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Model Selection
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Which model should we choose?

(1): f1(x) = w0 + w1x (2): f2(x) =
3∑

j=0

wjxj (3): f3(x) =
104∑
j=0

wjxj
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A Function-Space View

Consider the simple linear model,

f (x) = w0 + w1x , (1)

w0,w1 ∼ N (0, 1) . (2)
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Model Construction and Generalization

p(D|M)

Corrupted
CIFAR-10

CIFAR-10 MNIST Dataset

Structured Image Datasets

Complex Model
Poor Inductive Biases
Example: MLP

Simple Model
Poor Inductive Biases
Example: Linear Function

Well-Specified Model
Calibrated Inductive Biases
Example: CNN
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How do we learn?

I The ability for a system to learn is determined by its support (which solutions
are a priori possible) and inductive biases (which solutions are a priori likely).

I We should not conflate flexibility and complexity.

I An influx of new massive datasets provide great opportunities to automatically
learn rich statistical structure, leading to new scientific discoveries.

Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Wilson and Izmailov, 2020
arXiv 2002.08791
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What is Bayesian learning?

I The key distinguishing property of a Bayesian approach is marginalization
instead of optimization.

I Rather than use a single setting of parameters w, use all settings weighted by
their posterior probabilities in a Bayesian model average.

6 / 26



Statistics from Scratch
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Basic Regression Problem
I Training set of n targets (observations) y = (y(x1), . . . , y(xn))

T.

I Observations evaluated at inputs X = (x1, . . . , xn)
T.

I Want to predict the value of y(x∗) at a test input x∗.

For example: Given airline passenger numbers y measured at times X, what will be
the number of passengers when x∗ = 1961?

Just knowing high school math, what might you try?
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Statistics from Scratch

Guess the parametric form of a function that could fit the data
I f (x,w) = wTx [Linear function of w and x]

I f (x,w) = wTφ(x) [Linear function of w] (Linear Basis Function Model)

I f (x,w) = g(wTφ(x)) [Non-linear in x and w] (E.g., Neural Network)

φ(x) is a vector of basis functions. For example, if φ(x) = (1, x, x2) and x ∈ R1 then
f (x,w) = w0 + w1x + w2x2 is a quadratic function.

Choose an error measure E(w), minimize with respect to w
I E(w) =

∑n
i=1[f (xi,w)− y(xi)]

2
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Statistics from Scratch

A probabilistic approach
We could explicitly account for noise in our model.

I y(x) = f (x,w) + ε(x) , where ε(x) is a noise function.

One commonly takes ε(x) = N (0, σ2) for i.i.d. additive Gaussian noise, in which
case

p(y(x)|x,w, σ2) = N (y(x); f (x,w), σ2) Observation Model (3)

p(y|x,w, σ2) =

n∏
i=1

N (y(xi); f (xi,w), σ2) Likelihood (4)

I Maximize the likelihood of the data p(y|x,w, σ2) with respect to σ2,w.

For a Gaussian noise model, this approach will make the same predictions as using a
squared loss error function:

log p(y|X,w, σ2) ∝ − 1
2σ2

n∑
i=1

[f (xi,w)− y(xi)]
2 (5)
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Statistics from Scratch

I The probabilistic approach helps us interpret the error measure in a
deterministic approach, and gives us a sense of the noise level σ2.

I Both approaches are prone to over-fitting for flexible f (x,w): low error on the
training data, high error on the test set.

Regularization
I Use a penalized log likelihood (or error function), such as

E(w) =

model fit︷ ︸︸ ︷
− 1

2σ2

n∑
i=1

(f (xi,w)− y(xi)
2)

complexity penalty︷ ︸︸ ︷
−λwTw . (6)

I But how should we define and penalize complexity?
I Can set λ using cross-validation.

I Same as maximizing a posterior log p(w|y,X) = log p(y|w,X) + log p(w) + c
with a Gaussian prior p(w). But this is not Bayesian!
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Bayesian Inference

Bayes’ Rule

p(a|b) = p(b|a)p(a)/p(b) , p(a|b) ∝ p(b|a)p(a) . (7)

posterior =
likelihood× prior

marginal likelihood
, p(w|y,X, σ2) =

p(y|X,w, σ2)p(w)

p(y|X, σ2)
. (8)

Sum Rule

p(x) =
∑

y

p(x, y) (9)

Product Rule

p(x, y) = p(x|y)p(y) = p(y|x)p(x) (10)
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Bayesian Predictive Distribution

Sum rule: p(x) =
∑

x p(x, y). Product rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x).

p(y|x∗, y,X) =

∫
p(y|x∗,w)p(w|y,X)dw . (11)

I Think of each setting of w as a different model. Eq. (32) is a Bayesian model
average, an average of infinitely many models weighted by their posterior
probabilities.

I Represents epistemic uncertainty over which f (x,w) fits the data.

I Automatically calibrated complexity even with highly flexible models.

I Can view classical training as using an approximate posterior
q(w|y,X) = δ(w = wMAP).
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Bayesian Model Averaging is Not Model Combination

p(y|D) =
∑

h

p(y|h)p(h|D)

I The weights p(h|D) only represent a statistical
inability to distinguish between hypotheses.

I Assumes that combination models are not in the
hypothesis space.

I In the limit of infinite data, p(h|D) will collapse
onto a point mass.

Bayesian model averaging is not model combination. Minka, T. Technical Report, 2000.
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Example: Biased Coin

Suppose we flip a biased coin with probability λ of
landing tails.

1. What is the likelihood of a set of data
D = {y1, y2, . . . , yn}?

2. What is the maximum likelihood solution for λ?

3. Suppose the first flip is tails. What is the
probability that the next flip will be a tails, using
maximum likelihood?
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Example: Biased Coin

Likelihood of the data:

p({yi}n
i=1) =

n∏
i=1

λyi (1− λ)1−yi (12)

where yi = 1 if yi is tails, and yi = 0 if yi is heads.

Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (13)
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Example: Biased Coin

Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (14)

The maximum likelihood solution is

λ̂ML = argmaxλp(D|m, λ) =
m
n

(15)
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Example: Biased Coin

Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (16)

The maximum likelihood solution is

λ̂ML = argmaxλp(D|m, λ) =
m
n

(17)

Do you believe this solution? Why or why not?
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Example: Biased Coin

Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (18)
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Example: Biased Coin

Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (19)

If we choose a prior p(λ) ∝ λα(1− λ)β then the posterior will have the same
functional form as the prior.
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Example: Biased Coin
Likelihood of getting m tails is

p(D|m, λ) =

(
n
m

)
λm(1− λ)n−m (20)

If we choose a prior p(λ) ∝ λα(1− λ)β then the posterior will have the same
functional form as the prior.
We can choose the beta distribution:

Beta(λ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
λa−1(1− λ)b−1 (21)

The Gamma functions ensure that the distribution is normalized:∫
Beta(λ|a, b)dλ = 1 (22)

Moments:

E[λ] =
a

a + b
(23)

var[λ] =
ab

(a + b)2(a + b− 1)
. (24)
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Beta Distribution
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Example: Biased Coin
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Applying Bayes theorem, we find:

p(λ|D) ∝ p(D|λ)p(λ) (25)

= Beta(λ; m + a, n− m + b) (26)

We can view a and b as pseudo-observations!

E[λ|D] =
m + a

n + a + b
(27)

1. What is the probability that the next flip is tails?

2. What happens in the limits of a, b?

3. What happens in the limit of infinite data?
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Example: Biased Coin
Applying Bayes theorem, we find:

p(λ|D) ∝ p(D|λ)p(λ) (28)

= Beta(λ; m + a, n− m + b) (29)

We can view a and b as pseudo-observations!

E[λ|D] =
m + a

n + a + b
(30)

1. What is the probability that the next flip is tails?

2. What happens in the limits of a, b?

3. What happens in the limit of infinite data?

4. Does the MAP estimate

λ̂MAP = argmaxλ log p(λ|D) = argmaxλ log p(D|λ) + log p(λ) (31)

with a uniform prior p(λ) give the same answer as Bayesian
marginalization to find p(tails next flip|D) =

∫
λp(λ|D)dλ = E[λ|D] with

a uniform prior p(λ)?
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Example: Density Estimation

I Observations y1, . . . , yn from unknown density p(y).

I Specify an observation model. For example, we can
let the points be drawn from a mixture of Gaussians:
p(y|θ) = w1N (y|µ1, σ

2
1) + w2N (y|µ2, σ

2
2),

θ = {w1,w2, µ1, µ2, σ1, σ2}.
I Likelihood p(y|θ) =

∏n
i=1 p(yi|θ) .

Can learn all free parameters θ using maximum
likelihood...

θ̂ML = argmaxθ

n∏
i=1

w1√
2πσ2

1

exp

(
− 1

2σ2
1
(yi − µ1)

2
)

+
w2√
2πσ2

2

exp

(
− 1

2σ2
2
(yi − µ2)

2
)

Can you look at this equation and see what θ achieves maximum likelihood?
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Regularization = MAP 6= Bayesian Inference

Regularization or MAP
I Find

argmaxθ log p(θ|y)
c
=

model fit︷ ︸︸ ︷
log p(y|θ) +

complexity penalty︷ ︸︸ ︷
log p(θ)

I Choose p(θ) such that p(θ)→ 0 faster than
p(y|θ)→∞ as σ1 or σ2 → 0.

Bayesian Inference
I Predictive Distribution: p(y∗|y) =

∫
p(y∗|θ)p(θ|y)dθ.

I Parameter Posterior: p(θ|y) ∝ p(y|θ)p(θ).
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Approximate Inference

Ultimately we wish to compute a Bayesian model average:

p(y|x∗,D) =

∫
p(y|x∗,w)p(w|D)dw . (32)

For most models, including Bayesian neural networks, this integral is not analytic. It
is common to use a Simple Monte Carlo approximation:

p(y|x∗,D) ≈ 1
J

∑
j

p(y|x∗,wj) , wj ∼ q(w|D) . (33)

wj are samples from an approximate posterior q(w|D) typically found by:

1. Deterministic Methods: Approximate p(w|D) with convenient q(w|D, θ),
often Gaussian. θ (e.g. mean of q) chosen to make q close to p. Variational
methods find argminθKL(q||p). Classical training: q(w|D) = δ(w = wMAP).
E.g.: Laplace, Expectation Propagation, Variational, Standard Training.

2. MCMC: Form a Markov chain of approximate (but asymptotically exact)
samples from p(w|D).
E.g.: Metropolis-Hastings, Hamiltonian Monte Carlo, SGLD, SGHMC.

I Later we will argue we may want to avoid the simple MC perspective.
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