Throughout the following exercises, H is a complex Hilbert space.

1. For any closed subspace $L \subset H$, show that $\left(L^{\perp}\right)^{\perp}=L$. For any set $S \subset H$, show that S has dense linear span in H iff $S^{\perp}=\{0\}$.
2. Given $v \in \ell^{\infty}$, define the multiplication operator $V: \ell^{2} \rightarrow \ell^{2}$ by $(V x)_{n}=v_{n} x_{n}$ for $x \in \ell^{2}$. Show that $V \in \mathcal{B}\left(\ell^{2}\right)$ with $\|V\|=\|v\|_{\infty}$. Find the eigenvalues, the approximate eigenvalues, and the spectrum of V. Show that V is compact iff $v \in c_{0}$, i.e., $v_{n} \rightarrow 0$.
3. Let U be a unitary operator on H, i.e., $U: H \rightarrow H$ is linear, invertible, and $(U v, U w)=(v, w)$ for all $v, w \in H$. Prove the mean ergodic theorem of von Neumann: for every $v \in H$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} U^{k} v=P(v) \tag{+}
\end{equation*}
$$

where P is the orthogonal projection from H onto the (closed) subspace of U-invariant vectors $I=\{v \in$ $H: U v=v\}$.
(Hint: Show that $W=\{U v-v: v \in H\}$ is orthogonal to I. Show that $(+)$ holds for any $v \in I \oplus \bar{W}$. Show that $H=I \oplus \bar{W}$.)
4. Let U be unitary operator on H. Show that $\sigma(U) \subset S^{1}$.
5. Let V be a Banach space and $T \in \mathcal{B}(V)$ with $\|T\|<1$. Show that then $1-T$ has a square root, i.e., there exists $S \in \mathcal{B}(V)$ with $S^{2}=1-T$.
6. Let $\left\{e_{n}\right\}_{n \in \mathbb{N}} \subset H$ be a Hilbert basis for H. For $T \in \mathcal{B}(H)$, the Hilbert-Schmidt norm is defined by

$$
\|T\|_{\mathrm{HS}}=\left(\sum_{n \in \mathbb{N}}\left\|T e_{n}\right\|^{2}\right)^{\frac{1}{2}}
$$

Show that $\|T\|_{\text {HS }}<\infty$ implies that T is compact.
7. For $K \subset \mathbb{C}$ nonempty and compact, find a Hilbert space H and $T \in \mathcal{B}(H)$ such that $\sigma(T)=K$.
8. For $T \in \mathcal{B}(H)$ normal, i.e., $T T^{*}=T^{*} T$, show that $\|T v\|=\left\|T^{*} v\right\|$ for all $v \in H$, and conclude that $\operatorname{ker}(T)=\operatorname{ker}\left(T^{*}\right)=\operatorname{im}(T)^{\perp}=\operatorname{im}\left(T^{*}\right)^{\perp}$.
9. For $T \in \mathcal{B}(H)$ normal, show that $\sigma(T)=\sigma_{a p}(T)=\sigma_{p}(T) \cup \sigma_{c}(T)$.
10. Let $\left(e_{n}\right)_{n \in \mathbb{N}} \subset H$ be a Hilbert basis for H. Define $T: H \rightarrow H$ by $T\left(e_{n}\right)=\frac{1}{n} e_{n+1}$. Show that T is compact and that T has no eigenvalues.
11. Let $T \in \mathcal{B}(H)$ be a compact self-adjoint linear operator. For any $\lambda \in \mathbb{R} \backslash\{0\}$, show that the Fredholm alternative holds:
(a) Either the only solution to $T v=\lambda v$ is $v=0$ and given any $v_{0} \in H$ there is a unique solution $v \in H$ to $T v=\lambda v+v_{0}$,
(b) or there is a finite-dimensional subspace $N_{\lambda} \neq\{0\}$ of solutions to $T v=\lambda v$, and given any $v_{0} \in H$ the equation $T v=\lambda v+v_{0}$ has a solution $v \in H$ iff v_{0} is orthogonal to N_{λ}. Moreover, the dimension of the space of solutions is equal to that of N_{λ}.
12. Let V be a Banach space, $U \subseteq \mathbb{C}$ be open, and $f: U \rightarrow V$ an analytic V-valued function, in the sense for any $z_{0} \in U$ there exists an open neighbourhood $N \subset U$ of z_{0} such that f can be represented on N as an absolutely convergent power series: there are $f_{n} \in V$ such that, for $z \in N$,

$$
f(z)=\sum_{n=0}^{\infty} f_{n}\left(z-z_{0}\right)^{n}, \quad \sum_{n=0}^{\infty}\left\|f_{n}\right\|\left|z-z_{0}\right|^{n}<\infty
$$

Prove Liouville's Theorem: if $U=\mathbb{C}$ and $\sup _{z \in \mathbb{C}}\|f(z)\|<\infty$, then f is constant.
13. Let X, Y be Banach spaces and $D \subset X$ a dense linear subspace. Show that a bounded linear operator $T: D \rightarrow Y$ can be extended uniquely to a bounded linear operator $T: X \rightarrow Y$ with the same operator norm (BLT Theorem). Show further that if $T: D \rightarrow Y$ is compact then so is its extension.

