1. Using the Hahn-Banach Theorem for real vector spaces proved in class, prove the following complex analogue. Let V be normed vector space over \mathbb{C}. For any (complex) subspace $W \subset V$, any $g \in W^{*}$ has an extension $f \in V^{*}$ such that $\left.f\right|_{W}=g$ and $\|f\| \leq\|g\|$.
2. For $p \in[1, \infty)$, given $x \in \ell^{p}$, find explicitly a support functional for x, i.e., $f \in\left(\ell^{p}\right)^{*}$ with $\|f\|=1$ and $f(x)=\|x\|_{p}$.
3. Let V be normed vector space and $f: V \rightarrow \mathbb{K}$ linear. Show that f is bounded iff $\operatorname{ker}(f)$ is closed.
4. Let X be a metric space and $A \subset Y \subset X$ be subsets. Show that if A is nowhere dense in Y then it is also nowhere dense in X.
5. For $p, q \in[1, \infty), p<q$, show that ℓ^{p} is meagre in ℓ^{q}.
6. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be continuous and assume $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for every $x \in[0,1]$. Show that then f has a point of continuity (so that in fact that the set of points of continuity of f is dense in $[0,1]$).
(Hint: Step 1. Let $P_{n, m}=\left\{x:\left|f_{n}(x)-f(x)\right| \leq 1 / m\right\}$ and $R_{m}=\bigcup_{n} \operatorname{int}\left(P_{n, m}\right)$. Show that $R=\bigcap_{m} R_{m}$ is the set of continuity points of f. Step 2. Show that R is residual, i.e., the complement of a meagre set.)
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that, for any $x>0$, we have $f(n x) \rightarrow 0$ as $n \rightarrow \infty$ with n in the integers. Show that then $f(x) \rightarrow 0$ as $x \rightarrow \infty$.
8. Let V be a vector space with norms $\|\cdot\|$ and $|\cdot|$ such that $|v| \leq C\|v\|$ for all $v \in V$. Show that if V is complete with respect to both norms then the norms are equivalent.
9. Let V be a Banach space and W a normed vector space. Let $\left(T_{n}\right)$ be bounded linear maps $T_{n}: V \rightarrow W$ and $T: V \rightarrow W$ a map such that $T_{n} v \rightarrow T v$ as $n \rightarrow \infty$ for every $v \in V$. Show that T is linear and bounded.
10. Let $V=\{v:[0,1] \rightarrow \mathbb{R}$ continuous $\}$ with norm $\|v\|=\int_{[0,1]}|v(x)| d x$. Define $T_{n}, T: V \rightarrow \mathbb{R}$ by

$$
T_{n} v=n \int_{[1-1 / n, 1]} v(x) d x, \quad T v=v(1)
$$

Show that the T_{n} are bounded and that $T_{n} v \rightarrow T v$ for every $v \in V$. Is T bounded?
11. (challenging) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely often differentiable function such that for every $x \in \mathbb{R}$ there exists n such that $f^{(m)}(x)=0$ for all $m \geq n$. Prove that f is then a polynomial.

Given a 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$, the Fourier coefficients of f are defined by

$$
\hat{f}_{k}=\frac{1}{2 \pi} \int_{[-\pi, \pi]} f(x) e^{-i k x} d x .
$$

The n-th partial sum of the Fourier series of f is defined by

$$
S_{n} f(x)=\sum_{k=-n}^{n} \hat{f}_{k} e^{i k x}
$$

Denote the space of (real-valued) continuous 2π-periodic functions by $C(\mathbb{T})$.
12. For any $f \in C(\mathbb{T})$, show that $\hat{f_{k}} \rightarrow 0$ as $|k| \rightarrow \infty$.
13. Show that

$$
S_{n} f(x)=\frac{1}{2 \pi} \int_{[-\pi, \pi]} D_{n}(x-y) f(y) d y,
$$

where $D_{n}(x)$ is the Dirichlet kernel

$$
D_{n}(x)=\sum_{k=-n}^{n} e^{i k x}=\frac{\sin \left(\left(n+\frac{1}{2}\right) x\right)}{\sin \left(\frac{1}{2} x\right)} .
$$

14. Define $T_{n}: C(\mathbb{T}) \rightarrow \mathbb{R}$ by $T_{n} f=\left[S_{n}(f)\right](0)$. Show that T_{n} is linear and that $\left\|T_{n}\right\|<\infty$ for every n but that $\sup _{n}\left\|T_{n}\right\|=\infty$. Deduce that there is $f \in C(\mathbb{T})$ such that $\left[S_{n}(f)\right](0)$ does not have a finite limit.
15. Assume that $\sum_{k}\left|\hat{f}_{k}\right|<\infty$. Does $\left[S_{n}(f)\right](0)$ have a limit as $n \rightarrow \infty$ then?
