices.
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8. Reflection positivity of the hard-core model. Let Λ be a discrete torus as in the previous question.
Configurations of the hard-core model are 𝑛 = (𝑛𝑥)𝑥∈Λ with 𝑛𝑥 ∈ {0, 1} for each 𝑥 ∈ Λ with the
interpretation that there is a particle at 𝑥 ∈ Λ if 𝑛𝑥 = 1 and 𝑛𝑥 = 0 otherwise. In the hard-core model,
two particles are not permitted to occupy neighbouring sites, i.e., the admissible configuration 𝑛 obey the
constraint 𝑛𝑥𝑛𝑦 = 0 if 𝑥𝑦 ∈ 𝐸 . For 𝑧 > 0 (called the activity), the probability of such a configuration 𝑛 is

P𝑧 (𝑛) =
1
𝑍Λ
𝑧

𝑧𝑁 , 𝑁 =
∑︁
𝑥∈Λ

𝑛𝑥 . (0.5)

Show that the hard-core model is reflection positive through planes of vertices (and analogously it is also
reflection positive through planes of edges).
[Hint: one can approximate the hard-core model as the limit of an Ising model with inverse temperature
going to −∞ (antiferromagnetic).]
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