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1. Introduction

The ultimate goal of these lectures is to present the ergodic theory of the Burgers
equation with random force in noncompact setting. Developing such a theory has
been considered a hard problem since the first publication on the randomly forced
inviscid Burgers [EKMS00]. It was solved in a recent work [BCK] for the forcing
of Poissonian type.

The Burgers equation is a basic fluid dynamic model, and the main motivation
for the study of ergodicity for Burgers equation probably comes from statistical
hydrodynamics where one is interested in description of statistically steady regimes
of fluid flows. It can also be interpreted as a growth model and the main idea
of [BCK] is to look at the Burgers equation as a model of last passage percolation
type. This allowed to use various tools from the theory of first and last passage
percolation.

First several sections play an introductory role. We begin with an introduction
to stochastic stability in Section 2. In Section 3 we briefly discuss the progress in
the ergodic theory of another important hydrodynamics model, the Navier–Stokes
system with random force. Section 4 is an introduction to the Burgers equation.
Section 5 is a discussion of the ergodic theory of Burgers equation with random
force in compact setting. In Section 6 we introduce the Poissonian forcing for the
Burgers equation. In Section 7 we state the ergodic results from [Bak12] on quasi-
compact setting. In Section 8 we state the main results and the proof is given in
Sections 9 through 13. In Section 14 we give some concluding remarks.

Although many of the proofs given here are detailed and rigorous, often we give
only the ideas behind the proof referring the reader to the details in [BCK].

2. Stability in stochastic dynamics

We begin with a very simple example, a deterministic linear dynamical system
with one stable fixed point.

A discrete dynamical system is given by a transformation f of a phase space X.
For our example, we take the phase space X to be the real line R and define the
transformation f by f(x) = ax, x ∈ R, where a is a real number between 0 and
1. To any point x ∈ X one can associate its forward orbit (xn)

∞
n=0, a sequence of

points obtained from x0 = x by iterations of the map f , i.e., xn = f(xn−1) for all

Lecture notes for the Summer School on Probability and Statistical Physics in St.Petersburg,

June 2012.
The author was partially supported by NSF CAREER Award DMS-0742424.

1



2 YURI BAKHTIN

n ∈ N:

x0 = x = f0(x)

x1 = f(x0) = f1(x),

x2 = f(x1) = f ◦ f(x0) = f2(x),

x3 = f(x2) = f ◦ f ◦ f(x) = f3(x),

. . . .

A natural question in the theory of dynamical systems is the behavior of the forward
orbit (xn)

∞
n=0 as n→ ∞, where n plays the role of time. In other words, we may be

interested in what happens to the initial condition x in the long run under evolution
defined by the map f . In our simple example, the analysis is straightforward.

Namely, zero is a unique fixed point of the transformation: f(0) = 0, and since
xn = anx, n ∈ N and a ∈ (0, 1) we conclude that as n → ∞, xn converges to
that fixed point exponentially fast. Therefore, 0 is a stable fixed point, or a one-
point global attractor for the dynamical system (R, f), i.e., its domain of attraction
coincides with R. So, due to the contraction that is present in the map f , there is
a fast loss of memory in the system, and no matter what the initial condition is, it
gets forgotten in the long run and the points xn = fn(x) approach the stable fixed
point 0 as n→ ∞.

Notice that so far we have always assumed that the evolution begins at time 0,
but the picture would not change if we assume that the evolution begins at any
other starting time n0 ∈ Z. In fact, since the map f is invertible in our example,
the full (two-sided) orbit (xn)n∈Z = (fnx)n∈Z indexed by Z is well-defined for any
x ∈ R.

Let us now modify the dynamical system of our first example a little by adding
noise, i.e., a random perturbation that will kick the system out of equilibrium. Let
us consider some probability space (Ω,F ,P) rich enough to support a sequence
(ξn)n∈Z of independent Gaussian random variables with mean 0 and variance σ2.
For every n ∈ Z we will now define a random map fn,ω : R → R by

fn,ω(x) = ax+ ξn(ω).

This model is known as an autoregressive-moving-average (ARMA) model of or-
der 1.

A natural analogue of a forward orbit from our first example would be a sto-
chastic process (Xn)n≥n0 emitted at time n0 from point x, i.e., satisfying Xn0 = x
and, for all n ≥ n0 + 1,

(1) Xn+1 = aXn + ξn.

We want to describe the long term behavior of the resulting random dynamical
system and study its stability properties. However, it is not as straightforward as
in the deterministic case. It is clear that there is no fixed point that serves all maps
fn,ω at the same time. The solution of the equation fn,ω(x) = x for some n may
be irrelevant for all other values of n. Still, the system exhibits a pull from infinity
towards the origin and contraction. In fact,

|fn,ω(x)− fn,ω(y)| = |(ax+ ξn)− (ay + ξn)| = a|x− y|, x, y ∈ R,
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and for the random map Φm,n
ω corresponding to the random dynamics between

times m and n and defined by

Φm,n
ω (x) = fn,ω ◦ fn−1,ω ◦ . . . ◦ fm+2,ω ◦ fm+1,ω(x).

we obtain

(2) |Φm,n
ω (x)− Φm,n

ω (y)| = an−m|x− y|.

The contraction established above should imply some kind of stability. In the
random dynamics setting there are several nonequivalent notions of fixed points
and their stability.

One way to deal with stability is at the level of distributions. We notice that
due to the i.i.d. property of the sequence (ξn), the process Xn defined above is a
homogeneous Markov process with one-step transition probability

P (x,A) =
1√
2πσ

∫
x∈A

e−
(y−ax)2

2σ2 dy.

If instead of a deterministic initial condition x, say, at time 0 we have a random ini-
tial conditionX0 independent of (ξn)n≥1 and distributed according to a distribution
µ0, then the distribution of X1 is given by

µ1(A) =

∫
x∈R

µ0(dx)P (x,A),

and a probability measure µ on R is called invariant or stationary if

µ(A) =

∫
x∈R

µ(dx)P (x,A),

for all Borel sets A. If the dynamics is initiated with initial value distributed
according to an invariant distribution, then the resulting process (Xn) is stationary,
i.e., its distribution is invariant under time shifts.

Studying the stability of a Markov dynamical system at the level of distributions
involves identification of invariant distributions and establishing convergence of the
distribution of Xn to one of the stationary ones.

In our example, if X0 is independent of ξ1 and normally distributed with zero
mean and variance D, then X1 = aX0 + ξ1 is also centered Gaussian with variance
a2D + σ2. So the distributions at time 0 and time 1 coincide if a2D + σ2 = D,
i.e., D = σ2/(1− a2). Therefore, the centered Gaussian distribution with variance
σ2/(1−a2) is invariant and gives rise to a stationary process. There are several ways
to establish uniqueness of this invariant distribution, e.g., the celebrated coupling
method introduced by Doeblin in 1930’s which also allows to prove that for any
deterministic initial data, the distribution of Xn converges exponentially fast to the
unique invariant distribution in total variation as n→ ∞.

Another way to approach stability is studying random attractors. Let us convince
ourselves that in our example, the random attractor contains only one point and
that point is a global solution (Xn)n∈Z defined by

Xn = X(ξn, ξn−1, ξn−2, . . .) = ξn + aξn−1 + a2ξn−2 + . . . .
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Clearly, this series converges with probability 1. Moreover, for any n ∈ Z,

aXn−1 + ξn = ξn + a(ξn−1 + aξn−2 + a2ξn−3 + . . .)

= ξn + aξn−1 + a2ξn−2 + a3ξn−3 + . . .

= Xn,

and (Xn)n∈Z is indeed a two-sided orbit, i.e., a global (in time) solution of equa-
tion (1) defined on the entire Z. Notice that Xn is a functional of the history of the
process ξ up to time n. Since the process ξ is stationary, thus constructed (Xn)n∈Z
is also a stationary process. In fact, Xn is centered Gaussian with variance

σ2 + a2σ2 + a4σ2 + . . . = σ2/(1− a2),

which confirms our previous computation of the invariant distribution. Let us now
interpret the global solution (Xn)n∈Z as a global attractor. We know from the
contraction estimate (2) that for any x ∈ R,

(3) |Φm,n(x)−Xn| = |Φm,n(x)− Φm,n(Xm)| = an−m|x−Xm|.

Using the stationarity of Xm and applying integration by parts, we see that∑
m<0

P{|Xm| > |m|} ≤
∑
m<0

P{|X0| > |m|} ≤ E|X0| <∞.

The Borel–Cantelli lemma implies now that Xm grows at most linearly in m (in
fact, one can prove much better estimates on the growth rate of Xm since it is a
Gaussian stationary process), and (3) implies that for any x ∈ R,

lim
m→−∞

|Φm,n(x)−Xn| = 0.

In words, if we fix an initial condition x and run the random dynamics from time m
to time n, then the result of this evolution converges to the special global solution
Xn as we pull the starting time m back to −∞. This allows us to call (Xn)n∈Z a
one-point pullback attractor for our random dynamical system.

We can adapt the reasoning above to show that there are no other global sta-
tionary solutions of (1). In fact, if (Yn)n∈Z is such a stationary solution then there
is a number R such that for almost all ω there is a sequence mk(ω) → −∞ such
that |Ymk

| < R. Using the contraction estimate (2), we see that for any n and k

|Xn − Yn| = |Φmk,nXmk
− Φmk,nYmk

| = an−mk |Xmk
− Ymk

|.

Using that |Ymk
| < R and that |Xmk

| grows not faster than linearly in mk, we take
mk to −∞ and conclude that Xn = Yn thus proving our uniqueness claim.

We can rephrase the uniqueness and convergence statements as the following
One Force — One Solution Principle (1F1S): with probability 1, at any given time
there is a unique value of Xn compatible with the history of the “forcing” (ξk)k≤n.
One can also say that Xn is a unique value worked out by the dynamics in the past
up to n.

In our example where 1F1S is valid, the global solution plays the role of a one-
point random attractor, and the unique invariant distribution can be recovered as
the distribution of this random point at, say, time 0. In general, the picture can be
more complicated. If a random dynamical system admits an invariant distribution,
then at a given time there can be more than one point compatible with the history
of random maps. One can consider the union of these points as a random attractor
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and, moreover, introduce a natural distribution on these points called the sample
measure associated to the history of forcing, see [Cra08],[LY88], and [CSG11].

Notice that the invariant distribution in our example results from a balance
between two factors. One factor is the decay or dissipation due to the contractive
dynamics. In the absence of randomness the system would simply equilibrate to
the stable fixed point. The second one is the “random forcing” that keeps the
system from the rest at equilibrium, and the stronger that influence is the more the
resulting stationary distribution is spread out. This mechanism is typical for many
physical systems.

One can loosely define ergodic theory as the study of statistical patterns in
dynamical systems in stationary regimes. One of the basic questions of ergodic
theory of a dynamical system is the description of the stationary regimes. In fact,
taking measurements of a system and averaging them over time makes sense only in
a stationary regime. Moreover, different stationary regimes may produce different
limiting values for these averages, thus making it an important task to characterize
all stationary regimes for a system.

The main content of this paper is the ergodic theory (including a form of 1F1S)
for the randomly forced Burgers equation on the real line. The Burgers equation
is a basic fluid dynamics model, and before studying it we provide a brief view
into the development of ergodic theory of stochastic hydrodynamics in the last two
decades.

3. Ergodic theory for the Navier–Stokes system with random
forcing

In this section we give a brief view into the ergodic theory of the Navier–Stokes
system with random force. Since our goal is mainly to draw a parallel with the
study of the Burgers equation in the forthcoming sections, we will avoid precise
and technical formulations in our sketchy exposition.

The Navier–Stokes system describing incompressible flows of Newtonian fluids is
one of the most important models in fluid dynamics. Incompressibility means that
the density of the fluid is constant. Assuming that the units are chosen so that the
density is identically equal to 1, the system writes as

∂tu+ (u · ∇)u = ν∆u−∇p+ f,(4)

(∇ · u) = 0.(5)

Here u is the velocity profile, i.e., u(x, t) denotes the vector of velocity of the
particle that at a time t is located at a spatial location x. The equation is valid for
describing 2-dimensional or 3-dimensional flows, so the dimension of the velocity
vectors matches the dimension of the space. The left-hand side of the first equation
computed at a space-time point (x, t) is the acceleration of the particle at point
x at time t, and the right-hand side represents the forces exerted on the particle.
The first term on the right-hand side is due to stress. Here ν > 0 is the viscosity
constant, and ∆ means the Laplace operator. The second term ∇p is the gradient
of the unknown pressure field p. The third contribution is the external volume
force f .

The incompressibility of the flow is expressed by the second equation saying that
the divergence of the velocity field is identical 0.
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The theory of this system studies the evolution of the velocity field u in various
2- and 3-dimensional domains under a variety of boundary and initial conditions.
The methods of the theory are too heavy to address in this section. Its results can
be briefly summarized as follows: (i) the evolution in reasonably nice 2-dimensional
domains with reasonable boundary conditions is well defined for all positive times
for tame initial conditions and the solutions are smooth; (ii) much less regularity is
known in 3 dimensions. For this reason we mostly restrict ourselves to 2 dimensions
in this section.

If the external forcing f is random then under appropriate conditions the sys-
tem (4)–(5) becomes a random dynamical system in an appropriate functional
space.

The existence of an invariant distribution for the Navier–Stokes system in a
bounded 2-dimensional domainD with zero boundary conditions (i.e., the fluid does
not move at the boundary of the domain) and random forcing was first obtained
in [Fla94] with the help of a compactness argument. Essentially, the existence of
invariant distributions is based on the balance between the injection of energy into
the system by the random forcing and the dissipation of energy due to the friction
represented by the viscosity term involving the Laplace operator. In this respect
the situation is very similar to our elementary example from Section 2.

Uniqueness turned out to be a much more intricate matter. First ([FM95]) it
was established for the case where the noise excites sufficiently strongly all eigendi-
rections of the Laplacian in D, but then this unnatural assumption was removed
in [EMS01] where the case of the Navier–Stokes system on the two-dimensional
torus T2 was considered, and uniqueness was established for the situation where
sufficiently many (but finitely many) Fourier modes were excited by the noise. Even-
tually, with the help of Malliavin calculus, the uniqueness of invariant distributions
for the stochastic Navier–Stokes system on T2 and similar systems was established
in [HM06],[HM08], and [HM11] even in the highly hypoelliptic situation where the
forcing is allowed to be highly degenerate. Other important early contributions to
the problem of uniqueness of invariant distributions of the stochastic Navier–Stokes
system are [BKL01] and[KS00].

All these and related results (also for other nonlinear stochastic PDEs, e.g., the
Boussinesq system and reaction-diffusion systems) concern the compact case where
the domain is bounded. However, as was noticed and studied in [Kuk04],[Kuk07],
and [Kuk08], the invariant distributions obtained in the work cited above behave in
a way that contradicts the established physics knowledge. Namely, the properties of
these distributions become different from those predicted by the Kraichnan theory
as viscosity tends to zero. This discrepancy can be explained by finite size effects
since the inverse cascade that Kraichnan’s theory of 2-dimensional turbulence is
based upon is impossible in a bounded domain. This naturally brings us to the
problem of confirming the existing physics theories by rigorous ergodic theory of
the Navier–Stokes system on the entire R2 with space-time stationary noise and no
assumption of compactness or periodicity. To our best knowledge, no significant
progress have been made in this direction. The only ergodic result for Navier–
Stokes system in the entire space seems to be [Bak06], where the Navier–Stokes
dynamics in R3 is considered and under certain conditions on the decay of the
noise at infinity a unique invariant distribution on Le Jan–Sznitman uniqueness
class is constructed. The Le Jan–Sznitman setting automatically means that the
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viscosity is large and the solutions decay fast in space, and the situation is very far
from the desired space-time homogeneous case.

Why does the noncompactness pose a serious obstacle to proving ergodic results?
One can imagine the noncompact space to be split into countably many compact
cells interacting in a nonlinear way. In each cell the dynamics might be nice, so it
tends to bring the cell to statistical equilibrium. However, the actual closeness to
the equilibrium may differ from one cell to another due to random fluctuations, and
the cells that are far from equilibrium can, due to nonlinear interactions, destroy
the near-equilibrium states of other cells. So, to prove ergodic results one typically
has to exclude such situations.

The rest of these notes are devoted to the Burgers equation. The ergodic theory
of the Burgers equation was initially created in [Sin91] and [EKMS00] for the case
of dynamics on the circle. Later it was extended to the Burgers dynamics on a
multi-dimensional torus and some quasi-compact situations. However, developing
the ergodic theory of Burgers dynamics in the fully noncompact setting on the
entire real line with space-time stationary noise has been an open problem for more
then a decade. We will explain a solution of this problem that is based on the tools
from the theory of last passage percolation and was obtained in [BCK].

4. Basics on the Burgers equation

The Burgers equation is a basic model of fluid dynamics. It was introduced by
J.M.Burgers in late 1930’s ([Bur39]) as a simplified model for turbulence:

(6) ∂tu(x, t) + u(x, t) · ∂xu(x, t) = ν∂xxu(x, t).

Here t ∈ R is the time variable, x ∈ R is the space variable, u(x, t) represents
the value of the velocity of the particle located at point x at time t, and ν ≥ 0 is
the viscosity parameter. The quadratic nonlinearity and the diffusive term of this
equation are indeed similar to the Navier–Stokes system, and so are invariances
and conservation laws. However, this equation turned out to be a poor turbulence
model mainly due to lack of sensitivity of solutions to small perturbations of the
initial data and thus lack of chaos typical for turbulent flows. Despite this fact, the
Burgers equation and its generalization often appear in various contexts, from traffic
modeling to studying the large scale structure of the Universe. When supplied with
a random forcing term, it is also related to the KPZ universality class. We refer
to [BK07] for a relatively recent survey of research on Burgulence.

In these notes we will study the inviscid Burgers equation (ν = 0). What does
the equation mean? We start with noticing that the left-hand side represents the
acceleration of the particle at point x at time t: if the trajectory of the particle is
given by a function x(t), then ẋ(t) = u(x(t), t) and, according to the chain rule,

ẍ(t) = ∂xu(x(t), t)ẋ(t) + ∂tu(x(t), t) = u(x(t), t) · ∂xu(x(t), t) + ∂tu(x(t), t).

Therefore, the inviscid Burgers equation describes a flow of particles that move
with zero acceleration, i.e., with constant velocity. The characteristics of the equa-
tion, i.e., space-time curves along which the information propagates, coincide with
particle trajectories, i.e., straight lines: in our case it is the information about the
velocity that is carried by particles.

This description works perfectly well only for a short time interval until particles
start bumping into each other. Clearly, if there are fast particles behind slow ones
and each particle moves with constant velocity, then sooner or later the faster ones
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Figure 1. Shock formation in Burgers turbulence. The leftmost
velocity profile is the initial condition at time 0. The middle one
represents the result of evolution at time 1, no shock has been
formed, although the profile has developed a strong negative slope
— fast particles on the left are catching up with the slow particles
on the right. The rightmost velocity profile is the result of the
evolution at time 2. The fast particles have started bumping into
the slow particles in front of them and the shock has formed. The
areas A and B are equal to ensure the conservation of momentum.

Figure 2. Characteristics of the Burgers equation, i.e., space-time
trajectories of dust particles moving with constant velocities. At
some point these lines begin to cross. This means that particles
start bumping into each other.

will catch up with the slow ones, see Figures 1 and 2. If one allows particles to
go through each other, then this results in multivalued velocity profiles since there
will be spatial locations with multiple particles present simultaneously. However,
if we insist that the solution has to be univalued, and the particles are not allowed
to pass through one another, at each spatial location we have to choose one of the
branches of the multivalued function thus introducing a jump discontinuity. The
integral

∫
u(x, t)dx is a conserved quantity while solutions stay smooth, and it is

natural to require that this conservation law is still true after the emergence of
discontinuities as well. This implies that the downward jump has to be chosen so
that the areas A and B on Figure 1 are equal.

The solution with a downward jump or shock obtained from the conservation
law coincides with the point-wise limit of smooth solutions to the viscous Burgers
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Figure 3. At some point the characteristics start crossing each
other. This means that particles start bumping into each other.

equation as the viscosity tends to zero (the viscous Burgers equation can be explic-
itly solved by the Hopf–Cole logarithmic substitution reducing it to the linear heat
equation). These solutions are called viscosity solutions. They can be understood
as generalized solutions of the Burgers equation. In fact the class of generalized
solutions of the Burgers equation is vast and includes a lot of unphysical solutions
with upward jumps, but the viscosity solution (also called the entropy solution)
admitting only downward jumps is unique and meaningful from the physics point
of view, so we will study only entropy solutions. We postpone a precise variational
characterization for entropy solutions of the initial value problem to the end of this
section where a more general case of the Burgers equation with external forcing
will be addressed.

After shocks are formed they keep moving in space absorbing incoming particles
from left and right, see Figure 3. The dynamics of the shock location satisfies the
Rankine–Hugoniot condition:

ẋ =
u(x+ 0) + u(x− 0)

2
,

i.e., the shock moves with velocity that is the average between the velocities of
incoming particles being absorbed by the shock on the left and on the right. One
can view the shock as a clump of particles stuck together and thus the Burgers
equation can be said to describe the pressureless dynamics of sticky dust, i.e.,
particles that do not interact until they collide and stick together. In fact the
shocks can never disappear, but two shocks can coalesce. The result is a hierarchical
tree-like structure of shocks in space-time, see Figure 4.

Another way to look at the discontinuities of the Burgers equation is to interpret
the particles absorbed by the shocks as disappearing from the system. Thus the
dissipation of energy in the system happens at the shocks: for smooth solutions the
integral

∫
u2(x, t)dx is a conserved property, but if discontinuities are present, this

integral will decay.
Due to this dissipation, the solution to the unforced Burgers equation will (under

fairly general conditions) relax to one of equilibrium steady states, i.e., profiles with
constant velocity. More interesting dynamics will arise if we start injecting energy
into the system by external perturbations thus keeping the system away from the
equilibrium. If one adds a forcing term into the right-hand side of the inviscid
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Figure 4. Hierarchical structure of shocks in space-time.

Burgers equation, the resulting equation will be

(7) ∂tu(x, t) + u(x, t) · ∂xu(x, t) = f(x, t),

and the particles that in the unforced case moved with zero acceleration are now
supposed to move in the field of prescribed accelerations given by the term f(x, t).
If x(t) is the trajectory of a particle, then

(8) ẍ(t) = f(x(t), t).

The characteristics of the system, i.e., the particle trajectories, are not straight
lines any more, they are curved, but aside from that the picture stays the same:
one has to introduce entropy solutions with downward shocks to deal with particles
bumping into each other.

A detailed description of these solutions is given by the Lax–Oleinik variational
principle which allows for an efficient analysis of the system via studying the mini-
mizers of the corresponding Lagrangian system. Namely, the velocity field can be
represented as u(x, t) = ∂xU(x, t), where the potential U(x, t) is a solution of the
Hamilton–Jacobi equation

(9) ∂tU(x, t) +
(∂xU(x, t))2

2
− F (x, t) = 0,

F being the forcing potential: ∂xF (x, t) = f(x, t). The entropy solution of the
Cauchy problem for this equation with initial data U(·, t0) = U0(·) can be written
as

(10) U(x, t) = inf
γ:[t0,t]→R

{
U0(γ(t0)) +

1

2

∫ t

t0

γ2(s)ds+

∫ t

t0

F (γ(s), s)ds

}
,

where the infimum is taken over all absolutely continuous curves γ satisfying γ(t) =
x. The functional of paths in the right-hand side of this equation is called the action.

Also, optimal paths providing the minimum value in the minimization problem
can be identified with particle trajectories. In particular, the velocity value u(x, t) =
∂xU(x, t) can also be found as the velocity γ̇(t) of the optimal path γ at the terminal
point. For most of the space-time points (x, t) the minimizer is unique, but at there
are points where there is more than one minimizer, and these nonuniqueness points
correspond to shocks where particles coming from different initial locations meet.

We will denote by Ψt0,t
f w the solution at time t of the initial-value problem with

forcing f and initial velocity w given at time t0.
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In F ≡ 0, then action minimizers are straight lines which is consistent with our
picture of unforced Burgers equation:

Lemma 4.1. Suppose F (x, t) ≡ 0. Then for any two points x0, x1 ∈ R and any
two times t0 < t1 the minimum of kinetic action

St0,t1(γ) =
1

2

∫ t

t0

γ̇2(s)ds

over paths satisfying γ(t0) = x0 and γ(t1) = x1 is attained on the straight line

γ∗(t) = x0 + (t− t0)
x1 − x0
t1 − t0

, t ∈ [t0, t1],

corresponding to motion with constant velocity v = (x1−x0)/(t1−t0). The minimal
action is

(11) St0,t1(γ∗) =
v2(t1 − t0)

2
=

(x1 − x0)
2

2(t1 − t0)
=

(x1 − x0)v

2
.

Proof: From variational calculus we know that minimizers must satisfy the Euler–
Lagrange equation, which is, in our case, equation (8) with zero right-hand side.
So, all minimizers have constant velocity, i.e., they are straight lines. Relation (11)
is a result of a direct computation. 2

If the forcing potential is random, then, due to the variational principle, to
understand the long-term behavior of the Burgers dynamics one needs to study the
behavior of random action minimizers over long time intervals. This task can be
viewed as an asymptotic problem in random media.

The optimal paths in the variational principle benefit from large in magnitude
negative values of the potential term F so they tend to visit the space-time spots
where F is large negative. However, the kinetic action term containing γ̇2/2 penal-
izes large velocities which makes it impossible for the optimal path to freely move
between best spots. The interaction of these two terms is the main subject of the
analysis.

5. The Burgers equation with random forcing in compact setting

The first ergodic results for the inviscid Burgers equation concerned the case
of dynamics on the unit circle T1 = R1/Z1 that can be viewed as the segment
[0, 1] with identified endpoints. An equivalent view is considering the equation
with forcing and velocity profiles that are 1-periodic in space (this is often called
periodic boundary conditions). In [EKMS00] the forcing f(x, t) = −∂xF (x, t) was
assumed to be smooth in space and white noise type in time:

F (x, t) =

n∑
j=1

Vj(x)Ẇj(t),

where n ∈ N, Vj , j = 1, . . . , n are smooth functions on T1 (or, equivalently, periodic
functions on R1), and Wj , j = 1, . . . , n are independent Wiener processes.

The Burgers dynamics defined by (10) preserves the velocity integral
∫
u =∫

T1 u(x)dx, so it is sufficient to study sets Xc = {u :
∫
u = c}, c ∈ R separately.

Moreover, the dynamics commutes with Galilean shear transformations (x, t) →
(x + vt, t) that correspond to switching to a new coordinate system moving with
constant velocity v with respect to the old one. Due to this shear invariance, it is
sufficient to study only the set X0.
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The main statement of [EKMS00] is a 1F1S for the randomly forced Burgers
equation on X0 (and thus on Xc for every c). There is a functional Φ such that

u(·, t) = Φ(πtf)

is a unique in X0 stationary global solution of the Burgers equation with forcing
f , where πtf is the history of forcing f up to time t. The distribution of Φ(π0f)
is a unique invariant distribution on X0 for the associated Markov semigroup. The
uniqueness of an invariant distribution is often called “unique ergodicity”.

For any initial profile w ∈ X0 and every t ∈ R, Ψt0,t
f w → u(·, t) as t0 → −∞, so

the global solution u(·, t), t ∈ R, plays the role of a one point pullback attractor.
The method of constructing the global solution and proving its attractor property

is the following. Let us fix an initial condition w ∈ X0. To find Ψt0,t
f w one has to

solve the variational problem (10) for all x ∈ T1. For most points x, the optimal
action is attained by a unique minimizer γt0,t,x. The key claim is that as t0 →
−∞, these minimizers converge to a limiting one-sided infinite trajectory γ−∞,t,x,
uniformly on bounded intervals. Moreover, the limiting paths do not depend on
w ∈ X0. They are actually infinite one-sided minimizers of the action, i.e., if γ is
another absolutely continuous trajectory defined on (−∞, t] such that γ(t) = x and
γ(s) = γ−∞,t,x(s) for some t0 < t and all s ≤ t0, then

At0,t(γ) ≥ At0,t(γ−∞,t,x),

where

At0,t(γ) =
1

2

∫ t

t0

γ̇2(s)ds+

∫ t

t0

F (s, γ(s))ds.

Given the field of one-sided minimizers, the global solution can be defined as
u(x, t) = γ̇−∞,x,t(t).

The program developed in [EKMS00] includes proving existence and uniqueness
of one-sided minimizers, convergence of finite minimizers to infinite ones, and their
hyperbolicity property (i.e., every two one-sided minimizers converge to each other
exponentially fast in reversed time).

Let us explain one step in this program. Let us consider one point (x, t). We
claim that there is a number C > 0 depending on the random realization of the
forcing in the past such that for any initial condition w ∈ X0 the minimizer γ for the
corresponding variational problem on any time interval [t0, t] satisfies |γ̇(t)| ≤ C.

An optimal trajectory must solve the Euler–Lagrange equation (8) (which is
consistent with our interpretation of minimizing paths as particle trajectories).
Since γ(t) = x is fixed, the entire solution of (8) is uniquely determined by the
terminal condition γ̇(t) = a. If a is sufficiently large, then the velocity γ̇ stays large
for values of time sufficiently close to t. Therefore, γ will quickly go around the
circle and come back to the initial position x. Such a path will accumulate large
kinetic action, and it cannot be optimal since the path staying at x accumulates
zero kinetic action. Of course, for both paths there will be a contribution from
the external potential, but these contributions are bounded on a bounded time
interval, and the discrepancy between the kinetic actions of both paths can be
made arbitrarily large by choosing |a| to be large. This reasoning shows that the
terminal velocity of minimizers over a finite interval [t0, t] is bounded by a number
that does not depend on t0.

It follows that there is a sequence of initial times such that the corresponding
sequence of terminal velocities converges to a limiting value b. The corresponding
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paths converge (uniformly on any finite interval) to the solution of the Euler–
Lagrange equation with terminal position x and velocity b. It is easily checked
that the limit of a sequence of minimizers is a minimizer. Therefore, the limiting
trajectory is a minimizer on any bounded interval and thus a one-sided minimizer.

The uniqueness of the limiting one-sided infinite trajectory and independence
of the result of this procedure of the initial condition w ∈ X0 can be explained
in the following way: in the variational problem, the contribution from the initial
condition is bounded, so in the long run it is dominated by the contribution from the
external forcing. This is a useful argument that also explains the loss of memory and
long-term contraction in the system, but the rigorous proof is much more involved
than this description and we refer to [EKMS00] for details.

The ergodic theory of the Burgers equation has also been developed on multi-
dimensional tori Td and stochastic forcing in [GIKP05], [IK03] and for the one-
dimensional case with random boundary conditions in [Bak07]. In these situations
a version of a variational principle holds and the theory is based on the analysis of
minimizers in the respective compact domain.

It is important to stress that compactness plays a very important role. For
example, the above argument for boundedness of the velocity of minimizers depends
crucially on the compactness of the circle. In the noncompact situation on the
entire real line without periodicity this argument fails, and the question about the
behavior of minimizers over growing time intervals is more intricate. Even the fact
that the variational problem has a well-defined solution on a finite interval needs
an explanation because in principle if paths are allowed to travel arbitrarily far,
they can visits spots with arbitrarily large in magnitude negative F . Further, as
t0 is pulled to −∞, new spots with low values of F will be uncovered arbitrarily
far in the space, and potentially this can lead to unboundedness of the velocity of
minimizers at the terminal point.

So, due to these considerations, the long-term behavior of the Burgers equation
with random force in noncompact setting has been considered a hard problem. The
ergodic theory of the Burgers equation was constructed in [Bak12] for quasi-compact
case and in [BCK] for fully noncompact case of space-time stationary noise. These
papers use a special kind of forcing introduced in [Bak12] — the Poissonian forcing
concentrated at the points of a Poisson point field. We proceed to describe this
model.

6. The Burgers equation with Poissonian forcing

From now on we adopt the picture where the space axis of R2 is horizontal and
the time axis is vertical and directed upward as on Figures 2–4.

In the variational problem (10) the paths accumulate random contributions from
the external forcing potential. The goal of this section is to introduce a special ran-
dom potential that is somewhat generic and simultaneously is easy to visualize,
analyze, and perform computations with. We will assume that the forcing is con-
centrated on a random discrete set of points called the Poisson point field, each
point (xi, si) coming with a weight ξi :

F (x, t) =
∑
i

ξiδ(xi,si)(x, t).
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So we are going to replace the term
∫ t

t0
F (γ(s), s)ds in (10) by

∑
(xi,si)

ξi where

the summation is taken over the Poissonian points that the path γ passes through.
In fact, points (xi, si) with ξi ≥ 0 will be bypassed by the optimal paths, so the
situation will not change if we assume that ξi < 0. Moreover, for simplicity we are
going to set ξi ≡ −1, although most of our results will be valid if the distribution of
ξi has exponential tails. If we set ξi ≡ −1 then the contribution from the external
forcing is simply minus number of Poissonian points visited by γ. Now let us be
more precise.

Formally, we will consider a Poissonian point field ω on space-time R× R = R2

with intensity measure µ(dt × dx). Since we want the forcing to be stationary in
time, we shall always assume that the intensity is a product measure:

µ(dx× dt) = m(dx)× dt.

We will always consider one of the following two cases: (i) the quasi-compact case
where the measure m is finite and most of the points are concentrated in a compact
spatial domain; and (ii) the fully noncompact case of space-time homogeneous
Poisson point field where m is the Lebesgue measure on R and µ is the Lebesgue
measure on R2.

The configuration space Ω is the space of all locally finite point sets in space-
time. For a Borel set A ⊂ R2, we use ω(A) to denote the number of Poissonian
points in A, and introduce the σ-algebra F generated by maps ω 7→ ω(A) with A
running through all bounded Borel sets. The probability measure P is such that
for any bounded Borel set A, ω(A) is a Poisson random variable with mean equal
to µ(A), and for disjoint bounded Borel sets A1, . . . , Am, the random variables
ω(A1), . . . , ω(Am) are independent.

Often, we treat the point configuration ω as a locally bounded Borel measure
with a unit atom at each point of the configuration. For background on Poisson
point fields, also called Poisson processes, we refer to [DVJ03].

There is a natural family of time-shift operators (θt)t∈R on the Poisson configu-
rations: the configuration θtω is obtained from ω by shifting each point (x, s) ∈ ω
to (x, s− t).

The space of velocity potentials that we will consider will be H, the space of all
locally Lipschitz functions W : R → R satisfying

lim inf
x→+∞

W (x)

x
> −∞,

lim sup
x→−∞

W (x)

x
< +∞.

Although it is possible to work with weaker conditions, some restrictions on the
growth rate of W (x) as x → ±∞ are necessary to control velocities of particles
coming from ±∞.

Let us define random Hamilton–Jacobi–Hopf–Lax–Oleinik (HJHLO) dynamics
on H (the terminology is borrowed from [Vil09, Definition 7.33]). For a function
W ∈ H, a Poissonian configuration ω, and an absolutely continuous trajectory
(path) γ defined on [t0, t], we introduce the action

(12) At0,t
ω (W,γ) =W (γ(s)) + St0,t(γ)− ωt0,t(γ),



ERGODIC THEORY OF THE BURGERS EQUATION. 15

where S is the kinetic action, and ωt0,t(γ) = ω({(γ(s), s) : r ∈ [t0, t)}) denotes
the number of configuration points that γ passes through. The last term in (12) is
responsible for the interaction with the external forcing potential corresponding to
the realization of the Poissonian field.

We now consider the following minimization problem:

At0,t
ω (W,γ) → inf,(13)

γ(t) = x.

Notice that the optimal trajectories are given by straight lines for any time
interval on which the trajectory stays away from the configuration points. Since
Poissonian configurations are locally finite, it is sufficient to take the minimum over
broken lines with vertices at configuration points.

Inspecting (12), we see that the optimal paths solving (13) try to visit as many
Poissonian points as possible, but the kinetic action term penalizes large velocities,
thus preventing too wild oscillations of the minimizers in their chase after Poissonian
points.

The variational problem (13) has a well-defined solution:

Lemma 6.1. With probability 1, for any W ∈ H, any x ∈ R and any t0, t with
t0 < t there is a path γ∗ that realizes the minimum in (13). The path γ∗ is a broken
line with finitely many segments, all its vertices belong to ω.

The main potential problem in proving this lemma is that paths can wander
arbitrarily far in space. However the problem can easily be compactified: the
kinetic action is at least quadratic in the total distance traveled by the path and
the number of Poissonian points in both quasi-compact and space-homogeneous
case grows at most linearly with the area, so the problem reduces to finding an
optimal path within a large but compact rectangle. For details, see Lemma 2.1
in [BCK].

Let us denote the infimum (minimum) value in the variational problem (13) by
t0,t
ω W (x). Our main goal is to understand the asymptotics of random nonlinear
operators Φt0,t

ω as t− t0 → ∞.
The following statement can be called the cocycle property for the operator

family (Φs,t
ω ) (for general background on the cocycle property, we refer to [Arn98]).

It is a direct consequence of Bellman’s principle of dynamic programming.

Lemma 6.2. For almost all If ω, the following is true simultaneously for allW ∈ H
and any s, r, t satisfying s < r < t: Φr,t

ω Φs,r
ω W is well-defined and equals Φs,t

ω W .
If γ is an optimal path realizing Φs,t

ω W (x), then the restrictions of γ on [s, r] and
[r, t] are optimal paths realizing Φs,r

ω W (γ(r)) and Φr,t
ω (Φs,r

ω W )(x).

Introducing Φt
ω = Φ0,t

ω we can rewrite the cocycle property as

Φ0,t+s
ω W = Φs

θtωΦ
t
ωW, s, t > 0.

Since potentials are naturally defined up to an additive constant, it is convenient
to work with Ĥ, the space of equivalence classes of potentials from H. The cocycle
Φ can be projected on Ĥ in a natural way. We denote the resulting cocycle on Ĥ
by Φ̂.

Let us now explain how the dynamics that we consider is connected to the
classical inviscid Burgers equation. One way to describe this connection is to in-
troduce a mollification of the Poisson integer-valued measure. Let us take smooth
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kernels φ, ψ : R → [0,∞) with bounded support, satisfying
∫
R φ(t)dt = 1 and

maxx∈R ψ(x) = 1, and for each ε > 0 consider the potential of shot-noise type:

Fε(x, t) = −1

ε

∑
(y,s)∈ω

φ

(
t− s

ε

)
ψ

(
x− y

α(ε)

)
,

where α is any function satisfying limε↓0 α(ε) = 0.

Lemma 6.3. With probability 1, for all s, t, x ∈ R and W ∈ H, the entropy solu-
tion Uε(x, t) of the Cauchy problem for the Hamilton–Jacobi equation with smooth
forcing potential Fε(·, ·) converges, as ε→ 0, to U(x, t) = Φs,t

ω W (x).

The next statement shows that away from the Poissonian points the system we
consider behaves as unforced Burgers dynamics.

Lemma 6.4. For all ω ∈ Ω1, s ∈ R, W ∈ H, the function U(x, t) = Φs,t
ω W (x) is

an entropy solution of the Hamilton–Jacobi equation

(14) ∂tU +
(∂xU)2

2
= 0.

in ((s,∞)× R) \ ω.

Equivalently, u(x, t) = ∂xU(x, t) is an entropy solution of the Burgers equa-
tion (7) with f ≡ 0 in ((s,∞)× R) \ ω. Of course, for each t, u(x, t) is a piecewise
continuous function of x, and at each of the countably many discontinuity points
it makes a negative jump. Since a velocity field determines its potential uniquely
up to an additive constant we can also introduce dynamics on velocity fields. We
can introduce the space H′ of functions w (actually, classes of equivalence of func-
tions since we do not distinguish two functions coinciding almost everywhere) such
that for some function W ∈ H and almost every x, w(x) = W ′(x). This allows
us to introduce the Burgers dynamics. We will say that w2 = Ψs,t

ω w1 if w1 = W ′
1,

w2 =W ′
2, and W2 = Φs,t

ω W1 for some W1,W2 ∈ H. The main results of these notes
describe the ergodic properties of the random dynamical system (cocycle) Ψ.

The solutions of the Burgers equation belonging to H′ often have negative jump
discontinuities (shocks). Although it is not essential, we can require the functions
in H′ to be right-continuous.

We already know that away from the Poissonian points the system that we con-
sider behaves exactly as the solution of the classical Burgers equation (Lemma 6.4).
So what is the behavior of the system at or near a Poissonian point? Let us first
consider a model situation where a smooth beam of Burgers particles encounters
a forcing point at the origin at time 0. Let us assume that at time 0, the velocity
vector field near 0 is u0(y) = a+ by, where b > 0.

It is clear that for every (t, x) with t > 0 and x close to the origin there are two
minimizer candidates. The minimizer either passes through the origin or it does
not. If it does then (assuming there are no other point sources of forcing) it has
to be a straight line connecting the origin to (t, x), and the accumulated action is
A1(t, x) = x2/(2t) − 1, where −1 is the contribution of the forcing point at the
origin, and x2/(2t) is the action accumulated while moving with constant velocity
x/t between 0 and t. If the minimizer does not pass through the origin, then it is a
straight line connecting some point (0, x0) to (t, x). On the one hand, the velocity
of the particle associated with the minimizer is (x−x0)/t. On the other hand, it has
to coincide with u0(x0) = a + bx0. Therefore, we can find x0 = (x − at)/(1 + bt).
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Figure 5. Minimizers around a Poissonian point

Taking into account that U0(x0) = ax0 + bx20/2, we can compute that the total
action of that path is A2(t, x) = (bx2 + 2ax− a2t)/(2(1 + bt)).

To see which of the two cases is realized for (t, x) we must compare A1(t, x) and
A2(t, x). If A1(t, x) < A2(t, x), then the particle arriving to x at time t is at the
origin at time 0. If A1(t, x) > A2(t, x), then the particle arriving to x at time t
is one of the particles that moved with constant velocity and was a part of the
incoming beam. If A1(t, x) = A2(t, x), then both of these paths are minimizers,
and at time t there is a shock at point x. The relation A1(t, x) = A2(t, x) can be
rewritten as

(x− at)2 = 2t(1 + bt).

For small values of t, the set of points satisfying this relation looks like a parabola
(x− at)2 = 2t, see Figure 6 where an example with a = 1 and b = 1/2 is shown.

We see that when a Poissonian point appears, it emits a continuum of particles
each moving with constant velocity, creating two shock fronts moving (at least for
a short time) to the left and right.

It is important to notice that in our model case with a forcing point at the origin,
u(t, x) = x/t for all points connected to the origin by a minimizing segment. It
means that for each time t, the velocity is linear in the domain of influence of the
forcing point, and the velocity gradient decays with time as 1/t.

In general, the behavior of this kind occurs near each forcing point, and in the
long run more and more points of the space-time plane get assigned to forcing
points. Grouping together points assigned to the same forcing point, we obtain a
tessellation of space-time into domains of influence of forcing points. Inside each
domain or cell the velocity field is linear in x if the time t is fixed. The following
lemma serves as a rigorous description of this picture.

For a Borel set B ⊂ R2, we denote the restriction of ω to B by ω
∣∣
B
.

Lemma 6.5. For almost every ω ∈ Ω, for all W ∈ H, s, t ∈ R with s < t, the
following holds true:

(1) For any p ∈ ω|R×[s,t), the set Op of points x ∈ R such that p is the last
configuration point visited by a unique minimizer for problem (13), is open.
Also, the set of points with a unique minimizer that does not pass through
any configuration points is open. The union of these open sets is dense in
R.
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(2) If x0 belongs to one of these open sets, γ(t) = x0, and As,t
ω (W,γ) =

Φs,t
ω W (x0), then Φs,t

ω W (x) is differentiable at x0 w.r.t. x, and

d

dx
Φs,t

ω W (x)
∣∣
x=x0

= γ̇(t).

At a boundary point x0 of any of the open sets introduced above, the right
and left derivatives of Φs,t

ω W (x) w.r.t. x are well defined. They are equal
to the slope of, respectively, the leftmost and rightmost minimizers realizing
Φs,t

ω W (x0).
(3) For any p ∈ ω|R×[s,t), the function x 7→ d

dxΦ
s,t
ω W (x) is linear in Op.

(4) The function x 7→ Φs,t
ω W (x) is locally Lipschitz.

Proof: Part 1 follows from the observation that the action depends on the path
continuously if the family of configuration points visited by the path is fixed.

In the situation where γ does not pass through any configuration points, Part 2
follows from the theory for unforced Burgers equation, see e.g., [Lio82, Section 1.3].
If the minimizer γ for x has a straight line segment connecting a configuration point
p = (y, r) to (x, t), then

(15)
d

dx
(Φs,t

ω W )(x) =
d

dx

(x− y)2

2(t− r)
=
x− y

t− r
= γ̇(t),

and Part 2 is proven for points with unique minimizers. The case of the boundary
points where the minimizers are not unique is considered similarly.

Part 3 is a direct consequence of Part 2. Part 4 follows from local boundedness
of the slope of minimizers. For minimizers not passing through any configuration
points, this is a consequence of the classical theory of unforced Burgers equation,
and for minimizers passing through some configuration points it follows from (15).
2

Let us recall that the energy is dissipated at the shocks. By seeding new particles
at each Poissonian point, the forcing pumps energy into the system and, therefore,
we can hope that there is a dynamical or statistical energy balance in the system
necessary for existence of invariant distributions studied in our ergodic results.

Let us explain why we introduce a new kind of forcing. The continuous white-
noise forcing presents considerable technical difficulties which is probably the main
reason why even the existence of one-sided minimizers in fully noncompact setting
was not known before [BCK]. The Poisson forcing is a model that, compared to
white noise, is relatively easy to visualize, argue about, perform computations with.
On the other hand, at large scales the differences between the behavior of the two
models should not be essential.

Another reason for introducing Poissonian forcing is that the resulting model
is similar to the Hammersley process which in turn is related to last passage per-
colation and longest increasing subsequences, the models that have attracted a
lot of attention in last two decades with considerable progress achieved and tools
developed.

Let us recall what the Hammersley process is. Let us consider a Poisson point
field with Lebesgue intensity measure on R2. For any two points x, y ∈ R2 we
consider the following maximization problem: among up-right paths (i.e., paths
(x1(t), x2(t)) with x1(·) and x2(·) nondecreasing functions of time) starting at x
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Figure 6. Hammersley’s process.

and terminating at y, find a path that maximizes the number of Poissonian points
it visits, see Figure 6.

This in indeed very similar to our optimization problem (12)–(13). The paths
in Hammersley process, however, are subject to hard-core constraints. Namely, the
up-right property means that the paths are identified with graphs of 1-Lipschitz
functions if looked at the coordinate system where the line x1 = x2 plays the role of
time. In other words, the velocity of these paths in an appropriate coordinate frame
is bounded by 1. In (12)–(13) there are no hard core constraints, they are replaced
by soft penalization: the kinetic action term only penalizes large velocities but does
not prohibit them. This comparison gives hope that methods developed for Ham-
mersley process, its analogues and generalizations in [AD95],[Wüt02],[CP11],[CP]
can be used to study the Burgers equation with Poisson forcing. It is also clear that
potential unboundedness of path velocity is going to be a major source of difficulties
in implementing these methods.

Many of the tools that we are using were, in fact, invented and developed in
[New95], [HN01], [HN99], [HN97], [Kes93] for first-passage percolation models.

Let us finish this section with a simulation showing what the optimal paths look
like in practice. Figure 7 shows minimizing paths for variational problem (13) with
zero initial condition and a simulated Poissonian environment with Lebesgue inten-
sity measure restricted to the square [0, 300]× [0, 300]. Only paths with Poissonian
endpoints are shown.

7. Quasi-compact case

In this section based on the results from [Bak12] we briefly discuss the quasi-
compact case where m(R) < ∞. In this case, with probability 1, in each strip
R × [s, t] there are finitely many Poissonian points. Also, most Poissonian points
appear in a large but compact interval. Therefore, most of the minimizers do not
spend much time far away from the origin. Using this along with sub-additivity
arguments and large deviation estimates, one can prove the following lemma.

Lemma 7.1. There are random variables r and (τR)R>0 such that for any R >
0, with probability 1, the following implication holds true. If points x, y satisfy
|x|, |y| < R, and times t−, t+ satisfy t−, t+ > τR, then any action minimizer γ
connecting point x at time −t− to point y at time t+ satisfies |γ(0)| < r.

The meaning of this main localization lemma is that there is a random radius r
such that minimizers over long time intervals containing time zero are necessarily
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Figure 7. Optimal paths in a square 300 by 300 with zero ini-
tial conditions. The space axis is horizontal, and time is directed
upward. Simulation and graphics by Gautam Goel.

within distance r from the origin. It is natural to call r the radius of localization
at time 0.

Applying Lemma 7.1 to time shifts θtω of the Poisson points, we conclude that
there is a stationary stochastic process rt(ω) = r(θtω) such that long minimizers
have to be within distance rt of the origin at time t, see Figure 8, so that the problem
becomes almost compact. However, the localization radius can significantly depend
on time.

This automatically solves the existence of one-sided minimizers problem since it
is easy to take partial limits of long minimizers that have to stay within random
localization sausage. What about uniqueness? One can also prove the following
result:

Lemma 7.2. There is time T and radius R such that with positive probability,
r(ω) < R, r(θTω) < R, τR(ω) < T, τR(θ

Tω) < T and there is a Poissonian point
(x∗, t∗) with t∗ ∈ [0, T ] such that every minimizer connecting a point x ∈ [−R,R]
at time 0 to point y ∈ [−R,R] at time T passes through (x∗, t∗).

Since the probability the event described by this lemma is positive and the
Poisson point field is a time stationary ergodic process, we conclude that with
probability 1 infinitely many time translates of this event will happen. Therefore,
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Figure 8. Main localization lemma.
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Figure 9. Localization sausage (the process of localization radii)
— effective compactification of the problem.

any two infinite one-sided minimizers will pass through the same Poissonian point
in the past and, moreover, will coincide at all times before that Poissonian point.

The random solution uω of the Burgers equation obtained through the velocities
of the minimizers constructed above has a specific structure. It turns out that there
is a nonrandom number q such that with probability 1,

lim
x→∞

Uω(x)

x
= q,

and, if one makes an additional assumption∫
R
(1 + |x|)m(dx) <∞,

then, moreover,

lim
x→±∞

(uω(x) · sgnx) = q.
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The idea is that if we want to consider, an optimal path terminating at a space-
time point point (x, T ) for large values of x and T and zero initial condition at time
0, then the path naturally decomposes into two parts. Most Poissonian points are
scattered over a compact domain, so in a certain time interval [0, t] the path mostly
stays in a compact domain around the origin collecting action at approximately
linear rate S < 0 (it is negative since each Poisson point contributes −1), and
then it leaps from the compact domain straight to x roughly with constant speed
between t and T , hardly meeting any Poissonian points in this regime and collecting
approximately x2/(2(T − t)) action. Finding the minimum of

St+
x2

2(T − t)
, t ∈ [0, T ],

we obtain that the optimal t satisfies
x

t
=

√
−2S.

Therefore q =
√
−2S. This reasoning can be made precise, see Section 6 of [Bak12].

The 1F1S principle for this system can be formulated in the following way. If
one considers an initial condition v = V ′ satisfying

(16) lim inf
x→∞

V (x)

x
> −q,

then

(17) Ψt0,t
ω v → uω, t0 → −∞.

In particular, uω = U ′
ω is a unique stationary global solution satisfying

lim inf
x→∞

Uω(x)

x
> −q.

So, if one starts with an initial condition that sends particles from infinity towards
zero with speed that is less than q, see condition (16), then this inbound flow is
not strong enough to compete with the outbound flow of particles developed due
to the noise, and in the long run it is dominated by the latter. If the condition (16)
is violated, then the long term properties of solutions are sensitive to the details of
the behavior of the initial condition at infinity because the inbound flow of particles
may be stronger than the outbound one.

The results of this Section crucially depend on the quasi-compact properties of
the driving Poisson process. The external forcing mostly acts on a compact part of
the real line, which leads to localization of long minimizers. Of course we do not
expect anything like this for the case where the Poissonian forcing is also stationary
in space.

8. Main results for space-time stationary Poissonian forcing

In this section we state the main results on the Burgers equation driven by
Poissonian noise with Lebesgue intensity measure.

To formulate our results, we need to fix a value v ∈ R and work with the set
of velocity profiles with average velocity v. It turns out that we can treat each
of these sets as an ergodic component. On each of these sets a 1F1S principle
holds, i.e., there is a unique stationary solution with average velocity v, at any
time t it depends only on the history of the forcing up to time t. Moreover, this
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global solution uniquely determined by the past of the forcing is a random one-point
pullback attractor, and we will describe its basin of attraction. This picture is very
similar to that of the random Burgers dynamics on the circle. It is true though that
there are initial conditions irregular enough (in particular, the average velocity has
to be undefined for these erratic velocity profiles) that do not belong to the domain
of attraction of any of the global solutions of the Burgers equation described above.
However, if one requires the initial velocity profile to be, say, a typical realization
of an integrable stationary process, then, due to the ergodic theorem, its average is
well-defined, and so it belongs to one of the domains of attraction.

Let us now introduce some notation and state the main results.
We say that u(t, x) = uω(t, x) is a global solution for the cocycle Ψ if there is

a set Ω′ with P(Ω′) = 1 such that for all ω ∈ Ω′, all s and t with s < t, we have
Ψs,t

ω uω(s, ·) = uω(t, ·). We can also introduce the global solution as a skew-invariant
function: uω(x) is called skew-invariant if there is a set Ω′ with P(Ω′) = 1 such that
for any t ∈ R, θtΩ′ = Ω′, and for any t > 0 and ω ∈ Ω′, Ψt

ωuω = uθtω. If uω(x)
is a skew-invariant function, then uω(x, t) = uθtω(x) is a global solution. One can
naturally view the potentials of uω(x) and uω(s, x) as a skew-invariant function and

global solution for the cocycle Φ̂.
Let us denote H(v−, v+) = {W ∈ H : limx→±∞(W (x)/x) = v±}. The spaces

Ĥ(v−, v+) are defined as classes of potentials in H(v−, v+) coinciding up to an
additive constant. It can be shown that spaces H(v−, v+) are invariant under Φ,
i.e., if W ∈ H(v−, v+) for some v−, v+, then Φs,t

ω W ∈ H(v−, v+) for all s < t.
Our first result is the description of global solutions.

Theorem 8.1. For every v ∈ R there is a unique (up to zero-measure modifica-
tions) skew-invariant function uv : Ω → H′ such that for almost every ω ∈ Ω, the

potential Uv,ω defined by Uv,ω(x) =
∫ x

uv,ω(y)dy belongs to Ĥ(v, v).

The potential Uv,ω is a unique skew-invariant potential in Ĥ(v, v). The skew-
invariant functions Uv,ω and uv,ω are measurable w.r.t. F|R×(−∞,0], i.e., they de-
pend only on the history of the forcing. With probability 1, the realizations of
(uv,ω(y))y∈R are piecewise linear with negative jumps between linear pieces. The
spatial random process (uv,ω(y))y∈R is stationary and mixing.

Remark 8.2. This theorem can be interpreted as a 1F1S Principle: for any velocity
value v, the solution at time 0 with mean velocity v is uniquely determined by the

history of the forcing: uv,ω
a.s.
= χv(ω|R×(−∞,0]) for some deterministic functional

χv of the point configurations on half-plane R × (−∞, 0] of the past (we actually
construct χv in the proof). Since the forcing is stationary in time, we obtain that
uv,θtω is a stationary process in t, and the distribution of uv,ω is an invariant
distribution for the corresponding Markov semi-group, concentrated on H′(v, v).

The next result shows that each of the global solutions constructed in Theo-
rem 8.1 plays the role of a one-point pullback attractor. To describe the domains
of attraction we will make assumptions on initial potentials W ∈ H. Namely, we
will assume that there is v ∈ R such that W and v satisfy one of the following sets
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of conditions:

v = 0,

lim inf
x→+∞

W (x)

x
≥ 0,(18)

lim sup
x→−∞

W (x)

x
≤ 0,

or

v > 0,

lim
x→−∞

W (x)

x
= v,(19)

lim inf
x→+∞

W (x)

x
> −v,

or

v < 0,

lim
x→+∞

W (x)

x
= v,(20)

lim sup
x→−∞

W (x)

x
< −v.

Condition (18) means that there is no macroscopic flux of particles from infinity
toward the origin for the initial velocity profile W ′. In particular, any W ∈ H(0, 0)
or any W ∈ H(v−, v+) with v− ≤ 0 and v+ ≥ 0 satisfies (18). It is natural to
call the arising phenomenon a rarefaction fan. We will see that in this case the
long-term behavior is described by the global solution u0 with mean velocity v = 0.

Condition (19) means that the initial velocity profile W ′ creates the influx of
particles from −∞ with effective velocity v ≥ 0, and the influence of the particles
at +∞ is not as strong. In particular, any W ∈ H(v, v+) with v ≥ 0 and v+ > −v
(e.g., v+ = v) satisfies (19). We will see that in this case the long-term behavior is
described by the global solution uv.

Condition (20) describes a situation symmetric to (19), where in the long run
the system is dominated by the flux of particles from +∞.

The following precise statement supplements Theorem 8.1 and describes the
basins of attraction of the global solutions uv in terms of conditions (18)–(20).

Theorem 8.3. There is a set Ω′′ ∈ F with P(Ω′′) = 1 such that if ω ∈ Ω′′, W ∈ H,
and one of conditions (18),(19),(20) holds: then w = W ′ belongs to the domain of
pullback attraction of uv in the following sense: for any t ∈ R and any R > 0 there
is s0 = s0(ω) < t such that for all s < s0

Ψs,t
ω w(x) = uv,ω(x, t), x ∈ [−R,R].

In particular,

P
{
Ψs,t

ω w
∣∣
[−R,R]

= uv,ω(·, t)
∣∣
[−R,R]

}
→ 1, s→ −∞.

Remark 8.4. The last statement of the theorem implies that for every v ∈ R,
the invariant measure on H′(v, v) described in Remark 8.2 is unique and for any
initial condition w = W ′ ∈ H′ satisfying one of conditions (18),(19), and (20),
the distribution of the random velocity profile at time t converges to the unique
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stationary distribution on H′(v, v) as t → ∞. However, our approach does not
produce any convergence rate estimates.

Remark 8.5. Using space-time Galilean transformations, it is easy to obtain a
version of Theorem 8.3 for attraction in a coordinate frame moving with constant
velocity, but we omit it for brevity.

The proofs of Theorems 8.1 and 8.3 are given in Sections 12 and 13, but most
of the preparatory work is carried out in Sections 9, 10, and 11.

The long-term behavior of the cocycles Φ and Ψ defined through the optimization
problem (13) depends on the asymptotic behavior of the action minimizers over long
time intervals. The natural notion that plays a crucial role in this paper is the notion
of backward one-sided infinite minimizers or geodesics. A curve γ : (−∞, t] → R
with γ(t) = x is called a backward minimizer if its restriction onto any time interval
[s, t] provides the minimum to the action As,t

ω (W, ·) defined in (12) among paths
connecting γ(s) to x.

It can be shown (see Lemma 11.4) that any backward minimizer γ has an asymp-
totic slope v = limt→−∞(γ(t)/t). On the other hand, for every space-time point
(x, t) and every v ∈ R there is a backward minimizer with asymptotic slope v and
endpoint (x, t). The following theorem describes the most important properties of
backward minimizers associated with the Poisson point field.

Theorem 8.6. For every v ∈ R there is a set of full measure Ω′ such that for all
ω ∈ Ω′ and any (x, t) ∈ ω there is a unique backward minimizer with asymptotic
slope v. For any (x1, t1), (x2, t2) ∈ ω there is a time s ≤ min{t1, t2} such that both
minimizers coincide before s, i.e., γ1(r) = γ2(r) for r ≤ s.

The proof of this core statement of this paper is spread over Sections 9 through 11.
In Section 9 we apply the sub-additive ergodic theorem to derive the linear growth
of action. In Section 10 we prove quantitative estimates on deviations from the
linear growth. We use these results in Section 11 to analyze deviations of optimal
paths from straight lines and deduce the existence of infinite one-sided optimal
paths and their properties.

9. Optimal action asymptotics and the shape function

In this section begin the study the asymptotic behavior of the optimal action
between space-time points (x, s) and (y, t) denoted by

As,t(x, y) = As,t
ω (x, y) = min

γ:γ(s)=x,γ(t)=y
(As,t

ω (0, γ))(21)

= min
γ:γ(s)=x,γ(t)=y

(
Ss,t(γ)− ωs,t(γ)

)
(the minimum is taken over all absolutely continuous paths γ or, equivalently,
over all piecewise linear paths with vertices at configuration points). Although to
construct stationary solutions for the Burgers equation, we will need the asymptotic
behavior as s→ −∞, it is more convenient and equally useful (due to the obvious
symmetry in the variational problem) to formulate most results for the limiting
behavior as t→ ∞, and so we will here and in the next two sections.

Our distant goal is to show that long optimal paths do not deviate a lot from
straight lines. In this section we make some first steps, and our main goal here is to
use sub-additive ergodic theorem (see, e.g., [Lig85]) to prove that with probability
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one, A0,t(0, vt) = α(v)t+o(t) as t→ ∞, where the nonrandom shape function α(v)
satisfies α(v) = α0 − v2/2.

We begin with some simple observations on Galilean shear transformations of
the point field.

Lemma 9.1. Let a, v ∈ R and let L be a transformation of space-time defined by
L(x, s) = (x+ a+ vs, s).

(1) Suppose that γ is a path defined on a time interval [t0, t1] and let γ̄ be
defined by (γ̄(s), s) = L(γ(s), s). Then

St0,t1(γ̄) = St0,t1(γ) + (γ(t1)− γ(t0))v +
(t1 − t0)v

2

2
.

(2) Let L(ω) be the point configuration obtained from ω ∈ Ω by applying L
point-wise. Then L(ω) is also a Poisson process with Lebesgue intensity
measure.

(3) Let ω ∈ Ω. For any time interval [t0, t1] and any points x0, x1, x̄0, x̄1 satis-
fying L(x0, t0) = (x̄0, t0) and L(x1, t1) = (x̄1, t1),

At0,t1
L(ω)(x̄0, x̄1) = At0,t1

ω (x0, x1) + (x1 − x0)v +
(t1 − t0)v

2

2
,

and L maps minimizers realizing At0,t1
ω (x0, x1) onto minimizers realizing

At0,t1
L(ω)(x̄0, x̄1).

(4) For any points x0, x1, x̄0, x̄1 and any time interval [t0, t1],

At0,t1(x̄0, x̄1)
distr
= At0,t1(x0, x1) + (x1 − x0)v +

(t1 − t0)v
2

2
,

where

v =
(x̄1 − x1)− (x̄0 − x0)

t1 − t0
.

Proof: The first part of the Lemma is a simple computation:

St0,t1(γ̄) =
1

2

∫ t1

t0

(γ̇(s) + v)2ds

=
1

2

∫ t1

t0

γ̇2(s)ds+

∫ t1

t0

γ̇(s)vds+
1

2

∫ t1

t0

v2ds.

The second part holds since L preserves the Lebesgue measure. The third part
follows from the first one since the images of paths transformed by L are also paths
passing through the L-images of configuration points. The last part is a consequence
of the previous two parts, since the appropriate Galilean transformation sending
(x0, t0) to (x̄0, t0) and (x1, t1) to (x̄1, t1) preserves the Lebesgue measure and the
distribution of the Poisson process. 2

The next useful property is the sub-additivity of action along any direction: for
any velocity v ∈ R, and any t, s ≥ 0, we have

A0,t+s(0, v(t+ s)) ≤ A0,t(0, vt) +At,t+s(vt, v(t+ s)).

This means that we can apply Kingman’s sub-additive ergodic theorem to the
function t 7→ A0,t(0, vt) if we can show that −EA0,t(0, vt) grows at most linearly in
t. We claim this linear bound in the following proposition:
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Lemma 9.2. Let v ∈ R. There exists a constant C = C(v) > 0 such that for all
t ≥ 0

E|A0,t(0, vt)| ≤ Ct.

Proof: Lemma 9.1 implies that it is enough to prove this for v = 0. So in this
proof we work with At = At(0, 0).

Let γ : [0, t] → R be a path realizing At. We have γ(0) = γ(t) = 0. Let us
split up R2 into unit blocks Bi,j = [i, i + 1) × [j, j + 1), for i, j ∈ Z. We define A
as the union of all indices (i, j) such that γ passes through Bi,j . The set A is a
lattice animal, i.e., it is a connected set that contains the origin (0, 0) ∈ Z2 (see,
e.g.,[GK94]). Let us introduce the event En,t = {#A = n}.

Lemma 9.3. There are constants C1, C2, R, t0 > 0 such that if t ≥ t0 and n ≥ Rt,
then

P(En,t) ≤ C1 exp(−C2n
2/t).

Proof: We define Xi,j = ω(Bi,j), the number of Poisson points in Bi,j . Define
the weight of the animal A as

NA =
∑
ν∈A

Xν .

Clearly, the number of Poisson points picked up by γ between 0 and t, is upper
bounded by NA. Define kj = #{i ∈ Z : (i, j) ∈ A}, the number of blocks hit on
the jth row. These blocks will form a connected row of length kj , and the kinetic
action accumulated between j and (j + 1) ∧ t can therefore be bounded by

1

2

∫ (j+1)∧t

j

γ̇2(s) ds ≥ 1

2
(kj − 2)

2
+ .

Here, a+ = max(0, a). This leads to the following bound on the action:

At ≥ 1

2

∑
0≤j<t

(kj − 2)
2
+ −NA.

On En,t we have
∑

0≤j<t kj = n. Since a 7→ (a−2)2+ is convex, we can use Jensen’s
inequality to see that

1

2

∑
0≤j<t

(kj − 2)
2
+ ≥ 1

2
dte
(
n

dte
− 2

)2

+

.

Therefore,

(22) At ≥ 1

2
dte
(
n

dte
− 2

)2

+

−NA.

We also know that At ≤ 0 since we can use the identical zero path on [0, t]. Hence,
on En,t we have

NA ≥ 1

2
dte
(
n

dte
− 2

)2

+

.

Furthermore, if Nn is the weight of the greedy animal of size n (i.e., the animal of
size n with greatest weight), then Nn ≥ NA, and

En,t ⊂

{
Nn ≥ 1

2
dte
(
n

dte
− 2

)2

+

}
.
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Let us recall that the reasoning in [CGGK93] after equation (2.12) implies that,
due to standard large deviation estimates and the exponential growth of the number
of lattice animals as a function of size n, there are constants K1,K2, y0 > 0, such
that if

(23) y ≥ y0,

then

(24) P{Nn ≥ yn} ≤ K1 exp(−K2ny).

We now need to make sure that (23) holds for y = 1
2ndte

(
n
dte − 2

)2
+
. If we require

n ≥ max(4, 8y0)dte, then

1

2n
dte
(
n

dte
− 2

)2

+

=
1

2n
dte
(
n− 2dte

dte

)2

+

≥ 1

2n
dte
(
n− n

2

dte

)2

≥ 1

8

n

dte
≥ y0,

and the lemma follows from (24). 2

Remark 9.4. We will choose the constant R to be an integer, making it larger if
needed.

From (22) we already know that on En,t we have 0 ≥ At ≥ −Nn. We wish to
use this to estimate E|At|, but we need an extension of (24).

Lemma 9.5. For any k ≥ 1, there is ck > 0 such that for all n ≥ 1,

ENk
n ≤ ckn

k.

Proof: Clearly,

ENk
n =

by0nc∑
i=0

ikP{Nn = i}+
∞∑

i=by0nc+1

ikP{Nn = i}.

We can bound the first term simply by

by0nc∑
i=0

ikP{Nn = i} ≤ (y0n)
k.

For the second term we can use (24):
∞∑

i=by0nc+1

ikP{Nn = i} ≤
∞∑

i=by0nc+1

K1i
k exp(−K2i).

The right-hand side is bounded in n and the proof is complete. 2

Lemma 9.2 now follows from Lemmas 9.3 and 9.5:

E|At| =
∑
n≤Rt

E|At|1En,t +
∑
n>Rt

E|At|1En,t

≤ EN[Rt] +
∑
n>Rt

ENn1En,t

≤ Rc1t+
∑
n>Rt

√
EN2

n

√
P(En,t)

≤ Rc1t+
√
c2
∑
n>Rt

√
C1n exp(−C2n

2/(2t))

≤ Ct,
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for C big enough. 2

In fact, we can use the last calculation to obtain the following generalization of
Lemma 9.2 for higher moments of At:

Lemma 9.6. Let k ∈ N. Then there are constants C(k), t0(k) > 0 such that

E(|At|k) ≤ C(k)tk, t ≥ t0(k).

Now a standard application of the sub-additive ergodic theorem shows that there
exists a shape function α(v) such that

(25)
A0,t(0, vt)

t
→ α(v), a.s. and in L1, t→ ∞.

Furthermore, α(0) < 0, since At ≤ 0 and α(0) ≤ E(At) < 0. It turns out that the
shape function α(v) is quadratic in v:

Lemma 9.7. The shape function satisfies

α(v) = α(0) +
v2

2
, v ∈ R.

Proof: The Galilean shear map (x, t) 7→ (x+vt, t) transforms the paths connecting
(0, 0) to (0, t) into paths connecting (0, 0) to (vt, t). Lemma 9.1 implies that under
this map the optimal action over these paths is altered by a deterministic correction
v2t/2. Since α is a constant almost surely we obtain the statement of the lemma.
2

Let us recall that our goal is to prove that optimal paths are almost straight.
We can already derive that it is unlikely that a path following some direction v1
for a large time t1 and then some other direction v2 for a large time t2 can be
optimal. In fact, we know from (25) that A0,t(0, vt) ∼ α(v)t for large t, and the
strong convexity of function α implies that for v̄ = (v1t1 + v2t2)/(t1 + t2),

(26) α(v̄)(t1 + t2) < α(v1)t1 + α(v2)t2,

and our path that switches the slopes from v1 to v2 accumulates much more action
the the optimal path. Notice that this estimate would be almost useless if the
graph of shape function α had flat pieces — in that case inequality (26) would not
be strict.

However, arguing at the level of convexity and inequality (26) is not enough for
our purposes since on top of the deterministic linear growth there are noisy fluctu-
ations. So, we need quantitative estimates on deviations of A0,t(0, vt) from α(v)t.
This is the material of the next section.

10. Concentration inequality for optimal action

The goal of this section is to prove a concentration inequality for At(vt) =
At(0, vt) = At

ω(0, vt) = A0,t
ω (0, vt):

Theorem 10.1. There are positive constants c0, c1, c2, c3, c4 such that for any v ∈
R, all t > c0, and all u ∈ (c3t

1/2 ln2 t, c4t
3/2 ln t],

P{|At(0, vt)− α(v)t| > u} ≤ c1 exp
{
−c2

u

t1/2 ln t

}
.
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We give a complete proof since the tools we are invoking are useful in similar
contexts. The central role of the proof is played by Kesten’s martingale concen-
tration inequality that estimates the deviations of a martingale from its mean, and
we use it in a very similar way as Kesten did in his original paper [Kes93] on first
passage percolation. To use Kesten’s lemma we need to introduce an appropriate
martingale and to make two truncations. One of them is made to make sure that
the optimal paths realizing the minimal action does not deviate too far. The other
one is made to ensure that the concentration of Poisson points is not abnormally
high. Then we can check the conditions of Kesten’s lemma and take care of the
additional errors introduced by truncations. Notice, however, that the statement
of Theorem 10.1 involves deviations of At(0, vt) not from its mean but from an
approximating value α(v)t. To tackle this additional discrepancy we use a method
of Howard and Newman based on their interpolation lemma on approximately ad-
ditive functions. This lemma estimates how far a function is from a linear one if it
is known how it behaves under doubling of its argument.

Due to the invariance under shear transformations (Lemmas 9.1 and 9.7), it is
sufficient to prove Theorem 10.1 for v = 0. We will first derive a similar inequality
with α(0)t replaced by EAt, and then we will have to estimate the corresponding
approximation error. We recall that At ≤ 0.

Lemma 10.2. There are positive constants b0, b1, b2, b3 such that for all t > b0 and
all u ∈ (0, b3t

3/2 ln t],

P{|At − EAt| > u} ≤ b1 exp
{
−b2

u

t1/2 ln t

}
.

The method of proof is derived from that for the generalized Hammersley’s
process in [CP11], but we have to take into account that the optimal paths are
allowed to travel arbitrarily far within any bounded time interval in search for
areas rich with configuration points. However, the situation where they decline
too far from the kinetically most efficient path is not typical. In the remaining
part of this section we will often use the following lemma showing that with high
probability the minimizer γ connecting (0, 0) to (0, t) stays within distance Rt from
the origin, where R was introduced in Lemma 9.3.

Lemma 10.3. There is a constant C3 such that if t ≥ t0 and u ≥ Rt then

P

{
max
s∈[0,t]

|γ(s)| > u

}
≤ C3 exp(−C2u

2/t),

where constants C2, R, t0 were introduced in Lemma 9.3.

Proof: If max{|γ(s)| : s ∈ [0, t]} > u, then the size of the lattice animal A traced
by γ is at least u. Lemma 9.3 implies

P

{
max
s∈[0,t]

|γ(s)| > u

}
≤
∑
n≥u

C1 exp(−C2n
2/t) ≤ C3 exp(−C2u

2/t)

for a constant C3, since the first term of the series is bounded by C1 exp(−C2u
2/t)

and the ratio of two consecutive terms is bounded by exp(−C2R). 2

Having Lemma 10.3 in mind, we define Ãt to be the optimal action over all paths
connecting (0, 0) to (0, t) and staying within [−Rt,Rt].
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Lemma 10.4. Let constants t0, R, C2, C3 be defined in Lemmas 9.3 and 10.3. For
any t > t0,

P{At 6= Ãt} ≤ C3 exp(−R2C2t).

Proof: It is sufficient to notice that

P{At 6= Ãt} ≤ P

{
max
s∈[0,t]

|γ(s)| > Rt

}
and apply Lemma 10.3. 2

Lemma 10.5. There is a constant D1 such that for all t > t0,

0 ≤ EÃt − EAt ≤ −EAt1{sups∈[0,t] |γ(s)|>Rt} ≤ D1.

Proof: The first two inequalities are obvious, since we have that 0 ≥ Ãt ≥ At.
For the last one, we have

−EAt1{sups∈[0,t] |γ(s)|>Rt} ≤
∑
n>Rt

E(Nn1En,t)

≤
∑
n>Rt

√
EN2

n

√
P(En,t)

≤
∑
n>Rt

√
c2n
√
C1 exp(−C2n

2/(2t)),

where we used Lemmas 9.3 and 9.5. The statement follows since the last series is
uniformly convergent for t > t0. 2

To obtain a concentration inequality for Ã, we will apply the following lemma
by Kesten [Kes93]:

Lemma 10.6. Let (Fk)0≤k≤N be a filtration and let (Uk)0≤k≤N be a family of
nonnegative random variables measurable with respect to FN . Let (Mk)0≤k≤N be a
martingale with respect to (Fk)0≤k≤N . Assume that for some constant c > 0 the
increments ∆k =Mk −Mk−1 satisfy

|∆k| < c, k = 1, . . . , N,

and

E(∆2
k| Fk−1) ≤ E(Uk| Fk−1).

Assume further that for some positive constants c1, c2 and some x0 ≥ e2c2 we have

P

{
N∑

k=1

Uk > x

}
≤ c1 exp(−c2x), x ≥ x0.

Then

P{MN −M0 ≥ x} ≤ c3

(
1 + c1 +

c1
c2x0

)
exp

(
−c4

x

x
1/2
0 + c

−1/3
2 x1/3

)
, x > 0,

where c3, c4 are universal positive constants that do not depend on N, c, c1, c2, x0,
nor on the distribution of (Mk)0≤k≤N and (Uk)0≤k≤N . In particular,

P{MN −M0 ≥ x} ≤ c3

(
1 + c1 +

c1
c2x0

)
exp

(
−c4

x

2
√
x0

)
, x ≤ c2x

3/2
0 .
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To use this lemma in our framework, we must introduce an appropriate martin-
gale. For a given t we consider the rectangle Q(t) = [−Rt,Rt]× [0, t] and partition

it into N = 2Rt · t = 2Rt2 disjoint unit squares: Q(t) =
∪N

k=1Bk. The order of
enumeration is not important. Here we assume that t ∈ N, but it is easy to adapt
the reasoning to the case of non-integer t.

We introduce a filtration (Fk)0≤k≤N in the following way. We set F0 = {∅,Ω}
and

Fk = σ
(
ω
∣∣∪k

j=1 Bj

)
, k = 1, . . . , N.

We introduce a martingale (Mk,Fk)0≤k≤N by

Mk = E(Ãt|Fk), 0 ≤ k ≤ N.

We denote by Pk the distribution of ω
∣∣
Bk

on the sample space Ωk of finite point

configurations in Bk. For ω, σ ∈
∏N

k=1 Ωk we write

[ω, σ]k = (ω1, . . . , ωk, σk+1, . . . , σN ) ∈
N∏

k=1

Ωk.

Then

∆k(ω1, . . . , ωk) :=Mk −Mk−1

=

∫
Ãt

[ω,σ]k

N∏
j=k+1

dPj(σj)−
∫
Ãt

[ω,σ]k−1

N∏
j=k

dPj(σj)

=

∫ (
Ãt

[ω,σ]k
− Ãt

[ω,σ]k−1

) N∏
j=k

dPj(σj).

Lemma 10.7. Let Ik denote the indicator that the minimizer connecting (0, 0) to
(0, t) and staying in [−Rt,Rt] passes through a Poissonian point in Bk. Then

|Ãt
[ω,σ]k

− Ãt
[ω,σ]k−1

| ≤ max{Ik([ω, σ]k), Ik([ω, σ]k−1)}max{ω(Bk), σ(Bk)}.

Proof: Suppose we delete the points of ω in Bk. When we then consider the
minimizer for [ω, σ]k, we decrease the number of Poissonian points contributing to
the action by at most ω(Bk), and only decrease the kinetic action. Comparing the
resulting path with the minimizer for [ω, σ]k−1, we obtain

Ãt
[ω,σ]k−1

≤ Ãt
[ω,σ]k

+ ω(Bk).

Similarly, we get

Ãt
[ω,σ]k

≤ Ãt
[ω,σ]k−1

+ σ(Bk).

This shows that

|Ãt
[ω,σ]k

− Ãt
[ω,σ]k−1

| ≤ max{ω(Bk), σ(Bk)}.

Now remark that if none of the two minimizers (for [ω, σ]k and [ω, σ]k−1) passes

through a Poissonian point inside Bk, then Ãt
[ω,σ]k

and Ãt
[ω,σ]k−1

coincide. This

completes the proof. 2

The next step is to define a truncated Poissonian configuration ω̄ by erasing all
Poissonian points of ω in each block Bj with ω(Bj) > b ln t, where b > 0 will be
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chosen later. The restrictions of ω̄ to Bj , j = 1, . . . , N are jointly independent.
Lemma 10.7 applies to truncated configurations as well and we obtain

|Ãt
[ω̄,σ̄]k

− Ãt
[ω̄,σ̄]k−1

| ≤ b ln tmax{Ik([ω̄, σ̄]k), Ik([ω̄, σ̄]k−1)},

where σ̄ is obtained from σ in the same way as ω̄ from ω. Therefore,

|∆k(ω̄1, . . . , ω̄k)| ≤ b ln t

∫
max{Ik([ω̄, σ̄]k), Ik([ω̄, σ̄]k−1)}

N∏
j=k

dPj(σj) ≤ b ln t.

We must now estimate the increments of the martingale predictable character-
istic. This estimate is a straightforward analogue of Lemma 4.3 of [CP11].

Lemma 10.8. Let Uk = 2(b ln t)2Ik. Then, with probability 1, |Uk(ω̄)| ≤ 2(b ln t)2

and
E(∆2

k(ω̄1, . . . , ω̄k)|Fk−1) ≤ E(Uk(ω̄)|Fk−1).

Proof:

E(∆2
k(ω̄1, . . . , ω̄k)|Fk−1) =

∫ ∫ (Ãt
[ω̄,σ̄]k

− Ãt
[ω̄,σ̄]k−1

) N∏
j=k

dPj(σj)

2

dPk(ωk)

≤
∫ ∫ max{Ik([ω̄, σ̄]k), Ik([ω̄, σ̄]k−1)} · b ln t

N∏
j=k

dPj(σj)

2

dPk(ωk)

≤
∫ ∫

max{Ik([ω̄, σ̄]k), Ik([ω̄, σ̄]k−1)} · (b ln t)2
N∏

j=k

dPj(σj)dPk(ωk)

≤
∫ ∫

(Ik([ω̄, σ̄]k) + Ik([ω̄, σ̄]k−1)) · (b ln t)2
N∏

j=k

dPj(σj)dPk(ωk)

= E(Uk(ω̄)|Fk−1).

2

We have

(27)
N∑

k=1

Uk(ω̄) = 2(b ln t)2
N∑

k=1

Ik(ω̄).

Since
N∑

k=1

Ik(ω̄) ≤ #A(ω̄),

we can write

P

{
N∑

k=1

Uk(ω̄) > x

}
≤ P

{
#A(ω̄) >

x

2(b ln t)2

}
≤

∑
n>x/(2(b ln t)2)

P{ω̄ ∈ En,t}.

It is easy to see that Lemma 9.3 applies to ω̄ as well as to ω, since its proof
depends only on the tail estimate for the number of configuration points in each
block. We can conclude that

P{ω̄ ∈ En,t} ≤ C1 exp(−C2n
2/t), n ≥ Rt, t ≥ t0,

where C1, C2, R, t0 were introduced in Lemma 9.3.



34 YURI BAKHTIN

Combining the last two inequalities and choosing x0 = 2Rt(b ln t)2, we can write
for x > x0

P

{
N∑

k=1

Uk(ω̄) > x

}
≤ C1

∑
n>x/(2(b ln t)2)

exp(−C2n
2/t)

≤ C4 exp(−C2x
2/(4t(b ln t)4))

≤ C4 exp(−C2xx0/(4t(b ln t)
4))

≤ C4 exp(−C5(b ln t)
−2x).

The above estimates on ∆k(ω̄) and Uk(ω̄) allow to apply Kesten’s lemma with
c = 2b ln t, c1 = C4, c2 = C5(b ln t)

−2, x0 = 2Rt(b ln t)2 and obtain the following
statement:

Lemma 10.9. There are constants C6, C7, C8, t0 > 0 such that for t > t0 and
x ≤ C8bt

3/2 ln t,

P{|Ãt(ω̄)− EÃt(ω̄)| > x} ≤ C6 exp
(
−C7

x

bt1/2 ln t

)
.

Lemma 10.10. With probability 1,

Ãt(ω) ≤ Ãt(ω̄).

Also, we can choose b and t0 such that for all t > t0 and x > 0,

P{Ãt(ω̄)− Ãt(ω) > x} ≤ 2e−x.

Proof: The first statement of the lemma is obvious, and we have

0 ≤ Ãt(ω̄)− Ãt(ω) ≤
N∑

k=1

ω(Bk)1{ω(Bk)>b ln t}.

By Markov’s inequality and mutual independence of ω|Bk
, k = 1, . . . , N ,

P

{
N∑

k=1

ω(Bk)1{ω(Bk)>b ln t} > x

}
≤ e−x

[
Eeω(B1)1{ω(B1)>b ln t}

]N
.

The lemma will follow from

(28) lim
t→∞

[
Eeω(B1)1{ω(B1)>b ln t}

]2Rt2

= 1,

which is implied by

Eeω(B1)1{ω(B1)>b ln t} ≤ 1 +
Ee2ω(B1)

eb ln t
≤ 1 +

Ee2ω(B1)

tb
,

if we choose b > 2. 2

The only missing part in the proof of Lemma 10.2 is the following corollary of
Lemma 10.10:

Lemma 10.11. There is a constant D2 such that for all t > t0,

0 ≤ EÃt(ω̄)− EÃt(ω) < D2.
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Proof of Lemma 10.2: Lemmas 10.5 and 10.11 imply that for u > D1 +D2

P{|At(ω)− EAt(ω)| > u} ≤P{|At(ω)− Ãt(ω)| > (u−D1 −D2)/3}

+ P{|Ãt(ω)− Ãt(ω̄)| > (u−D1 −D2)/3}

+ P{|Ãt(ω̄)− EÃt(ω̄)| > (u−D1 −D2)/3}.
The Lemma follows from the estimates of the three terms provided by Lemmas 10.4,
10.9, and 10.10. 2

The following lemma quantifies how the growth of −EAt deviates from the linear
one under argument doubling. We will use this lemma to find an estimate on EAt−
α(0)t which makes it possible to fill the gap between Lemma 10.2 and Theorem 10.1.

Lemma 10.12. There is a number b0 > 0 such that for any t > t0,

0 ≤ 2EAt − EA2t ≤ b0t
1/2 ln2 t.

Proof: The first inequality follows from A0,2t(0, 0) ≤ A0,t(0, 0) + At,2t(0, 0). Let
us prove the second one.

Let γ be the minimizer from (0, 0) to (0, 2t). Then

A2t ≥ min
|x|≤2Rt

A0,t(0, x) + min
|x|≤2Rt

At,2t(x, 0) +A2t1{maxs∈[0,2t] |γ(s)|>2Rt}.

Therefore, by symmetry with respect to t and Lemma 10.5,

(29) EA2t ≥ 2E min
|x|≤2Rt

At(0, x)−D1.

For k ∈ It = {−2Rt, . . . , 2Rt − 2, 2Rt − 1}, we define a unit square Bk =
[k, k + 1]× [t− 1, t].

Let now γ be the minimizer from (0, 0) to (x, t), with x ∈ [k, k + 1] for some
k ∈ It. Denote t′ = sup{s ≤ t : γ(s) /∈ Bk} and x′ = γ(t′).

If x′ < k + 1, then by reconnecting (x′, t′) to (k, t) we obtain

At(k) ≤ At′(x′) + 1/2 ≤ At(x) + ω(Bk) + 1/2.

If x′ = k + 1, then by reconnecting (x′, t′) to (k + 1, t) we obtain

At(k + 1) ≤ At′(x′) ≤ At(x) + ω(Bk).

Therefore,
At(x) ≥ min{At(k), At(k + 1)} − ω(Bk)− 1/2,

and (29) implies

EA2t ≥ 2Emin
k∈It

At(k)− Emax
k∈It

ω(Bk)− 1/2−D1.

The second term grows logarithmically in t. Hence, for some constant c > 0,

EA2t ≥ 2Emin
k∈It

At(k)− c(ln t+ 1).

Lemma 9.1 implies
min
x

EAt(x) = EAt(0).

Therefore,

EA2t ≥ 2Emin
k∈It

At(k)− c(ln t+ 1)

≥ 2min
k∈It

EAt(k)− 2EXt − c(ln t+ 1)

≥ 2EAt − 2EXt − c(ln t+ 1),(30)
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where

Xt = max
k∈It

{(EAt(k)−At(k))+}.

For a constant r to be determined later, we introduce the event

E = {Xt ≤ r(ln2 t)
√
t}.

Then

Xt ≤ r(ln2 t)
√
t1E +Xt1Ec .

Therefore,

(31) EXt ≤ r(ln2 t)
√
t+

√
E(Xt)2P(Ec).

Let us estimate the second term. According to Lemma 9.1, the random variables
At(k) − EAt(k), k ∈ It have the same distribution, so replacing the maximum in
the definition of X2

t with summation we obtain

(32) EX2
t ≤ 4RtE(At − EAt)2+ ≤ 4RtE(At)2 ≤ Ct3,

for some C > 0 and all t exceeding some t0, where we used Lemma 9.6 in the last
inequality.

Also, Lemma 10.2 shows that

P(Ec) ≤
∑
k∈It

P
{
At(k)− EAt(k) > r(ln2 t)

√
t
}

≤ 4Rtb1 exp{−b2r ln t}.(33)

We can now finish the proof by choosing r to be large enough and combining
estimates (30)–(33). 2

With this lemma at hand we can now use the following statement ([HN01, Lemma
4.2]):

Lemma 10.13. Suppose the functions a : R+ → R and g : R+ → R+ satisfy the
following conditions: a(t)/t→ ν ∈ R and g(t)/t→ 0 as t→ ∞, a(2t) ≥ 2a(t)−g(t)
and ψ ≡ lim supt→∞ g(2t)/g(t) < 2. Then, for any c > 1/(2− ψ), and for all large
t,

a(t) ≤ νt+ cg(t).

Taking a(t) = EAt, ν = α(0), g(t) = b0t
1/2 ln2 t, ψ =

√
2, c = 2, we conclude

that for b′0 = 2b0 and large t,

0 ≤ EAt − α(0)t ≤ b′0t
1/2 ln2 t,

and Theorem 10.1 follows from this estimate, Lemma 10.2, and the shear invariance
established in Lemma 9.1. 2

11. One-sided minimizers: existence, uniqueness, and coalescence

In this section we are going to prove Theorem 8.6 that asserts the existence,
uniqueness, and coalescence of one-sided infinite minimizers for any given asymp-
totic slope v. We begin though with approximate straightness of minimizers over
finite time intervals. This is where Theorem 10.1 plays a crucial role, along with
strong convexity of the shape function α.
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11.1. δ-Straightness. First, we need some notation. Let us recall that our space-
time is R2. For a point p ∈ R2 the numbers p1 and p2 are, respectively, space and
time components of p.

For a speed v > 0 we introduce the following symmetric cone in space-time:

Co(v) = {p ∈ R× R+ : |p1| ≤ p2v}.

For p ∈ R× R+ and for L > 0

C(p, L) :=
{
q ∈ R2 : q2 ∈ (p2, 2p2] and

∣∣∣∣ q2p2 p1 − q1

∣∣∣∣ ≤ L

}
.

So C(p, L) is a parallelogram of width 2L along [p, 2p] (for any two points p, q on
the plane, [p, q] denotes the straight line segment connecting these two points). We
need to consider the side-edges of this parallelogram:

∂SC(p, L) :=
{
q ∈ R2 : q2 ∈ (p2, 2p2] and

∣∣∣∣ q2p2 p1 − q1

∣∣∣∣ = L

}
.

For p ∈ R2, we define its square neighborhood in space-time:

(34) K(p,R) :=
{
q ∈ R2 : |q1 − p1| ≤ R and |q2 − p2| ≤ R

}
.

For p, q ∈ R2 satisfying p2 < q2, we denote by γp,q the optimal path from p to q.
For p, z ∈ R2 with 0 < p2 < z2, we define the event

G(p, z) =
{
∃0̃ ∈ K((0, 0), 1), z̃ ∈ K(z, 1) : γ0̃,z̃ ∩K(p, 1) 6= ∅

}
.

This says that a geodesic starting close to (0, 0) and ending near z, passes close
to p.

Using the strong convexity of α and Theorem 10.1 one can prove the following
inequality:

Lemma 11.1. Fix δ ∈ (0, 1/4) and v > 0. There are constants c1, c2,M > 0

(independent of δ), such that for all p ∈ Co(v) with p2 > M and z ∈ ∂SC(p, p1−δ
2 ),

we have

P(G(p, z)) ≤ c1 exp
(
−c2p1/2−2δ

2 / log(p2)
)
.

With this lemma at hand one can show that a minimal path starting close to
the origin and passing close to p, with high probability will not exit the slanted
cylinder C(p, p1−δ

2 ) through the sides, see Figure 10. Define the event

G(p) =
{
∃ 0̃ ∈ K((0, 0), 1) ∃ z ∈ ∂SC(p, p1−δ

2 ) : γ0̃,z ∩K(p, 1) 6= ∅
}
.

Lemma 11.2. Fix δ ∈ (0, 1/4) and v > 0. There are constants c1, c2, κ,M > 0,
such that for all p ∈ Co(v) with p2 > M we have

P(G(p)) ≤ c1 exp(−c2pκ2 ).

We will need one more result on straightness.
For all x ∈ R× R+ and η > 0 we introduce

(35) Co(x, η) = {z ∈ R× R+ : |z1/z2 − x1/x2| ≤ η},

which is the cone (rooted at the origin) of all points z that have the corresponding
velocity closer than η to the speed of x. For a path γ and t ∈ R, we define

γout(t) = {(s, γ(s)) : s ≥ t}.
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0

p

1p1−δp1
1−δ

p

p
2

2

2

0

Figure 10. Probability of this violation of straightness is bounded
by c1 exp(−c2pκ2 )

Lemma 11.3 (δ-straightness). For δ ∈ (0, 1/4) and v > 0, there exist constants
M,R, κ,C1, C2 > 0 such that

(1) with probability one, for all 0̃ ∈ K((0, 0), 1), for all z ∈ R× R+ and for all
p ∈ γ(0̃, z) ∩ Co(v) with p2 > M , we have

γout
0̃,z

(p2) ⊂ Co(p,Rp−δ
2 );

(2) for all n ≥M

P(Gn) ≤ C1e
−C2n

κ

,

where

Gn =
{
∃0̃ ∈ K((0, 0), 1), z ∈ R× R+, p ∈ γ(0̃, z) with p2 > n and p ∈ Co(v) :

γout(p2) 6⊂ Co(p,Rp−δ
2 )
}
.

This lemma states that if a geodesic starting near (0, 0) passes through a remote
point p, it has to stay in a narrow cone around the ray R+ · p.

Proof: Let us consider events G(p̄) for all p̄ ∈ Z × Z+ ∩ Co(v′), with v′ > v.
Event Gn implies that for some p̄ with p̄2 > n event G(p̄) happens. The lemma
then follows from estimating the probabilities of G(p̄) with Lemma 11.2 and using
the Borel–Cantelli lemma. In fact, if for sufficiently large p̄2, events G(p̄) do not
happen, then each long optimal path never crosses side boundaries of a telescopic
tower of parallelograms with sublinearly growing width, see Figure 11, and each
such tower can be imbedded in a narrow cone. See Section 6 of [BCK] for more
details. 2

11.2. Existence and uniqueness of one-sided minimizers. With approximate
straightness in hand, we can prove some important properties of minimizing paths.
A semi-infinite minimizer starting at (x, t) ∈ R2 is a path γ : [t,∞) → R such that
γ(t) = x and the restriction of γ to any finite time interval is a minimizer. We call
(x, t) the endpoint of γ.
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Figure 11. The tower of parallelograms in the straightness lemma

Lemma 11.4. With probability one, all semi-infinite minimizers have an asymp-
totic slope (velocity, direction): for every minimizer γ there exists v ∈ R ∪ {±∞}
depending on γ such that

lim
t→∞

γ(t)

t
= v.

Proof: Let us fix a sequence vn → ∞. Using the translation invariance of the
Poisson point field, with probability one, for any q ∈ Z2 we can choose a corre-
sponding sequence of constants Mn(q) > 0 such that the statement in Lemma 11.3
holds for the entire sequence, for paths starting in K(q, 1).

Let us take some one-sided minimizer γ. If γ(t)/t → +∞ or −∞, then the
desired statement is automatically true. In the opposite case we have

lim inf
t→∞

|γ(t)|
t

<∞.

This implies that there exist n ≥ 1 and a sequence tm → ∞ such that |γ(tm)|/tm ≤
vn. We define ym = (γ(tm), tm) and choose q ∈ Z2 such that y1 ∈ K(q, 1). For m
large enough, we will have that tm > Mn(q) and, therefore,

γout(ym) ⊂ q +Co(ym − q,R|ym − q|−δ),

for some constant R > 0 and m large enough. Clearly this implies that γ must
have a finite asymptotic slope. 2

Lemma 11.5. With probability one, for every v ∈ R and for every sequence
(yn, tn) ∈ R2 with tn → ∞ and

lim
n→∞

yn
tn

= v,

and for every x ∈ R2, there exists a subsequence (nk) such that the minimizing paths
γx,(ynk

,tnk
) are an increasing collection of paths that converge to a semi-infinite

minimizer starting at x and with asymptotic slope equal to v.

Proof: The proof of the lemma is based on a compactness argument. We give
only a sketch of the proof and refer to Section 6 of [BCK] for details.

The straightness estimates and the Borel–Cantelli lemma imply that for suffi-
ciently large t and sufficiently large n all minimizing paths to (xn, tn) have to pass
through the rectangle with sides t and t1/4 shown on Figure 12. One can also show
that (if t is sufficiently large) an optimal path has to visit at least one Poissonian
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t 1/4

t

Figure 12. Due to straightness estimates, minimizers have to pass
through the rectangle for large tn.

point in that rectangle. Since there are only finitely many of those, there will be one
such that an infinite number of minimizers from our sequence will visit it. Taking
that subsequence, increasing t, repeating the same argument iteratively, and taking
the diagonal subsequence from the sequence of thus constructed subsequences of
minimizers, we obtain a limiting trajectory. Being a limit of minimizing paths, it
is the desired one-sided minimizer . 2

Lemma 11.6. With probability 1, the following statement holds: if γ1 and γ2 are
two (finite-time) geodesics, starting at the same Poisson point p, and for some
t > p2 we have γ1(t) < γ2(t), then for all (relevant) s > t we have γ1(s) < γ2(s).

Proof: The probability that there are two Poisson point connected by two dis-
tinct geodesics is zero. So we only have to consider the situation where two paths
with vertices p, p1, . . . , pn and p, q1, . . . , qm intersect transversally, i.e., for some
k, j, [pj , pj+1] ∩ [qk, qk+1] = {x} for some point x /∈ ω. In this case, the to-
tal actions of the two paths can be improved by switching to paths with vertices
p, p1, . . . , pj , qk+1, . . . , qm and, respectively, p, q1, . . . , qk, pj+1, . . . , pn. Therefore, we
obtain a contradiction with the optimality of the original paths. 2

Lemma 11.7. Let v ∈ R. With probability one, every Poisson point belongs to at
most one semi-infinite minimizer with asymptotic slope v.

Proof: A triple of distinct Poisson points (p, q1, q2) is called a bifurcation triple
for v if there exist two distinct semi-infinite minimizers γ1 and γ2 with asymptotic
slope v that both start at p, then one goes directly (at constant velocity) to q1 and
the other goes directly to q2. We choose q1 such that γ1 lies to the left of γ2.

Lemma 11.6 implies that a triple (p, q1, q2) can be a bifurcation triple no more
than for one direction v. Therefore, each realization ω of Poissonian point field
gives at most countably many bifurcation triples. For v ∈ R we define Bv as the
event consisting of all point configurations with at least one bifurcation triple for
v. Let f > 0 be a bounded probability density on R. Then

E

∫
R
f(v)1Bv (ω)dv = E0 = 0,
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since 1Bv (ω) 6= 0 for at most countably many values of v. Changing the order of
integration, we see that the left-hand side equals∫

R
f(v)P(Bv)dv =

∫
R
f(v)P(B0)dv = P(B0),

where we used shear invariance to conclude that P(Bv) = P(B0) for all v. Therefore,
P(B0) = 0 and the lemma follows. 2

With uniqueness in hand we can strengthen Lemma 11.5:

Lemma 11.8. With probability one, for every v ∈ R and for every sequence
(yn, tn) ∈ R2 with tn → ∞ and

lim
n→∞

yn
tn

= v,

and for every Poissonian point p ∈ R2, the minimizing paths γp,(yn,tn) converge to
a unique semi-infinite minimizer γp,v starting at p and with asymptotic speed equal
to v.

Proof: Let us assume that the convergence does not hold, i.e., there is a sequence
(n′) such that the restrictions of γp,(yn′ ,tn′ ) and γp,v on some finite time interval
I do not coincide for all n′. Lemma 11.5 allows to choose a subsequence (n′′)
from (n′) such that for sufficiently large n′′ the restrictions of γp,(yn′′ ,tn′′ ) on I
coincide with the restrictions of some infinite one-sided geodesics γ′. The uniqueness
established in Lemma 11.7 guarantees that γ′ coincides with γp,v, and the resulting
contradiction shows that our assumption was false, completing the proof. 2

11.3. Coalescence of minimizers. Here we prove that any two one-sided mini-
mizers with the same asymptotic slope coalesce. In a sense, this is a strengthening of
the hyperbolicity property that holds true for minimizers of smooth random action
in compact setting. Hyperbolicity means that different minimizers approach each
other exponentially fast in reverse time. In the Poissonian setting every two mini-
mizers meet in finite time, and this property is called hyperhyperbolicity in [Bak12].

Lemma 11.9. With probability one it holds that for every v ∈ R and for every pair
of semi-infinite minimizers, starting at different Poisson points, with asymptotic
speed v, these minimizers either do not touch, or they coalesce at some Poisson
point.

Proof: Suppose for some v ∈ R, there do exist two semi-infinite minimizers with
asymptotic speed v that touch, but do not coalesce. If the two minimizers γ1 and
γ2 contain the same Poisson point p, then they must stay together for all times
above p according to Lemma 11.7. Therefore, the only option is that γ1 and γ2
cross, i.e., they consecutively visit Poissonian points p1, p2, . . ., and, respectively,
q1, q2, . . ., and [p1, p2] ∩ [q1, q2] = {x}, for some x ∈ R2.

The sequence {qm : m ≥ 1} satisfies the conditions of Lemma 11.8, which means
that the minimizers γp1,qm converge to γ1. However, we claim that with probability
1, none of the minimizers γp1,qm contain any of the pn (n ≥ 2). In fact, if this claim
is violated for some m,n, then due to a.s.-uniqueness of a geodesic between any two
Poisson points, we know that γp1,qm passes through p2 and x. This implies that
action picked up by γ2 between x and qm must be equal to the action picked up
by γp1,qm between x and qm. However, this contradicts the optimality of γ2 as the
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comparison with the path connecting q1 directly to p2 and then following γp1,qm

shows. The proof is complete. 2

For every v ∈ R, coalescence of one-sided geodesics with asymptotic slope v
generates an equivalence relation on Poissonian points. We call each equivalence
class a coalescence component.

Lemma 11.10. Let v ∈ R. With probability 1, every coalescence component is
unbounded below in time.

Proof: We give only a sketch of proof, see [BCK] for details. Due to shear
invariance, it is sufficient to consider only v = 0. Suppose that the probability of
existence of a coalescence component bounded from below is positive. Then the
indicators Iij , (i, j) ∈ Z2 of the fact that such a component begins within [i, i+1]×
[j, j+1] form a stationary process in space-time. If a coalescence component begins
between the one-sided optimal paths γ+ and γ− emitted from the origin 0 with
asymptotic slopes 1 and −1, respectively, then it is trapped between them for all
times. Due to the Tempelman multi-parametric ergodic theorem, (see, e.g., [Kre85,
Chapter 6]), the number of these components emitted from squares [i, i+1]×[j, j+1]
with j ≤ n between γ+ and γ− is approximately linear in the number of these
squares, i.e., grows quadratically in n. However, the spread between γ+ and γ−
grows only linearly, and thus it is too small to contain Poissonian points from all
quadratically many disjoint components. 2

Lemma 11.11. Let v ∈ R. With probability one, every two semi-infinite minimiz-
ers with asymptotic slope v coalesce.

Proof: Let us only give the main ideas behind the proof, see [BCK] for details.
The first statement is: if, with positive probability, there are two noncoalescent
minimizers, then, probability that there are three noncoalescent minimizers is also
positive. This follows from stationarity.

The main part of the reasoning is to use thus constructed event of positive
probability to construct another event of positive probability on which there is a
coalescence component bounded from below. This is possible to do by erasing Pois-
sonian points in the rectangular domain shown along with the three noncoalescent
minimizers on Figure 13: we erase all Poissonian points in the rectangle except
those in a small neighborhood of the leftmost and rightmost minimizers. One can
prove that (i) the resulting set of configurations still has positive probability, and
(ii) the coalescence component of the minimizer in the middle does not extend be-
low the zero time level and hence is bounded from below. The contradiction with
Lemma 11.10 finishes the proof. 2

Now we have the picture where for fixed v, with probability 1, each Poissonian
point comes with a unique one-sided minimizer of asymptotic slope v, and every two
of these minimizers coalesce. The reasoning above does not give any information
about the statistics of the time it takes for two minimizers to coalesce. All we know
is that this time is finite with probability 1. Figure 7 computed for a finite domain
gives some idea of what goes on. Minimizers for terminal points that are close to
each other tend to coalesce fast, but some Poissonian points that are close to each
other are separated by a shock (shocks roughly correspond to white space on the
picture) with a long history, and it takes a long time for their respective minimizers
to meet. In fact, it would be interesting and useful to understand the statistics of
coalescence times or shock ages.
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0

Figure 13. By erasing the Poissonian points in the rectangle we
obtain a situation where the coalescence component of the mini-
mizer in the middle cannot be extended below 0 level.

What if we do not restrict ourselves to Poissonian points as endpoints of mini-
mizers? All the minimizers for other endpoints have the same structure: they first
go to one of the Poissonian points and then follow the unique minimizer attached
to that point. So the entire space-time is tessellated into domains such that all
points in one domain have minimizers visiting the same Poissonian point first. The
uniqueness is violated at the boundaries of these domains and the points on these
boundaries have more than one minimizer and correspond to shocks.

12. Busemann functions and stationary solutions of the Burgers
equation

In this Section we use the one-sided minimizers to construct global solutions of
the Burgers equation, thus proving the existence part of Theorem 8.1.

In several last sections we worked with forward minimizers that were obtained
from a limiting procedure as the terminal time approached +∞. All the same
conclusions are valid for one-sided backward minimizers that can be obtained from a
limiting procedure in the reverse time. This amounts only to switching the direction
of time due to the symmetry of the action with respect to this transformation.

Let us summarize some facts on one-sided backward minimizers. For any velocity
v ∈ R, the following holds with probability 1. For every point p = (x, t) there is a
non-empty set Γv,p of one-sided action minimizers γ : (−∞, t] → R with asymptotic
slope v

lim
s→−∞

γ(s)

s
= v,

ending at p. They all coalesce, i.e., they coincide on (−∞, tv,p] for some tv,p < t.
For most points p ∈ R2, Γv,p consists of a unique minimizer γv,p, but even if the
uniqueness does not hold, there is the right-most minimizer γv,p ∈ Γv,p such that
γv,p(s) ≥ γ(s) for s ≤ t and any other minimizer γ ∈ Γv,p.

For every two points p1 = (x1, t1) and p2 = (x2, t2), all their one-sided minimizers
coalesce, i.e., there is a time tv = tv(p1, p2) such that γv,p1(s) = γv,p2(s) for all
s ≤ tv.

This allows us to define Busemann functions for slope v:

Bv(p1, p2) = Bv,ω(p1, p2) = Atv(p1,p2),t2
ω (γv,p2)−Atv(p1,p2),t1

ω (γv,p1), p1, p2 ∈ R2.
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Although tv is not defined uniquely, the definition clearly does not depend on a
concrete choice of tv or γv,p1 , γv,p2 . One can also choose tv to be the maximal of
all possible coalescence times.

Some properties of Busemann functions are summarized in the following lemma:

Lemma 12.1. Let Bv be defined as above for v ∈ R.
(1) The distribution of Bv is translation invariant: for any ∆ ∈ R2,

Bv(·+∆, ·+∆)
distr
= Bv(·, ·).

(2) Bv is antisymmetric:

Bv(p1, p2) = −Bv(p2, p1), p1, p2 ∈ R2,

in particular Bv(p, p) = 0 for any p ∈ R2.
(3) Bv is additive:

Bv(p1, p3) = Bv(p1, p2) +Bv(p2, p3), p1, p2, p3 ∈ R2.

(4) For any p1, p2 ∈ R2, E|Bv(p1, p2)| <∞.

First three parts of the Lemma are straightforward. The proof of part 4 is not
trivial, and we refer to Section 7 of [BCK] for details.

Having the Busemann function at hand, one can define

Uv(x, t) = B((0, 0), (x, t)), (x, t) ∈ R2.

The main claim of this Section is that thus defined Uv is skew-invariant under
cocycle Φ and its space derivative is the global solution of the Burgers equation.

Let us recall that Φ is given by

(36) Φs,tW (y) = inf
x∈R

{W (x) +As,t(x, y)}, s ≤ t, y ∈ R,

where As,t(x, y) has been defined in (21).

Lemma 12.2. Function Uv defined above is a global solution of the Hamilton–
Jacobi equation. If s ≤ t, then

Φs,tUv(·, s)(x) = Uv(x, t).

Proof: Let γv be a minimizer through (x, t) with slope v. Then

Uv(x, t) =Uv(γv(s), s) + (Uv(x, t)− Uv(γv(s), s))

=Uv(γv(s), s) +As,t(γv(s), x).

We need to show that the right-hand side is the infimum of Uv(y, s) + As,t(y, x)
over all y ∈ R. Suppose that for some y ∈ R,
(37) Uv(y, s) +As,t(y, x) < Uv(γv(s), s) +As,t(γv(s), x).

Let us take any minimizer γ̄v originating at (y, s) and denote by τ < s the time
of coalescence of γ̄v and γv. We claim that

(38) Aτ,s(γ̄v) +As,t(y, x) < Aτ,t(γv(τ), x) = Aτ,t(γv),

which contradicts the minimizing property of γ. In fact, (38) is a consequence of

Aτ,s(γ̄v)−Aτ,s(γv) = Uv(y, s)− Uv(γv(s), s)

< As,t(γv(s), x)−As,t(y, x).

where the second inequality follows from (37). 2
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Another way to approach the Burgers equation is to consider, for p = (x, t),

uv(x, t) = γ̇v,p(t).

Then Uv(x, t)−Uv(0, t) =
∫ x

0
uv(y, t)dy. We recall that Ψs,tw denotes the solution

at time t of the Burgers equation with initial condition w imposed at time s.

Lemma 12.3. The function uv defined above is a global solution of the Burgers
equation. If s ≤ t, then

Ψs,tuv(·, s) = uv(·, t), s ≤ t.

Proof: This statement is a direct consequence of Lemmas 6.5, 12.2, and the
definition of the Burgers cocycle Ψ. 2

The function uv(·, t) is piecewise linear with respect to the space coordinate,
with downward jumps, each linear regime corresponding to the configuration point
visited last by one-sided minimizers, see the last paragraph of Section 11.

To prove that Uv(·, t) ∈ H(v, v) for all t, we will compute the expectation of
its spatial increments (we already know that it is well defined due to part 4 of
Lemma 12.1), and prove that uv(·, t) is mixing with respect to the spatial variable.

Lemma 12.4. For any (x, t) ∈ R2,

E(Uv(x+ 1, t)− Uv(x, t)) = EBv((x, t), (x+ 1, t)) = v.

Proof: First, we consider the case v = 0. Due to the distributional invariance of
Poisson process under reflections,

EB0((x, t), (x+ 1, t)) = EB0((x+ 1, t), (x, t)).

Combining this with the anti-symmetry of B0, we obtain EB0((x+1, t), (x, t)) = 0,
as required.

In the general case, we can apply the shear transformation L : (y, s) 7→ (y +
(t − s)v, s) = (y + vt − vs, s). Due to Lemma 9.1, the one-sided minimizers of
slope v will be mapped onto one-sided minimizers of slope 0 for the new Poissonian
configuration L(ω). We already know that

EB0,L(ω)((x+ 1, t), (x, t)) = 0,

and a direct computation based on Lemma 9.1 gives

B0,L(ω)((x, t), (x+ 1, t)) = Bv,ω((x, t), (x+ 1, t)) + v,

and our statement follows since L preserves the distribution of Poisson process. 2

Lemma 12.5. Let v ∈ R. For any t, the process uv(·, t) is mixing.

Roughly speaking, mixing means asymptotic independence of uv(x, t) and uv(y, t)
as x−y → ∞. The idea of the proof is that if the distance between x and y is large,
then the corresponding one-sided minimizers explore disjoint domains in space-time
for a long time, thus collecting input from independent patches of Poissonian points.
See Section 7 of [BCK] for a formal proof of mixing.

Mixing implies ergodicity. Therefore, combining Lemmas 12.4 and 12.5 with the
ergodic theorem, we can conclude that the Birkhoff space averages of uv have a
well-defined, deterministic limit v, so Uv ∈ H(v, v).
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13. Stationary solutions: uniqueness and basins of attraction

In this section we prove Theorem 8.3 and the uniqueness part in Theorem 8.1.
In both cases the idea is to show that minimizers for the corresponding variational
problems over long time intervals tend to coincide with the one-sided minimizers
constructed and studied in the previous sections.

The key step in the proof of Theorem 8.3 is the following observation.

Lemma 13.1. Let t ∈ R and suppose that an initial condition W satisfies one
of the conditions (18),(19),(20). With probability one, the following holds true for
every y ∈ R. Let y∗(s) be a solution of the optimization problem (36). Then

lim
s→−∞

y∗(s)

s
= v.

Proof of Theorem 8.3: Let us take any rectangle Q = [−R,R]× [t0, t1] and set
t = t1. We can find points a, b ∈ R satisfying a < −R < R < b, not coinciding with
any of the points xk, k ∈ Z and such that one-sided backward minimizers γ(a,t),v
and γ(b,t),v do not cross Q.

Applying Lemma 13.1 to x = a, b, we see that the corresponding points a∗(s)
and b∗(s) satisfy a∗(s)/s→ v and b∗(s)/s→ v as s→ −∞.

Let p = (x0, τ0) be the point of coalescence of the one-sided minimizers γ(a,t),v
and γ(b,t),v. We automatically have τ0 < t0. There is τ1 < min{τ0, 0} such that for
s < τ1, the restrictions of the finite minimizers connecting (a∗(s), s) to (a, t) and
(b∗(s), s) to (b, t) on [τ0, t] coincide with the restrictions of γ(a,t),v and γ(b,t),v (this
also implies that we can choose a∗(s) = b∗(s)).

Since Q is trapped between γ(a,t),v and γ(b,t),v, and minimizing paths cannot
cross each other, we conclude that for any s < τ1, and any (x, t) ∈ Q, the min-
imizers connecting (x∗(s), s) to (x, t) (where x∗ is a solution of the optimization
problem (36)) have to pass through p. In particular, the slopes of these minimizers
determining the evolution of the Burgers velocity field in [−R,R] throughout [t0, t1]
do not change (and coincide with the slopes of one-sided backward minimizers) as
long as s < τ1, which completes the proof. 2

Proof of uniqueness in Theorem 8.1: We will prove that any skew-invariant
function u with average velocity v coincides with the global solution uv at time 0.

Let us take an arbitrary interval I = (a, b). Lemma 13.1 implies that for any W
satisfying H(v, v), there is a time T0(a, b,W ) ≥ 0 such that if s < −T0, then there
is a point a∗ ∈ R that solves the optimization problem (36) for t = 0 and for all
points y ∈ I at once, and the respective finite minimizers on [s, 0] have the same
velocity at time 0 as the infinite one-sided minimizers of asymptotic slope v.

Suppose now that Uω(x, t) = Uθtω(x) is a global solution in Ĥ(v, v). Then
T0(a, b, Uθtω(·)) > 0 is a stationary process. In particular, this means that with
probability 1, there is R > 0 and a sequence of times sn ↓ −∞ such that for
all n ∈ N, we have T0(a, b, Uθsnω(·)) < R. Therefore, there is n such that sn <
−T0(a, b, Uθsnω(·)). This and the fact that U at time 0 is the solution of prob-
lem (36) for t = 0, s = sn and initial condition W = Uθsnω(·), we conclude that U
and the global solution Uv coincide on I at time 0, and the proof is complete. 2

14. Conclusion

We finish these notes with a short discussion of future directions.
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A natural step in developing a general theory of random Lagrangian systems is to
eliminate the singular character of the forcing. There are several settings where such
elimination looks plausible. For example, one can consider shot-noise type random
forcing where a singular contribution to the potential from each Poissonian point is
replaced by a smooth one. In this situation, large parts of the program described in
our notes go through, but we cannon expect coalescence of one-sided minimizers.
We expect that this property will be replaced by hyperbolicity analogously to the
situation on the circle, but the study of hyperbolicity will require new tools.

Another interesting related set of problems concerns discrete-time systems or
systems with kick forcing where the external potential is concentrated at integer
times and is smooth in space.

To extend our program to higher dimensions is also an interesting problem. Exis-
tence of one-sided minimizers can be obtained in the same way as in one dimension,
but the rest of the program in our notes critically depends on the geometry of the
space-time plane — we often use the fact that the minimizers can be ordered from
left to right, can be trapped between other minimizers, etc.

Another set of problems is connected to the case of positive viscosity ν. Our
variational approach has to be replaced then by stochastic control. Using the latter
has proved to be productive in compact setting. It would be very interesting to
see if the invariant measures corresponding to ν > 0 converge in some sense to the
invariant measures for the inviscid case, as they do in compact setting.

Finally, the Burgers equation is believed to belong to the KPZ universality class,
and it might be easier to obtain the KPZ scaling exponents 1/3 and 2/3 for the
optimal paths in the Burgers setting than for other models, due to the fact that
the shape function is precisely quadratic.
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