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Model Selection
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Which model should we choose?

(1): f1(x) = w0 + w1x (2): f2(x) =

3∑
j=0

wjxj (3): f3(x) =

104∑
j=0

wjxj
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A Function-Space View

Consider the simple linear model,

f (x) = w0 + w1x , (1)

w0,w1 ∼ N (0, 1) . (2)
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Model Construction and Generalization
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How do we learn?

I The ability for a system to learn is determined by its support (which solutions
are a priori possible) and inductive biases (which solutions are a priori likely).

I We should not conflate flexibility and complexity.

I An influx of new massive datasets provide great opportunities to automatically
learn rich statistical structure, leading to new scientific discoveries.

Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Wilson and Izmailov, 2020
arXiv 2002.08791
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What is Bayesian learning?

I The key distinguishing property of a Bayesian approach is marginalization
instead of optimization.

I Rather than use a single setting of parameters w, use all settings weighted by
their posterior probabilities in a Bayesian model average.
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Why Bayesian Deep Learning?

Keskar et. al, ICLR 2017.
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.

Bayesian integration will give very different predictions in deep learning especially!
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Bayesian Deep Learning

Why?

I Neural networks represent many complementary explanations for the data.

I Better uncertainty representation (crucial for decision making).

I Better point predictions.

I It was the most successful approach at the end of the second wave of neural
networks (Neal, 1996) [1].

I Neural nets are much less mysterious when viewed through the lens of
probability theory.

Why not?

I Can be computationally intractable (but doesn’t have to be).

I Can involve a lot of moving parts (but doesn’t have to).

In the last year, Bayesian neural networks have been providing better practical
results than classical training, without significant overhead. [e.g., 2, 3, 4, 5]
[1] Bayesian Learning for Neural Networks. Neal, R. Springer, 1996.
[2] Subspace Inference for Bayesian Deep Learning. Izmailov et. al, UAI 2019.
[3] A Systematic Comparison of Bayesian Deep Learning Robustness in Diabetic Retinopathy Tasks. Filos et. al, 2019.
[4] Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors. Dusenberry et. al, 2020.
[5] Bayesian Deep Learning and a Probabilistic Perspective of Generalization. Wilson & Izmailov, 2020.
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Outline

I Part 1: Introduction to Bayesian modelling
I Foundations, overview, importance of model averaging in deep learning,

epistemic uncertainty, examples

I Part 2: The function-space view
I Gaussian processes, infinite neural networks, training a neural network is

kernel learning, Bayesian non-parametric deep learning
I Part 3: Practical methods for Bayesian deep learning

I Loss surfaces, SWAG, Subspace Inference, K-FAC Laplace, MC Dropout
I Part 4: Bayesian model construction and generalization

I Deep ensembles, MultiSWAG, tempering, prior-specification, re-thinking
generalization, double descent, width-depth trade-offs
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Disclaimer

I This tutorial is based on my own biased
experiences and expertise. A decent portion is
based on my own work.

I It is not meant to be a review of all Bayesian deep
learning.

I Some important work will not be covered (but if
you feel I should have included something, please
send me an e-mail and I will try to include it next
time).
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Statistics from Scratch
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Basic Regression Problem

I Training set of n targets (observations) y = (y(x1), . . . , y(xn))
T.

I Observations evaluated at inputs X = (x1, . . . , xn)
T.

I Want to predict the value of y(x∗) at a test input x∗.

For example: Given airline passenger numbers y measured at times X, what will be
the number of passengers when x∗ = 1961?

Just knowing high school math, what might you try?

11 / 134



Statistics from Scratch

Guess the parametric form of a function that could fit the data

I f (x,w) = wTx [Linear function of w and x]

I f (x,w) = wTφ(x) [Linear function of w] (Linear Basis Function Model)

I f (x,w) = g(wTφ(x)) [Non-linear in x and w] (E.g., Neural Network)

φ(x) is a vector of basis functions. For example, if φ(x) = (1, x, x2) and x ∈ R1 then
f (x,w) = w0 + w1x + w2x2 is a quadratic function.

Choose an error measure E(w), minimize with respect to w
I E(w) =

∑n
i=1[f (xi,w)− y(xi)]

2
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Statistics from Scratch

A probabilistic approach
We could explicitly account for noise in our model.

I y(x) = f (x,w) + ε(x) , where ε(x) is a noise function.

One commonly takes ε(x) = N (0, σ2) for i.i.d. additive Gaussian noise, in which
case

p(y(x)|x,w, σ2) = N (y(x); f (x,w), σ2) Observation Model (3)

p(y|x,w, σ2) =

n∏
i=1

N (y(xi); f (xi,w), σ2) Likelihood (4)

I Maximize the likelihood of the data p(y|x,w, σ2) with respect to σ2,w.

For a Gaussian noise model, this approach will make the same predictions as using a
squared loss error function:

log p(y|X,w, σ2) ∝ − 1
2σ2

n∑
i=1

[f (xi,w)− y(xi)]
2 (5)
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Statistics from Scratch

I The probabilistic approach helps us interpret the error measure in a
deterministic approach, and gives us a sense of the noise level σ2.

I Both approaches are prone to over-fitting for flexible f (x,w): low error on the
training data, high error on the test set.

Regularization

I Use a penalized log likelihood (or error function), such as

E(w) =

model fit︷ ︸︸ ︷
− 1

2σ2

n∑
i=1

(f (xi,w)− y(xi)
2)

complexity penalty︷ ︸︸ ︷
−λwTw . (6)

I But how should we define and penalize complexity?
I Can set λ using cross-validation.

I Same as maximizing a posterior log p(w|y,X) = log p(y|w,X) + log p(w) + c
with a Gaussian prior p(w). But this is not Bayesian!
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Bayesian Inference

Bayes’ Rule

p(a|b) = p(b|a)p(a)/p(b) , p(a|b) ∝ p(b|a)p(a) . (7)

posterior =
likelihood× prior

marginal likelihood
, p(w|y,X, σ2) =

p(y|X,w, σ2)p(w)

p(y|X, σ2)
. (8)

Sum Rule

p(x) =
∑

y

p(x, y) (9)

Product Rule

p(x, y) = p(x|y)p(y) = p(y|x)p(x) (10)
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Bayesian Predictive Distribution

Sum rule: p(x) =
∑

x p(x, y). Product rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x).

p(y|x∗, y,X) =

∫
p(y|x∗,w)p(w|y,X)dw . (11)

I Think of each setting of w as a different model. Eq. (32) is a Bayesian model
average, an average of infinitely many models weighted by their posterior
probabilities.

I Represents epistemic uncertainty over which f (x,w) fits the data.

I Automatically calibrated complexity even with highly flexible models.

I Can view classical training as using an approximate posterior
q(w|y,X) = δ(w = wMAP).
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Bayesian Model Averaging is Not Model Combination

p(y|D) =
∑

h

p(y|h)p(h|D)

I The weights p(h|D) only represent a statistical
inability to distinguish between hypotheses.

I Assumes that combination models are not in the
hypothesis space.

I In the limit of infinite data, p(h|D) will collapse
onto a point mass.

Bayesian model averaging is not model combination. Minka, T. Technical Report, 2000.
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Example: Biased Coin

Suppose we flip a biased coin with probability λ of
landing tails.

1. What is the likelihood of a set of data
D = {y1, y2, . . . , yn}?

2. What is the maximum likelihood solution for λ?

3. Suppose the first flip is tails. What is the
probability that the next flip will be a tails, using
maximum likelihood?
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Example: Biased Coin

Likelihood of the data:

p({yi}n
i=1) =

n∏
i=1

λyi (1− λ)1−yi (12)

where yi = 1 if yi is tails, and yi = 0 if yi is heads.

Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (13)
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Example: Biased Coin

Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (14)

The maximum likelihood solution is

λ̂ML = argmaxλp(D|m, λ) =
m
n

(15)
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Example: Biased Coin

Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (16)

The maximum likelihood solution is

λ̂ML = argmaxλp(D|m, λ) =
m
n

(17)

Do you believe this solution? Why or why not?
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Example: Biased Coin

Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (18)
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Example: Biased Coin

Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (19)

If we choose a prior p(λ) ∝ λα(1− λ)β then the posterior will have the same
functional form as the prior.
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Example: Biased Coin
Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (20)

If we choose a prior p(λ) ∝ λα(1− λ)β then the posterior will have the same
functional form as the prior.
We can choose the beta distribution:

Beta(λ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
λa−1(1− λ)b−1 (21)

The Gamma functions ensure that the distribution is normalized:∫
Beta(λ|a, b)dλ = 1 (22)

Moments:

E[λ] =
a

a + b
(23)

var[λ] =
ab

(a + b)2(a + b− 1)
. (24)
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Beta Distribution
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Example: Biased Coin
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Applying Bayes theorem, we find:

p(λ|D) ∝ p(D|λ)p(λ) (25)

= Beta(λ; m + a, n− m + b) (26)

We can view a and b as pseudo-observations!

E[λ|D] =
m + a

n + a + b
(27)

1. What is the probability that the next flip is tails?

2. What happens in the limits of a, b?

3. What happens in the limit of infinite data?
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Example: Biased Coin
Applying Bayes theorem, we find:

p(λ|D) ∝ p(D|λ)p(λ) (28)

= Beta(λ; m + a, n− m + b) (29)

We can view a and b as pseudo-observations!

E[λ|D] =
m + a

n + a + b
(30)

1. What is the probability that the next flip is tails?

2. What happens in the limits of a, b?

3. What happens in the limit of infinite data?

4. Does the MAP estimate

λ̂MAP = argmaxλ log p(λ|D) = argmaxλ log p(D|λ) + log p(λ) (31)

with a uniform prior p(λ) give the same answer as Bayesian
marginalization to find p(tails next flip|D) =

∫
λp(λ|D)dλ = E[λ|D] with

a uniform prior p(λ)?
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Example: Density Estimation

I Observations y1, . . . , yn from unknown density p(y).

I Specify an observation model. For example, we can
let the points be drawn from a mixture of Gaussians:
p(y|θ) = w1N (y|µ1, σ

2
1) + w2N (y|µ2, σ

2
2),

θ = {w1,w2, µ1, µ2, σ1, σ2}.
I Likelihood p(y|θ) =

∏n
i=1 p(yi|θ) .

Can learn all free parameters θ using maximum
likelihood...

θ̂ML = argmaxθ

n∏
i=1

w1√
2πσ2

1

exp
(
− 1

2σ2
1
(yi − µ1)

2
)

+
w2√
2πσ2

2

exp
(
− 1

2σ2
2
(yi − µ2)

2
)

Can you look at this equation and see what θ achieves maximum likelihood?

28 / 134



Regularization = MAP 6= Bayesian Inference

Regularization or MAP

I Find

argmaxθ log p(θ|y)
c
=

model fit︷ ︸︸ ︷
log p(y|θ) +

complexity penalty︷ ︸︸ ︷
log p(θ)

I Choose p(θ) such that p(θ)→ 0 faster than
p(y|θ)→∞ as σ1 or σ2 → 0.

Bayesian Inference

I Predictive Distribution: p(y∗|y) =
∫

p(y∗|θ)p(θ|y)dθ.

I Parameter Posterior: p(θ|y) ∝ p(y|θ)p(θ).
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Approximate Inference
Ultimately we wish to compute a Bayesian model average:

p(y|x∗,D) =

∫
p(y|x∗,w)p(w|D)dw . (32)

For most models, including Bayesian neural networks, this integral is not analytic. It
is common to use a Simple Monte Carlo approximation:

p(y|x∗,D) ≈ 1
J

∑
j

p(y|x∗,wj) , wj ∼ q(w|D) . (33)

wj are samples from an approximate posterior q(w|D) typically found by:

1. Deterministic Methods: Approximate p(w|D) with convenient q(w|D, θ),
often Gaussian. θ (e.g. mean of q) chosen to make q close to p. Variational
methods find argminθKL(q||p). Classical training: q(w|D) = δ(w = wMAP).
E.g.: Laplace, Expectation Propagation, Variational, Standard Training.

2. MCMC: Form a Markov chain of approximate (but asymptotically exact)
samples from p(w|D).
E.g.: Metropolis-Hastings, Hamiltonian Monte Carlo, SGLD, SGHMC.

I Later we will argue we may want to avoid the simple MC perspective.
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Part 2: The Function-Space View

I Part 1: Introduction to Bayesian modelling

I Importance of model averaging, epistemic uncertainty

I Part 2: The function-space view
I Gaussian processes, infinite neural networks, Bayesian non-parametric

deep learning

I Part 3: Practical methods for Bayesian deep learning
I Loss surfaces, SWAG, Subspace Inference, K-FAC Laplace, MC Dropout

I Part 4: Bayesian model construction and generalization
I Deep ensembles, MultiSWAG, tempering, prior-specification, re-thinking

generalization, double descent, width-depth trade-offs
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The Function-Space View

Part 2: The Function-Space View
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Outline

I Part 1: Introduction to Bayesian modelling

I Importance of model averaging, epistemic uncertainty

I Part 2: The function-space view
I Gaussian processes, infinite neural networks, training a neural network is

learning a kernel, Bayesian non-parametric deep learning

I Part 3: Practical methods for Bayesian deep learning
I Loss surfaces, SWAG, Subspace Inference, K-FAC Laplace, MC Dropout

I Part 4: Bayesian model construction and generalization
I Deep ensembles, MultiSWAG, tempering, prior-specification, re-thinking

generalization, double descent, width-depth trade-offs
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The Function-Space View

The parameters in isolation are completely divorced from the statistical properties of
a model. Yet we focus most of our effort on learning parameters w. What we really
care about are how those parameters w combine with a functional form f (x,w).
Ideally we want to perform inference directly in function space.
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The Function-Space View

A distribution over parameters p(w) induces a distribution over functions p(f (x)).

Consider the simple linear model,

f (x,w) = w0 + w1x , (34)

w0,w1 ∼ N (0, 1) . (35)
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The Function-Space View

We can express the distribution over functions directly. Suppose:

f (x,w) = wTφ(x) (36)

p(w) = N (0,Σw) (37)

φ(x) is a vector of basis functions. For example, if φ(x) = (1, x, x2) and x ∈ R1 then
f (x,w) = w0 + w1x + w2x2 is a quadratic function.

Can you derive the moments of the induced distribution over functions?

E[f (x,w)] = m(x) = E[wT]φ(x) =? (38)

cov(f (xi), f (xj)) = k(xi, xj) = E[f (xi)f (xj)]− E[f (xi)]E[f (xj)] =? (39)
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The Function-Space View

We can express the distribution over functions directly. Suppose:

f (x,w) = wTφ(x) (40)

p(w) = N (0,Σw) (41)

Moments of Induced Distribution over Functions

E[f (x,w)] = m(x) = E[wT]φ(x) = 0 (42)

cov(f (xi), f (xj)) = k(xi, xj) = E[f (xi)f (xj)]− E[f (xi)]E[f (xj)] (43)

= φ(xi)
TE[wwT]φ(xj)− 0 (44)

= φ(xi)
TΣwφ(xj) (45)

Are there any higher moments?
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The Function-Space View

We can express the distribution over functions directly. Suppose:

f (x,w) = wTφ(x) (46)

p(w) = N (0,Σw) (47)

Moments of Induced Distribution over Functions

E[f (x,w)] = m(x) = E[wT]φ(x) = 0 (48)

cov(f (xi), f (xj)) = k(xi, xj) = E[f (xi)f (xj)]− E[f (xi)]E[f (xj)] (49)

= φ(xi)
TE[wwT]φ(xj)− 0 (50)

= φ(xi)
TΣwφ(xj) (51)

f (x) ∼ GP(m, k) is a Gaussian process with mean function m(x) and covariance
function (aka kernel) k(x, x′).

We can do inference directly over f (x) instead of w.
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Gaussian processes

Definition
A Gaussian process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

Nonparametric Regression Model

I Prior: f (x) ∼ GP(m(x), k(x, x′)), meaning (f (x1), . . . , f (xN)) ∼ N (µ,K),
with µi = m(xi) and Kij = cov(f (xi), f (xj)) = k(xi, xj).

GP posterior︷ ︸︸ ︷
p(f (x)|D) ∝

Likelihood︷ ︸︸ ︷
p(D|f (x))

GP prior︷ ︸︸ ︷
p(f (x))
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Example: RBF Kernel

kRBF(x, x′) = cov(f (x), f (x′))

= a2 exp(−||x− x′||2

2`2 )

40 / 134



Inference using an RBF kernel

I Specify f (x) ∼ GP(0, k).

I Choose kRBF(x, x′) = a2
0 exp(− ||x−x′||2

2`2
0

). Choose values for a0 and `0.

I Observe data, look at the prior and posterior over functions.
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I Does something look strange about these functions?
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Inference using an RBF kernel

Increase the length-scale `.
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Learning and Model Selection

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)
(52)

We can write the evidence of the model as

p(y|Mi) =

∫
p(y|f,Mi)p(f)df (53)

              y
All Possible Datasets

p(
y|

M
)

 

 

Complex Model

Simple Model

Appropriate Model
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Data

Simple

Complex

Appropriate

Gaussian processes for Machine Learning. Rasmussen, C.E. and Williams, C.K.I. MIT Press, 2006.
Bayesian Methods for Adaptive Models. MacKay, D.J. PhD Thesis, 1992.
Covariance Kernels for Fast Automatic Pattern Discovery and Extrapolation with Gaussian Processes.
Wilson, A.G. PhD Thesis, 2014.
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Deriving the RBF Kernel

f(x)

ci−1 ci ci+1 x

`

f (x) =
J∑

i=1

wiφi(x) , wi ∼ N
(

0,
σ2

J

)
, φi(x) = exp

(
− (x− ci)

2

2`2

)
(54)

∴ k(x, x′) =
σ2

J

J∑
i=1

φi(x)φi(x′) (55)
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Deriving the RBF Kernel
f(x)

ci−1 ci ci+1 x

`

f (x) =
J∑

i=1

wiφi(x) , wi ∼ N
(

0,
σ2

J

)
, φi(x) = exp

(
− (x− ci)

2

2`2

)
(56)

∴ k(x, x′) =
σ2

J

J∑
i=1

φi(x)φi(x′) (57)

I Let cJ = log J, c1 = − log J, and ci+1 − ci = ∆c = 2 log J
J , and J →∞, the

kernel in Eq. (60) becomes a Riemann sum:

k(x, x′) = lim
J→∞

σ2

J

J∑
i=1

φi(x)φi(x′) =

∫ c∞

c0

φc(x)φc(x′)dc (58)
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Deriving the RBF Kernel

f (x) =
J∑

i=1

wiφi(x) , wi ∼ N
(

0,
σ2

J

)
, φi(x) = exp

(
− (x− ci)

2

2`2

)
(59)

∴ k(x, x′) =
σ2

J

J∑
i=1

φi(x)φi(x′) (60)

I Let cJ = log J, c1 = − log J, and ci+1 − ci = ∆c = 2 log J
J , and J →∞, the

kernel in Eq. (60) becomes a Riemann sum:

k(x, x′) = lim
J→∞

σ2

J

J∑
i=1

φi(x)φi(x′) =

∫ c∞

c0

φc(x)φc(x′)dc (61)

I By setting c0 = −∞ and c∞ =∞, we spread the infinitely many basis
functions across the whole real line, each a distance ∆c→ 0 apart:

k(x, x′) =

∫ ∞
−∞

exp(− (x− c)2

2`2 ) exp(− (x′ − c)2

2`2 )dc (62)

=
√
π`σ2 exp(− (x− x′)2

2(
√

2`)2
) ∝ kRBF(x, x′) . (63)
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Deriving the RBF Kernel

I It is remarkable we can work with infinitely many basis functions with finite
amounts of computation using the kernel trick – replacing inner products of
basis functions with kernels.

I GPs with RBF kernels are flexible (universal approximators) but simple.

I These models have strong inductive biases that concentrate prior support
around simple solutions, providing good generalization even on small datasets,
while retaining flexibility.
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A Note About The Mean Function

I Often m(x) is taken as 0 for notational convenience.

I One can use any deterministic mean function without fundamentally changing
the modelling procedure.

I Typically the covariance (kernel) function is the key object of interest. There
are often degeneracies between the mean and covariance function, in which
case typically it is preferred to do the modelling in the covariance function. For
example, the kernel function shows up in the Occam factor for the marginal
likelihood, but not the mean function.

I A mean function can be a good way of incorporating scientific inductive biases
in a model; for example, we can concentrate the prior support around a
parametric physical model, but allow a non-parametric relaxation with the
Gaussian process to account for model misspecification and uncertainty.
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Neural Network Kernel

I The neural network kernel (Neal, 1996) is famous for triggering research on
Gaussian processes in the machine learning community.

Consider a neural network with one hidden layer:

f (x) = b +
J∑

i=1

vih(x; ui) . (64)

I b is a bias, vi are the hidden to output weights, h is any bounded hidden unit
transfer function, ui are the input to hidden weights, and J is the number of
hidden units. Let b and vi be independent with zero mean and variances σ2

b and
σ2

v/J, respectively, and let the ui have independent identical distributions.
Collecting all free parameters into the weight vector w,

Ew[f (x)] = 0 , (65)

cov[f (x), f (x′)] = Ew[f (x)f (x′)] = σ2
b +

1
J

J∑
i=1

σ2
vEu[hi(x; ui)hi(x′; ui)] , (66)

= σ2
b + σ2

vEu[h(x; u)h(x′; u)] . (67)

We can show any collection of values f (x1), . . . , f (xN) must have a joint Gaussian
distribution using the central limit theorem.

Bayesian Learning for Neural Networks. Neal, R. Springer, 1996.
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Neural Network Kernel

f (x) = b +

J∑
i=1

vih(x; ui) . (68)

I Let h(x; u) = erf(u0 +
∑P

j=1 ujxj), where erf(z) = 2√
π

∫ z
0 e−t2 dt

I Choose u ∼ N (0,Σ)

Then we obtain

kNN(x, x′) =
2
π

sin(
2x̃TΣx̃′√

(1 + 2x̃TΣx̃)(1 + 2x̃′TΣx̃′)
) , (69)

where x ∈ RP and x̃ = (1, xT)T.
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Neural Network Kernel

kNN(x, x′) =
2
π

sin(
2x̃TΣx̃′√

(1 + 2x̃TΣx̃)(1 + 2x̃′TΣx̃′)
) (70)

Set Σ = diag(σ0, σ). Draws from a GP with a neural network kernel with varying σ:

Gaussian processes for Machine Learning. Rasmussen, C.E. and Williams, C.K.I. MIT Press, 2006
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Gaussian Processes and Neural Networks

“How can Gaussian processes
possibly replace neural networks?
Have we thrown the baby out with
the bathwater?” (MacKay, 1998)

Introduction to Gaussian processes. MacKay, D. J. In Bishop, C. M. (ed.), Neural Networks and Machine
Learning, Chapter 11, pp. 133-165. Springer-Verlag, 1998.
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Deep Kernel Learning

Deep kernel learning combines the inductive biases of deep learning architectures
with the non-parametric flexibility of Gaussian processes.

x1

xD

Input layer h
(1)
1

h
(1)
A

..
.

. . .

h
(2)
1

h
(2)
B

h
(L)
1

h
(L)
C

W (1)

W (2)

W (L)
h1(θ)

h∞(θ)

Hidden layers

∞ layer

y1

yP

Output layer. . .

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Base kernel hyperparameters θ and deep network hyperparameters w are
jointly trained through the marginal likelihood objective.

Deep Kernel Learning. Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P. AISTATS, 2016
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Face Orientation Extraction

36.15-43.10 -3.4917.35 -19.81

Training data

Test data

Label

Figure: Top: Randomly sampled examples of the training and test data. Bottom: The
two dimensional outputs of the convolutional network on a set of test cases. Each
point is shown using a line segment that has the same orientation as the input face.
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Learning Flexible Non-Euclidean Similarity Metrics
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Figure: Left: The induced covariance matrix using DKL-SM (spectral mixture)
kernel on a set of test cases, where the test samples are ordered according to the
orientations of the input faces. Middle: The respective covariance matrix using
DKL-RBF kernel. Right: The respective covariance matrix using regular RBF
kernel. The models are trained with n = 12, 000.
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Step Function
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Figure: Recovering a step function. We show the predictive mean and 95% of the
predictive probability mass for regular GPs with RBF and SM kernels, and DKL with
SM base kernel.
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Deep Kernel Learning for Autonomous Driving
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Learning scalable deep kernels with recurrent structure.
Al-Shedivat, M., Wilson, A.G., Saatchi, Y., Hu, Z., Xing, E.P. JMLR, 2017.
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Scalable Gaussian Processes

I Run exact GPs on millions of points in minutes.

I Based on Krylov subspace methods that permit significant GPU acceleration.

I Outperforms stand-alone deep neural networks by learning deep kernels.

I Implemented in the new library GPyTorch: gpytorch.ai

GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration.
Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., Wilson, A. G. NeurIPS, 2018.
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Exact Gaussian Processes on a Million Data Points

I Exact GPs previously intractable for more than about 10,000 points.

I By developing stochastic Krylov methods that exploit parallel cores in GPUs
we can now run exact GPs on millions of points.

I Results show the benefit of retaining a non-parametric representation.

Exact Gaussian processes on a million data points.
Wang, K.A., Pleiss, G., Gardner, J., Tyree, S., Weinberger, K., Wilson, A.G. NeurIPS, 2019.
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Additional GP Libraries

I GPFlow, in Tensorflow.

I GPy, in Python.

I BoTorch, for Bayesian optimization, in PyTorch.

Different algorithmic foundations and use-cases.
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Additional Work on GP+NN

I Gaussian process regression networks [1] and Deep Gaussian processes [2]
build hierarchical models replacing neurons in neural networks with Gaussian
processes.

I Several recent works [3, 4, 5, 6, 7] have extended Radford Neal’s limits to
multilayer nets and other architectures.

I Many more!

[1] Gaussian process regression networks. Wilson et. al, ICML 2012.
[2] Deep Gaussian processes. Damianou and Lawrence, AISTATS 2013.
[3] Deep Convolutional Networks as Shallow Gaussian Processes. Garriga-Alonso et. al, NeurIPS 2018.
[4] Gaussian Process Behaviour in Wide Deep Neural Networks. Matthews et. al, ICLR 2018.
[5] Deep neural networks as Gaussian processes. Lee et. al, ICLR 2018.
[6] Bayesian Deep CNNs with Many Channels are Gaussian Processes. Novak et. al, ICLR 2019.
[7] Scaling limits of wide neural networks with weight sharing. Yang, G. arXiv 2019.
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Neural Tangent Kernels

I Recent work [e.g., 1, 2, 3] deriving neural tangent kernels (Jacot et. al, 2018)
from infinite neural network limits, with promising results.

I Note that most kernels from infinite neural network limits have a fixed
structure. On the other hand, standard neural networks essentially learn a
similarity metric (kernel) for the data. Learning a kernel amounts to
representation learning. Bridging this gap is interesting future work.

[1] Neural tangent kernel: convergence and generalization in neural networks. Jacot et. al, NeurIPS 2018.
[2] On exact computation with an infinitely wide neural net. Arora et. al, NeurIPS 2019.
[3] Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks. Arora et. al, arXiv 2019.
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Bayesian Non-Parametric Deep Learning

I There are many ways to realize Bayesian principles in deep learning, in
addition to the standard approach of marginalizing distributions over
parameters in a neural network.

I Here we have considered how we can use neural networks to provide inductive
biases in Gaussian processes, for a Bayesian non-parametric approach to deep
learning.

I In general, combining principles of Bayesian nonparametrics with deep
learning is an exciting area for future work.
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Outline

I Part 1: Introduction to Bayesian modelling
I Importance of model averaging, epistemic uncertainty

I Part 2: The function-space view
I Gaussian processes, infinite neural networks, training a neural network is

learning a kernel, Bayesian non-parametric deep learning

I Part 3: Practical methods for Bayesian deep learning
I Loss surfaces, SWAG, Subspace Inference, K-FAC Laplace, MC Dropout

I Part 4: Bayesian model construction and generalization
I Deep ensembles, MultiSWAG, tempering, prior-specification, re-thinking

generalization, double descent, width-depth trade-offs
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Practical Methods for Bayesian Deep Learning

Part 3: Methods for Bayesian Deep Learning
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Wide Optima Generalize Better

Keskar et. al, ICLR 2017.
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.

Bayesian integration will give very different predictions in deep learning especially!

67 / 134



Understanding Loss Surfaces for BMA

Recall the Bayesian model average (BMA):

p(y|x∗,D) =

∫
p(y|x∗,w)p(w|D)dw . (71)

I The posterior p(w|D) (or loss L = − log p(w|D)) for neural networks is
extraordinarily complex, containing many complementary solutions, which is
why BMA is especially significant in deep learning.

I Understanding the structure of neural network loss landscapes is crucial for
better estimating the BMA.
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Mode Connectivity

Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs.
T. Garipov, P. Izmailov, D. Podoprikhin, D. Vetrov, A.G. Wilson. NeurIPS 2018.

Loss landscape figures in collaboration with Javier Ideami (losslandscape.com).
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Mode Connectivity
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Mode Connectivity

71 / 134



Mode Connectivity
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Mode Connectivity
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Use SGD Trajectory for BMA

Can we recycle geometric
information in the SGD trajectory
for scalable posterior
approximations, centred on flat
regions of the loss?
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Uncertainty Representation with SWAG

1. Leverage theory that shows SGD with a
constant learning rate is approximately
sampling from a Gaussian distribution.

2. Compute first two moments of SGD
trajectory (SWA computes just the first).

3. Use these moments to construct a Gaussian
approximation in weight space.

4. Sample from this Gaussian distribution, pass
samples through predictive distribution, and
form a Bayesian model average.

p(y∗|D) ≈ 1
J

J∑
j=1

p(y∗|wj) , wj ∼ q(w|D) , q(w|D) = N (w̄,K)

w̄ =
1
T

∑
t

wt , K =
1
2

(
1

T − 1

∑
t

(wt − w̄)(wt − w̄)T +
1

T − 1

∑
t

diag(wi − w̄)2

)
SWAG: A Simple Baseline for Bayesian Uncertainty in Deep Learning. Maddox et. al, NeurIPS 2019.
SWA: Averaging Weights Leads to Wider Optima and Better Generalization. Izmailov et. al, UAI 2018.
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Trajectory in PCA Subspace
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Uncertainty Calibration
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SWAG Regression Uncertainty
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SWAG Visualization
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Subspace Inference for Bayesian Deep Learning

A modular approach:

I Construct a subspace of a network with a high dimensional parameter space

I Perform inference directly in the subspace

I Sample from approximate posterior for Bayesian model averaging

We can approximate the posterior of a WideResNet with 36 million parameters
in a 5D subspace and achieve state-of-the-art results!

Subspace Inference for Bayesian Deep Learning.
P. Izmailov, W. Maddox, P. Kirichenko, T. Garipov, D. Vetrov, A.G. Wilson
UAI 2018
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Subspace Construction

I Choose shift ŵ and basis vectors {d1, . . . , dk}.
I Define subspace S = {w|w = ŵ + z1d1 + zkdk}.
I Likelihood p(D|z) = pM(D|w = ŵ + Pz).
I Posterior inference p(z|D) ∝ p(D|z)p(z).
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Subspace Comparison (Regression)
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Subspace Comparison (Classification)

Accuracy and NLL on CIFAR-100

Bayesian methods also lead to better point predictions in deep learning!
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K-FAC Laplace Approximation
Approximate posterior with a Gaussian q(w|D, θ) = N (w;µ,A−1) where
θ = {µ,A−1} are found by a second order Taylor approximation around the log
unnormalized true posterior p(w|D):

I Set µ = wMAP = argmaxwp(w|D).
I Set A = −∇∇ log p(w|D)|w=wMAP , the Hessian of the log posterior.
I For high dimensional w the full A is too large to store. Typically A is taken to be

diagonal. K-FAC Laplace models A as a Kronecker factorization.
I Form approximate BMA: p(y|x∗) ≈ 1

J

∑
j p(y|x∗,wj) , wj ∼ q(w|D, θ).

[1] Bayesian methods for adaptive models. MacKay, D.J. PhD Thesis, 1992
[2] A scalable Laplace approximation for neural networks. Ritter et. al. ICLR, 2018

99 / 134



MC Dropout

I Run drop-out during train and test
(randomly drop out each hidden unit
with probability r at each input).

I In regression, each network can be
trained to output a mean µ and
variance σ2 by maximizing a
Gaussian likelihood.

I Create an equally weighted
ensemble of the corresponding
subnetworks: f (x) = 1

J

∑
j fj(x,wj).

I Note that the ensemble doesn’t
collapse as we get more data (unlike
a standard Bayesian model average).

Dropout as a Bayesian approximation: representing model uncertainty in deep learning.
Gal, Y, Ghahramani, Z. ICML 2016
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Bayes by Backprop

I Introduce a (typically Gaussian)
approximate posterior q(w|θ,D).
Learn parameters using a variational
method: θ = argminθKL(q||p).

I Manipulation of the KL divergence
gives the evidence lower bound
(ELBO), which can be optimized
with SGD (backprop).

Weight uncertainty in neural networks.
Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D. ICML 2015
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Stochastic MCMC

I Stochastic gradient Langevin dynamics [1, 2]:
wk+1 = wk − αk∇U(w) +

√
2αkε, ε ∼ N (0, I)

I U(w) is log posterior.

I Algorithmically similar to SGD — scalable and generally
applicable!

I Cyclical learning rate schedules αk greatly enhance the
ability to explore complex multimodal loss surfaces [3].

[1] Bayesian learning via stochastic gradient Langevin dynamics. Welling, M., Teh, Y. ICML 2011
[2] Stochastic gradient Hamiltonian Monte Carlo. Chen, T., Fox, E., Guestin, C. ICML 2014
[3] Cyclical stochastic gradient MCMC for Bayesian deep learning. Zhang et. al, ICLR 2020
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Deep Ensembles

I Specify a neural network
architecture.

I Retrain the model multiple times to
find different SGD solutions
w1, ...,wJ .

I In regression, each model specified
to output a mean µ and variance σ2.

I Take an equal average of the
corresponding models
f (x) = 1

J

∑
j f (x,wj).

Simple and scalable predictive uncertainty estimation using deep ensembles.
Lakshminarayanan et. al, NeurIPS 2017.
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Deep Ensembles

I Specify a neural network
architecture.

I Retrain the model multiple times to
find different SGD solutions
w1, ...,wJ .

I In regression, each model specified
to output a mean µ and variance σ2.

I Take an equal average of the
corresponding models
f (x) = 1

J

∑
j f (x,wj).

... But is deep ensembles Bayesian? Isn’t it often explicitly treated as a
competing approach to Bayesian methods?
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Deep Ensembles

I Specify a neural network
architecture.

I Retrain the model multiple times to
find different SGD solutions
w1, ...,wJ .

I In regression, each model specified
to output a mean µ and variance σ2.

I Take an equal average of the
corresponding models
f (x) = 1

J

∑
j f (x,wj).

... But is deep ensembles Bayesian? Isn’t it often explicitly treated as a
competing approach to Bayesian methods?

In the next part we will argue that deep ensembles in fact provides a better
approximation to Bayesian model averaging than many of the above methods!
We will also introduce MultiSWAG which generalizes deep ensembles for a
more accurate BMA.
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Bayesian Model Construction and Generalization

Part 4: Bayesian Model Construction and
Generalization
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Outline

I Part 1: Introduction to Bayesian modelling

I Importance of model averaging, epistemic uncertainty

I Part 2: The function-space view
I Gaussian processes, infinite neural networks, Bayesian non-parametric

deep learning

I Part 3: Practical methods for Bayesian deep learning
I Loss surfaces, SWAG, Subspace Inference, K-FAC Laplace, MC Dropout

I Part 4: Bayesian model construction and generalization
I Deep ensembles, MultiSWAG, tempering, prior-specification, re-thinking

generalization, double descent, width-depth trade-offs
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A Function-Space View

Consider the simple linear model,

f (x) = w0 + w1x , (72)

w0,w1 ∼ N (0, 1) . (73)
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Model Construction and Generalization

p(D|M)
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Well-Specified Model
Calibrated Inductive Biases
Example: CNN

p(D|M) =

∫
p(D|M,w)p(w)dw (74)
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How do we learn?

I The ability for a system to learn is determined by its support (which solutions
are a priori possible) and inductive biases (which solutions are a priori likely).

I We should not conflate flexibility and complexity.

Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Wilson and Izmailov, 2020
arXiv 2002.08791
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Better Marginalization

p(y|x∗,D) =

∫
p(y|x∗,w)p(w|D)dw . (75)
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Better Marginalization

p(y|x∗,D) =

∫
p(y|x∗,w)p(w|D)dw . (76)

I Be wary about viewing BMA through the prism of simple MC.
I We want to best estimate the BMA integral given computational constraints.
I View BMA estimation as active learning, rather than posterior sampling.
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Better Marginalization: Deep Ensembles
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MultiSWAG

p(y|x∗,D) =

∫
p(y|x∗,w)p(w|D)dw . (77)

I MultiSWAG forms a Gaussian mixture posterior from multiple independent
SWAG solutions.

I Like deep ensembles, MultiSWAG incorporates multiple basins of attraction in
the model average, but it additionally marginalizes within basins of attraction
for a better approximation to the BMA.
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Better Marginalization: MultiSWAG

[1] Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift.
Ovadia et. al, 2019
[2] Bayesian Deep Learning and a Probabilistic Perspective of Generalization. Wilson and Izmailov, 2020
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Double Descent

Belkin et. al (2018)

Reconciling modern machine learning practice and the bias-variance trade-off. Belkin et. al, 2018
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Double Descent

Should a Bayesian model experience double descent?
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Bayesian Model Averaging Alleviates Double Descent
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Neural Network Priors

A parameter prior p(w) = N (0, α2) with a neural network architecture f (x,w)
induces a structured distribution over functions p(f (x)).

Deep Image Prior
I Randomly initialized CNNs without training provide excellent performance for

image denoising, super-resolution, and inpainting: a sample function from
p(f (x)) captures low-level image statistics, before any training.

Random Network Features
I Pre-processing CIFAR-10 with a randomly initialized untrained CNN

dramatically improves the test performance of a Gaussian kernel on pixels from
54% accuracy to 71%, with an additional 2% from `2 regularization.

[1] Deep Image Prior. Ulyanov, D., Vedaldi, A., Lempitsky, V. CVPR 2018.
[2] Understanding Deep Learning Requires Rethinking Generalzation. Zhang et. al, ICLR 2016.
[3] Bayesian Deep Learning and a Probabilistic Perspective of Generalization. Wilson & Izmailov, 2020.
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Tempered Posteriors

In Bayesian deep learning it is typical to consider the tempered posterior:

pT(w|D) =
1

Z(T)
p(D|w)1/T p(w), (78)

where T is a temperature parameter, and Z(T) is the normalizing constant
corresponding to temperature T . The temperature parameter controls how the prior
and likelihood interact in the posterior:

I T < 1 corresponds to cold posteriors, where the posterior distribution is more
concentrated around solutions with high likelihood.

I T = 1 corresponds to the standard Bayesian posterior distribution.

I T > 1 corresponds to warm posteriors, where the prior effect is stronger and
the posterior collapse is slower.

E.g.: The safe Bayesian. Grunwald, P. COLT 2012.
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Cold Posteriors

Wenzel et. al (2020) (at this ICML!) highlight the result that for p(w) = N(0, I) cold
posteriors with T < 1 often provide improved performance.

How good is the Bayes posterior in deep neural networks really? Wenzel et. al, ICML 2020.
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Prior Misspecification?

They suggest the result is due to prior misspecification, showing that sample
functions p(f (x)) seem to assign one label to most classes on CIFAR-10.
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Changing the prior variance scale α

Bayesian Deep Learning and a Probabilistic Perspective of Generalization. Wilson & Izmailov, 2020.
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The effect of data on the posterior
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Prior Class Correlations
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Thoughts on Tempering (Part 1)

I It would be surprising if T = 1 was the best setting of this hyperparameter.

I Our models are certainly misspecified, and we should acknowledge that
misspecification in our estimation procedure by learning T . Learning T is not
too different from learning other properties of the likelihood, such as noise.

I A tempered posterior is a more honest reflection of our prior beliefs than the
untempered posterior. Bayesian inference is about honestly reflecting our
beliefs in the modelling process.
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Thoughts on Tempering (Part 2)

I While certainly the prior p(f (x)) is misspecified, the result of assigning one
class to most data is a soft prior bias, which (1) doesn’t hurt the predictive
distribution, (2) is easily corrected by appropriately setting the prior parameter
variance α2, and (3) is quickly modulated by data.

I More important is the induced covariance function (kernel) over images, which
appears reasonable. The deep image prior and random network feature results
also suggest this prior is largely reasonable.

I In addition to not tuning α, the result in Wenzel et. al (2020) could have been
exacerbated due to lack of multimodal marginalization.

I There are cases when T < 1 will help given a finite number of samples, even if
the untempered model is correctly specified. Imagine estimating the mean of
N (0, I) from samples where d � 1. The samples will have norm close to

√
d.
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Rethinking Generalization

[1] Understanding Deep Learning Requires Rethinking Generalzation. Zhang et. al, ICLR 2016.
[2] Bayesian Deep Learning and a Probabilistic Perspective of Generalization. Wilson & Izmailov, 2020.
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Function Space Priors

We should embrace the function space perspective in constructing priors.

I However, if we contrive priors over parameters p(w) to induce distributions
over functions p(f ) that resemble familiar models such as Gaussian processes
with RBF kernels, we could be throwing the baby out with the bathwater.

I Indeed, neural networks are useful as their own model class precisely because
they have different inductive biases from other models.

I We should try to gain insights by thinking in function space, but note that
architecture design itself is thinking in function space: properties such as
equivariance to translations in convolutional architectures imbue the associated
distribution over functions with these properties.
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PAC-Bayes

PAC-Bayes provides explicit generalization error bounds for stochastic networks
with posterior Q, prior P, training points n, probability 1− δ based on√

KL(Q||P) + log( n
δ
)

2(n− 1)
. (79)

I Non-vacuous bounds derived from exploiting flatness in Q (e.g., at least 80%
generalization accuracy predicted on binary MNIST).

I Very promising framework but tends not to be prescriptive about model
construction, or informative for understanding why a model generalizes.

I Bounds are improved by compact P and a low dimensional parameter space.
We suggest a P with large support and many parameters.

I Generalization significantly improved by multimodal Q, but not PAC-Bayes
generalization bounds.

Fantastic generalization measures and where to find them. Jiang et. al, 2019.
A primer on PAC-Bayesian learning. Guedj, 2019.
Computing nonvacuous generalization bounds for deep (stochastic) neural networks. Dziugaite & Roy, 2017.
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Rethinking Parameter Counting: Effective Dimension
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W. Maddox, G. Benton, A.G. Wilson, 2020.
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Properties in Degenerate Directions

Decision boundaries do not change in directions of little posterior contraction,
suggesting a mechanism for subspace inference!
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Conclusions

I The key defining feature of Bayesian methods is marginalization, aka Bayesian
model averaging.

I Bayesian model averaging is especially relevant in deep learning, because the
loss landscapes contain a rich variety of high performing solutions.

I We shouldn’t think of marginalization purely through the lens of simple Monte
Carlo integration.

I Bayesian methods are now often providing better results than classical training,
in accuracy and uncertainty representation, without significant overhead.

I Don’t conflate flexibility and complexity.

I Don’t parameter count as a proxy for complexity.

I We can resolve several mysterious results in deep learning by thinking about
model construction and generalization from a probabilistic perspective.
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