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A Function-Space View

Consider the simple linear model,

f (x) = w0 + w1x , (1)

w0,w1 ∼ N (0, 1) . (2)
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Model Construction and Generalization

p(D|M)

Corrupted
CIFAR-10

CIFAR-10 MNIST Dataset

Structured Image Datasets

Complex Model
Poor Inductive Biases
Example: MLP

Simple Model
Poor Inductive Biases
Example: Linear Function

Well-Specified Model
Calibrated Inductive Biases
Example: CNN

p(D|M) =

∫
p(D|M,w)p(w)dw (3)
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How do we learn?

I The ability for a system to learn is determined by its support (which solutions
are a priori possible) and inductive biases (which solutions are a priori likely).

I We should not conflate flexibility and complexity.

I An influx of new massive datasets provide great opportunities to automatically
learn rich statistical structure, leading to new scientific discoveries.

Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Wilson and Izmailov, 2020
arXiv 2002.08791
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Model Selection and Marginal Likelihood

p(y|M1,X) =
∫

p(y|f1(x,w))p(w)dw (4)

              y
All Possible Datasets

p(
y|

M
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Complex Model

Simple Model

Appropriate Model
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Evaluating the evidence

p(D|Hi) =

∫
p(D|w,Hi)p(w|Hi)dw (5)

p(D|Hi) = p(D|wMP)︸ ︷︷ ︸
best fit likelihood

× p(wMP|Hi)σw|D︸ ︷︷ ︸
Occam factor

(6)

Occam factor =
σw|D
σw
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Model Comparison
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Occam’s factor for Gaussian posteriors

If the posterior over w is well approximated by a Gaussian, then the Occam factor is
described by the log determinant of the prior covariance matrix:

p(D|Hi) = p(D|wMP)︸ ︷︷ ︸
best fit likelihood

× p(wMP|Hi)det(
A

2π
)−

1
2︸ ︷︷ ︸

Occam factor

(7)

where A = −∇∇ log p(w|D,Hi).
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Model Comparison

p(H1|D)
p(H2|D)

=
p(D|H1)

p(D|H2)

p(H1)

p(H2)
. (8)
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Blackboard: Examples of Occam’s Razor in Everyday Inferences

For further reading, see MacKay (2003) textbook, Information Theory, Inference,
and Learning Algorithms.
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Occam’s Razor Example

-1, 3, 7, 11, ??, ??
I H1: the sequence is an arithmetic progression,

add n, where n is an integer.
I H2: the sequence is generated by a cubic function

of the form cx3 + dx2 + e, where c, d, and e are
fractions. (− 1

11x3 + 9
11x2 + 23

11)
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Model Selection
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Observations y(x). Assume p(y(x)|f (x)) ∼ N (y(x); f (x), σ2). Consider polynomials
of different orders. As always, observations are out of the chosen model class!
Which model should we choose?

f0(x) = a0 , (9)

f1(x) = a0 + a1x , (10)

f2(x) = a0 + a1x + a2x2 , (11)

... (12)

fJ(x) = a0 + a1x + a2x2 + · · ·+ aJxJ . (13)
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Model Selection: Occam’s Hill
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Marginal likelihood (evidence) as a function of model order, using an isotropic prior
p(a) = N (0, σ2I).
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Model Selection: Occam’s Asymptote
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Model Order

Marginal likelihood (evidence) as a function of model order, using an anisotropic
prior p(ai) = N (0, γ−i), with γ learned from the data.
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Occam’s Razor
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(a) Isotropic Gaussian Prior
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Model Order

(b) Anisotropic Gaussian Prior

For further reading, see Rasmussen and Ghahramani (2001) (Occam’s Razor), Kass
and Raftery (1995) (Bayes Factors), and MacKay (2003), Chapter 28.
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Automatic Choice of Dimensionality for PCA

I PCA projects a d dimensional vector x into a k ≤ d dimensional space in a way
that maximizes the variance of the projection.

I How do we choose k?
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Probabilistic PCA

I Formulate dimensionality reduction as a probabilistic model:

x =
k∑

j=1

hjwj + m + ε , (14)

= Hw + m + ε , (15)

ε ∼ N (0,V) . (16)

I Let V = vId and p(w) ∼ N (0, Ik).

I The maximum likelihood solution for H, given data D = {x1, . . . xN} is exactly
equal to the PCA solution!

I Let’s place probability distributions over H,m, integrate away from the
likelihood, then use the evidence p(D|k) to determine the value of k. As
N →∞, the evidence will collapse onto the true value of k.

Automatically Learning the Dimensionality of PCA (Minka, 2001).
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Automatically Learning the Dimensionality of PCA
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Automatically Learning the Dimensionality of PCA
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Automatically Learning the Dimensionality of PCA
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Automatically Learning the Dimensionality of PCA
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Automatically Learning the Dimensionality of PCA
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Model Construction: Support and Inductive Biases

I Support: which datasets (hypotheses) are a priori possible.

I Inductive Biases: which datasets are a priori likely.

Want to make the support of our model as big as possible, with inductive biases
which are calibrated to particular applications, so as to not rule out potential
explanations of the data, while at the same time quickly learn from a finite amount of
information on a particular application.
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