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1. Using the Hahn–Banach Theorem for real vector spaces proved in class, prove the following complex

analogue. Let V be normed vector space over C. For any (complex) subspace W ⊂ V , any g ∈ W∗ has an

extension f ∈ V∗ such that f |W = g and ‖ f ‖ ≤ ‖g‖.

2. For p ∈ [1,∞), given x ∈ ℓp, find explicitly a support functional for x, i.e., f ∈ (ℓp)∗ with ‖ f ‖ = 1

and f (x) = ‖x‖p.

3. Let V be normed vector space and f : V → K linear. Show that f is bounded iff ker( f ) is closed.

4. Let X be a metric space and A ⊂ Y ⊂ X be subsets. Show that if A is nowhere dense in Y then it is

also nowhere dense in X .

5. For p, q ∈ [1,∞), p < q, show that ℓp is meagre in ℓq .

6. Let fn : [0, 1] → R be continuous and assume f (x) = limn→∞ fn(x) for every x ∈ [0, 1]. Show that

then f has a point of continuity (so that in fact that the set of points of continuity of f is dense in [0, 1]).

(Hint: Step 1. Let Pn,m = {x : | fn(x) − f (x)| ≤ 1/m} and Rm =
⋃

n int(Pn,m). Show that R =
⋂

m Rm is

the set of continuity points of f . Step 2. Show that R is residual, i.e., the complement of a meagre set.)

7. Let f : R → R be a continuous function such that, for any x > 0, we have f (nx) → 0 as n → ∞

with n in the integers. Show that then f (x) → 0 as x → ∞.

8. Let V be a vector space with norms ‖ · ‖ and | · | such that |v | ≤ C‖v‖ for all v ∈ V . Show that if V

is complete with respect to both norms then the norms are equivalent.

9. Let V be a Banach space and W a normed vector space. Let (Tn) be bounded linear maps Tn : V → W

and T : V → W a map such that Tnv → Tv as n → ∞ for every v ∈ V . Show that T is linear and bounded.

10. Let V = {v : [0, 1] → R continuous} with norm ‖v‖ =
∫
[0,1]

|v(x)| dx. Define Tn,T : V → R by

Tnv = n

∫
[1−1/n,1]

v(x) dx, Tv = v(1).

Show that the Tn are bounded and that Tnv → Tv for every v ∈ V . Is T bounded?

11. (challenging) Let f : R→ R be an infinitely often differentiable function such that for every x ∈ R

there exists n such that f (m)(x) = 0 for all m ≥ n. Prove that f is then a polynomial.

Given a 2π-periodic function f : R→ R, the Fourier coefficients of f are defined by

f̂k =
1

2π

∫
[−π,π]

f (x)e−ikx dx.

The n-th partial sum of the Fourier series of f is defined by

Sn f (x) =

n∑
k=−n

f̂keikx

Denote the space of (real-valued) continuous 2π-periodic functions by C(T).

12. For any f ∈ C(T), show that f̂k → 0 as |k | → ∞.

13. Show that

Sn f (x) =
1

2π

∫
[−π,π]

Dn(x − y) f (y) dy,

where Dn(x) is the Dirichlet kernel

Dn(x) =

n∑
k=−n

eikx =
sin((n + 1

2
)x)

sin( 1
2

x)
.
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14. Define Tn : C(T) → R by Tn f = [Sn( f )](0). Show that Tn is linear and that ‖Tn‖ < ∞ for every n

but that supn ‖Tn‖ = ∞. Deduce that there is f ∈ C(T) such that [Sn( f )](0) does not have a finite limit.

15. Assume that
∑

k | f̂k | < ∞. Does [Sn( f )](0) have a limit as n → ∞ then?
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