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Minka (2000), Rasmussen and Ghahramani (2001), MacKay (2003), Bishop (2006),
Ghahramani (2015), Ghahramani (2014), Wilson (2014).
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Consider the simple linear model,

Output, f(x)

f(x) = wo 4+ wix,
wo, w1 ~ N(0,1).
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p(DIM)

Well-Specified Model
Calibrated Inductive Biases
Example: CNN

Simple Model
Poor Inductive Biases
Example: Linear Function

Complex Model
Poor Inductive Biases
Example: MLP

Corrupted CIFAR-10 MNIST Dataset
CIFAR-1) ~€—————>

Structured Image Datasets

p(DIM) = / (DM, w)p(w)dw 3
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» The ability for a system to learn is determined by its support (which solutions
are a priori possible) and inductive biases (which solutions are a priori likely).

» We should not conflate flexibility and complexity.

» An influx of new massive datasets provide great opportunities to automatically
learn rich statistical structure, leading to new scientific discoveries.
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Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Wilson and Izmailov, 2020
arXiv 2002.08791
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PYIM;,X) = / PYIfi (3, W))p(w)dw 4

Complex Model
= Simple Model
~—— Appropriate Model

p(yIM)
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All Possible Datasets
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p(DIH,) = / (DI, Ho)p(w|Hs)dw
p(DIH:) = p(D|wwmp) x p(wmp|Hi)owp

best fit likelihood Occam factor
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If the posterior over w is well approximated by a Gaussian, then the Occam factor is
described by the log determinant of the prior covariance matrix:

P(DIH) = p(Dlwe) x plwe[Ho)det(5-) a
N — ™

best fit likelihood

Occam factor

where A = —V'V log p(w|D, H,).
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p(Ha|D) _ p(D|H1) p(H1)

p(HaD) — p(D|H2) p(Ha) ®)
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Blackboard: Examples of Occam’s Razor in Everyday Inferences

For further reading, see MacKay (2003) textbook, Information Theory, Inference,
and Learning Algorithms.
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Occam’s Razor Example

-1,3,7,11,77,7?

» H,: the sequence is an arithmetic progression,
add n, where n is an integer.

» H,: the sequence is generated by a cubic function
of the form cx3 —|— dx2 —|— e, where ¢, d, and e are
fractions. (— x + 1 x + ﬁ)
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Outputs, y(x)

Observations y(x). Assume p(y(x)|f(x)) ~ N (y(x);f(x), o*). Consider polynomials

of different orders. As always, observations are out of the chosen model class!
Which model should we choose?

fl(x) =ao + aix,
H(x) = a0+ aix + ax’,

f1(x) = ao + a1x + axx® + - -

®
(10)
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Model Selection: Occam’s Hill

Marginal likelihood (evidence) as a function of model order, using an isotropic prior

p(a) = N(0,5°1).
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Model Order

14/24



Model Selection: Occam’s Asymptote
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Marginal likelihood (evidence) as a function of model order, using an anisotropic
prior p(a;) = N'(0,~v7"), with ~y learned from the data.
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Occam’s Razor
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For further reading, see Rasmussen and Ghahramani (2001) (Occam’s Razor), Kass
and Raftery (1995) (Bayes Factors), and MacKay (2003), Chapter 28.
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» PCA projects a d dimensional vector x into a k < d dimensional space in a way
that maximizes the variance of the projection.

» How do we choose k?
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» Formulate dimensionality reduction as a probabilistic model:

k

X:Zthj—i-m'i‘S, (14)
j=1

=Hw+m+e, 15)

GNN(O, V). (16)

» Let V = vl and p(w) ~ N(0, I).

» The maximum likelihood solution for H, given data D = {xi,...xn} is exactly
equal to the PCA solution!

> Let’s place probability distributions over H, m, integrate away from the
likelihood, then use the evidence p(D|k) to determine the value of k. As
N — o0, the evidence will collapse onto the true value of k.

Automatically Learning the Dimensionality of PCA (Minka, 2001).
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Figure 4: The score for each dimensionality, evaluated in six different ways. The true value is k = 5.
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ER Laphce OV BIC ARD RAN ARU

Figure 5: The number of times cach estimator picked the correct dimensionality in 60 replications. (d =10,k =

5, N = 100)
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Laplace RRU ARD RRN CV ER BIC

Figure 6: The number of times each estimator picked the correct dimensionality in 60 replications. (d = 15,k =
5, N =10)
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Figure 8: The score for each dimensionality, evaluated in four different ways. The cross-validation curve drops
off quickly after k = 15. All except the likelihood peak at the true value in this case.
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Automatically Learning the Dimensionality of PCA

Lapace CV ARD RRU BIC RAN

Figure 9: The number of times each estimator picked the correct dimensionality in 60 replications. (d = 100,k =

5, N = 60)

23/24



» Support: which datasets (hypotheses) are a priori possible.
» Inductive Biases: which datasets are a priori likely.

Want to make the support of our model as big as possible, with inductive biases
which are calibrated to particular applications, so as to not rule out potential
explanations of the data, while at the same time quickly learn from a finite amount of
information on a particular application.
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