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Consider the simple linear model,

Output, f(x)

f(x) = wo 4+ wix,
wo, w1 ~ N(0,1).
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‘Well-Specified Model
Calibrated Inductive Biases
Ezample: CNN
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Ezample: Linear Function
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CIFAR-10 -€———>

Structured Image Datasets
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» The ability for a system to learn is determined by its support (which solutions
are a priori possible) and inductive biases (which solutions are a priori likely).

» We should not conflate flexibility and complexity.

» An influx of new massive datasets provide great opportunities to automatically
learn rich statistical structure, leading to new scientific discoveries.
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» The key distinguishing property of a Bayesian approach is marginalization
instead of optimization.

» Rather than use a single setting of parameters w, use all settings weighted by
their posterior probabilities in a Bayesian model average.
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Basic Regression Problem

» Training set of n targets (observations) y = (y(x1), ..., y(x:))".
» Observations evaluated at inputs X = (x1,...,x,)".
» Want to predict the value of y(x.) at a test input x..
For example: Given airline passenger numbers y measured at times X, what will be

the number of passengers when x,. = 1961?

Just knowing high school math, what might you try?
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Guess the parametric form of a function that could fit the data

> flx,w)=w'x [Linear function of w and x]
> flx,w) = w op(x) [Linear function of w] (Linear Basis Function Model)
> f(x,w) = g(w ¢(x)) [Non-linearin x and w] (E.g., Neural Network)

¢(x) is a vector of basis functions. For example, if ¢(x) = (1,x,x?) and x € R' then
F(x, W) = wo + wix + wox? is a quadratic function.

Choose an error measure E(w), minimize with respect to w
> E(w) =31 [f(xi, w) — y(x)]®
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A probabilistic approach

We could explicitly account for noise in our model.

» y(x) =f(x,w) + e(x), where €(x) is a noise function.

One commonly takes e(x) = A(0, ¢?) for i.i.d. additive Gaussian noise, in which

case
PO |x, w,0%) = N (y(x); f(x,w),07) Observation Model 3)
p(ylr,w,0) = [[N((x):f(x:,w),0°)  Likelihood (4)
i=1

» Maximize the likelihood of the data p(y|x, w, o*) with respect to o2, w.

For a Gaussian noise model, this approach will make the same predictions as using a
squared loss error function:

1 n
log p(y|X, w, 0%) Y= Z[f(x,-,w) —y(x)) 5)
i=1
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Statistics from Scratch

» The probabilistic approach helps us interpret the error measure in a
deterministic approach, and gives us a sense of the noise level o2.

» Both approaches are prone to over-fitting for flexible f(x, w): low error on the
training data, high error on the test set.

Regularization

» Use a penalized log likelihood (or error function), such as

model fit

complexity penalty

B(w) =~ 505 > (lsw) —y(6)) “awlw ©

» But how should we define and penalize complexity?
» Can set \ using cross-validation.

» Same as maximizing a posterior log p(w|y, X) = log p(y|w, X) + log p(w) + ¢
with a Gaussian prior p(w). But this is not Bayesian!
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Bayes’ Rule

plalb) = p(bla)p(a)/p(b),  p(alb) o p(bla)p(a) . 7
Sum Rule
p(x) = p(x,) ©)
v
Product Rule

p(x,y) = ply)p(y) = p(ylx)p(x) 10)
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Bayesian Predictive Distribution

Sum rule: p(x) = > _p(x,y). Product rule: p(x,y) = p(x[y)p(y) = p(y|x)p(x).

PO, y,X) = / PO le, w)p(wly, X)dw . (1)

» Think of each setting of w as a different model. Eq. (32) is a Bayesian model
average, an average of infinitely many models weighted by their posterior
probabilities.

» Represents epistemic uncertainty over which f(x, w) fits the data.
» Automatically calibrated complexity even with highly flexible models.

» Can view classical training as using an approximate posterior
q(wly,X) = 6(w = wmar).

12726



Bayesian Model Averaging is Not Model Combination

p(y/D) = Zpy\h (h|D)

» The weights p(h|D) only represent a statistical
inability to distinguish between hypotheses.

» Assumes that combination models are not in the
hypothesis space.

» In the limit of infinite data, p(h|D) will collapse
onto a point mass.

Bayesian model averaging is not model combination. Minka, T. Technical Report, 2000.
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Example: Biased Coin

Suppose we flip a biased coin with probability A of
landing tails.
1. What is the likelihood of a set of data

D ={y1,y2,---Yn}?
2. What is the maximum likelihood solution for \?

3. Suppose the first flip is tails. What is the
probability that the next flip will be a tails, using
maximum likelihood?
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Likelihood of the data:

n

p{yitin) =X a-xn" (12)

i=1

where y; = 1 if y; is tails, and y; = 0 if y; is heads.

Likelihood of getting m tails is

p(Dlm,\) = (Z) A1 = A" (13)
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Likelihood of getting m tails is

p(Dlm, ) = <:1> A"(L— )" (14)

The maximum likelihood solution is

Ami = argmax, p(D|m, \) = % (15)
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Likelihood of getting m tails is

p(Dlm, \) = (Z) XM= AT (16)

The maximum likelihood solution is
Ami = argmax, p(D|m, \) = % a7

Do you believe this solution? Why or why not?
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Likelihood of getting m tails is

p(Dlm, \) = (m) N1 = Ay (18)
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Likelihood of getting m tails is
p(D|m, \) = (Z) (1= )" (19)

If we choose a prior p(A) oc A%(1 — A\)? then the posterior will have the same
functional form as the prior.
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Likelihood of getting m tails is
p(Dlm, X) = (m) (1= X" 20)

If we choose a prior p(A) o< A%(1 — X\)? then the posterior will have the same
functional form as the prior.
We can choose the beta distribution:

T(a+b) a1 b1
Beta(A|a,b) = ————% X\ 1-—X 21
ea( |a7 ) F(a)l—\(b) ( ) ( )
The Gamma functions ensure that the distribution is normalized:
/Beta(Ma,b)d)\ =1 (22)
Moments:
a
E[)\] = 23
W= 3
var[\] = ab (4)

(a+Db)2a+b—-1)"
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’ prior/_\ ’ likelihood ! posterior
0 0; 1 0 0; 1 0 D; 1
Applying Bayes theorem, we find:
P(AID) o< p(DIN)p(X) (25)
= Beta(A\;m + a,n —m+b) (26)

We can view a and b as pseudo-observations!

m+a

E[AD] = nrath

@n

1. What is the probability that the next flip is tails?
2. What happens in the limits of a, b?
3. What happens in the limit of infinite data?
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Applying Bayes theorem, we find:

P(AID) o p(DIN)p(A) (28)
= Beta(A\;m + a,n — m + b) (29)

We can view a and b as pseudo-observations!

O R S

m+a

E[AD] = nrath

(30)

. What is the probability that the next flip is tails?
. What happens in the limits of a, b?

. What happens in the limit of infinite data?

. Does the MAP estimate

Aap = argmax, log p(A\|D) = argmax, log p(D|\) + log p(\) (€1))

with a uniform prior p(\) give the same answer as Bayesian
marginalization to find p(tails next flip| D) = [ Ap(A\|D)d\ = E[A|D] with
a uniform prior p(\)?
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Example: Density Estimation

» Observations y, . . . , y, from unknown density p(y).

» Specify an observation model. For example, we can

let the points be drawn from a mixture of Gaussians:

pOIO) = wiN (¥lpr, 07) + waN (y|p2, 03).
0 = {wi, w2, i, pa, 01, 02}
» Likelihood p(y|0) = H:’:l p(yil6) .

Can learn all free parameters 6 using maximum
likelihood...

Owi. = argmax, H

\/— < ! (yi—u1)2>+

p(y[6)

w2 ( ( ) )
> exp 2 — K2
\/271'02 20

Can you look at this equation and see what 0 achieves maximum likelihood?
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Regularization or MAP S
» Find
model fit complexity penalty
o —
argmax, log p(6ly) = logp(y|f) + logp(0)
» Choose p(6) such that p(f) — 0 faster than
p(y|d) = coasoyoro, — 0. — =JL
0 5 10
y

Bayesian Inference

> Predictive Distribution: p(y.|y) = [ p(y«|0)p(0]y)d6.
» Parameter Posterior: p(0]y) o p(y|60)p(9).
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Approximate Inference

Ultimately we wish to compute a Bayesian model average:

O, D) = / P lxe, w)p(w| D)y (32)

For most models, including Bayesian neural networks, this integral is not analytic. It
is common to use a Simple Monte Carlo approximation:

p(y|x., D) = = Zp VX, wi),  wj~q(w|D). (33)

w; are samples from an approximate posterior ¢(w|D) typically found by:

1. Deterministic Methods: Approximate p(w|D) with convenient g(w|D, 0),
often Gaussian. 6 (e.g. mean of ¢) chosen to make ¢ close to p. Variational
methods find argmin, L (g||p). Classical training: g(w|D) = 6(w = wwmap).
E.g.: Laplace, Expectation Propagation, Variational, Standard Training.

2. MCMC: Form a Markov chain of approximate (but asymptotically exact)
samples from p(w|D).
E.g.: Metropolis-Hastings, Hamiltonian Monte Carlo, SGLD, SGHMC.
» Later we will argue we may want to avoid the simple MC perspective.
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