Roland Bauerschmidt (rb812@cam.ac.uk)

Michaelmas 2017

For a sequence $x = (x_n) \subset \mathbb{K}$, where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, recall the definitions of the *p*-norms,

$$||x||_p = \left(\sum_n |x_n|^p\right)^{1/p}$$
 for $p \in [1, \infty)$, $||x||_\infty = \sup_n |x_n|$,

and the sequence spaces

$$\ell^p = \{x = (x_n) \subset \mathbb{K} : ||x||_p < \infty\}, \quad \text{with } ||\cdot||_p\text{-norm, for } p \in [1, \infty],$$
$$c_0 = \{x = (x_n) \subset \mathbb{K} : x_n \to 0 \text{ as } n \to \infty\}, \quad \text{with } ||\cdot||_{\infty}\text{-norm.}$$

For $p \in [1, \infty]$, we use the convention that $1/0 = \infty$ and $1/\infty = 0$.

1. For $p, q \in (1, \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$, first show that $|ab| \le \frac{1}{p}|a|^p + \frac{1}{q}|b|^q$. Deduce Hölder's inequality $||xy||_1 \le ||x||_p ||y||_q$. Note that the inequality also holds for for $p, q \in [1, \infty]$.

(Hint: use that log is concave and first assume $||x||_p = ||y||_q = 1$.)

2. For $p \in [1, \infty]$, prove Minkowski's inequality $||x + y||_p \le ||x||_p + ||y||_p$.

(Hint: for $p \in (1, \infty)$, use $|x + y|^p \le |x + y|^{p-1}|x| + |x + y|^{p-1}|y|$ and Hölder's inequality.)

3. For $p, q \in (1, \infty)$, q > p, show that the following inequalities hold on \mathbb{K}^n and cannot be improved:

$$||x||_q \le ||x||_p \le n^{\frac{1}{p} - \frac{1}{q}} ||x||_q.$$

In particular, the norms $\|\cdot\|_p$ and $\|\cdot\|_q$ are equivalent on \mathbb{K}^n , but the constants depend on n.

- 4. Show that the space ℓ^p is complete for every $p \in [1, \infty]$.
- 5. For $p, q \in [1, \infty]$, show that $\ell^p \subset \ell^q$ if and only if $p \leq q$.
- 6. For $p, q \in (1, \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$, show that $(\ell^p)^* = \ell^q$ (i.e., that the spaces are isometrically isomorphic in a natural way).
 - 7. Show that $c_0^* = \ell^1$ and that $(\ell^1)^* = \ell^\infty$ (i.e., that the spaces are isometrically isomorphic).
 - 8. Show that $(\ell^{\infty})^* \neq \ell^1$ (in the sense that the natural map from ℓ^1 to $(\ell^{\infty})^*$ is not a bijection).

(Hint: use the Hahn–Banach theorem to construct a bounded linear function $f: \ell^{\infty} \to \mathbb{R}$ that is not of the form $f(x) = \sum_n x_n y_n$ for some sequence (y_n) .)

9. Show that a normed vector space X is complete if and only if every absolutely convergent series is convergent. The latter means that $\sup_{N} \sum_{n=1}^{N} ||x_n|| < \infty$ implies that $\sum_{n=1}^{N} x_n$ converges as $N \to \infty$.

(Hint: to show that a Cauchy sequence (x_n) converges if every absolutely convergent series is convergent, first show that one may assume that $||x_n - x_m|| \le 2^{-\min\{n, m\}}$.)

- 10. For a normed vector space X and bounded linear maps $T: X \to X$ and $S: X \to X$, show that TS is bounded and that $||TS|| \le ||T|| ||S||$. (Here TS is the composition of T and S.)
- 11. Let X be a normed vector space and define $\pi(x) = x/\|x\|$ for $x \in X \setminus \{0\}$. Either prove that then $\|\pi(x) \pi(y)\| \le \|x y\|$ whenever $\|x\|, \|y\| \ge 1$, or give an example in which this inequality is violated.
 - 12. Let $x \in c_0$ and define $X = \{y \in c_0 : |y_n| \le |x_n|\}$. Show that X is compact in c_0 .
- 13. Show that that space $C^1[0,1]$ of continuously differentiable functions on [0,1] is complete in the norm $||f|| = ||f||_{\infty} + ||f'||_{\infty}$ but incomplete in the norm $||f||_{\infty}$.

LINEAR ANALYSIS EXAMPLE SHEET 1

In applications, it is often useful to consider spaces with weights. Let $(\mu_n) \subset [0, \infty)$ be a nonnegative sequence of weights. Then define

$$||x||_{p,\mu} = \left(\sum_{n} |x_n|^p \mu_n\right)^{1/p}$$
 for $p \in [1, \infty)$,

and $\ell^p(\mu) = \{ x = (x_n) \subset \mathbb{K} : ||x||_{p,\mu} < \infty \}.$

- 14. For any sequence of weights μ , prove the Hölder inequality $||xy||_{1,\mu} \le ||x||_{p,\mu} ||y||_{q,\mu}$ if $\frac{1}{p} + \frac{1}{q} = 1$ and p > 1.
 - 15. If $\sum_n \mu_n < \infty$, show that $\ell^p(\mu) \supset \ell^q(\mu)$ if $p \leq q$. Compare this with the case $\mu_n = 1$ in Exercise 5.
- 16. Let V be a topological vector space over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. Assume that there exists a bounded and convex neighbourhood of 0. Show that then there is also is a balanced bounded convex neighbourhood of 0. Recall that C is balanced if $\lambda C \subset C$ for all $\lambda \in \mathbb{K}$ with $|\lambda| \leq 1$.