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Consider the simple linear model,

Output, f(x)

f(x) = wo 4+ wix,
wo, w1 ~ N(0,1).

25

20|

)
2

3/30



p(DIM)
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> The ability for a system to learn is determined by its support (which solutions
are a priori possible) and inductive biases (which solutions are a priori likely).

» We should not conflate flexibility and complexity.
» An influx of new massive datasets provide great opportunities to automatically
learn rich statistical structure, leading to new scientific discoveries.
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Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Wilson and Izmailov, NeurIPS 2020
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» The key distinguishing property of a Bayesian approach is marginalization
instead of optimization.

» Rather than use a single setting of parameters w, use all settings weighted by
their posterior probabilities in a Bayesian model average.
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Bayesian Marginalization

Sum rule: p(x) = > _p(x,y). Product rule: p(x,y) = p(x[y)p(y) = p(y|x)p(x).

PO, y, X) = /p(ylx*,W)p(le’X)dW. 3)

» Think of each setting of w as a different model. Eq. (3) is a Bayesian model
average, an average of infinitely many models weighted by their posterior
probabilities.

» Automatically calibrated complexity even with highly flexible models.

» Can view classical training as using an approximate posterior
q(wly, X) = 6(w = wuar).

» Typically more interested in the induced distribution over functions than in
parameters w. Can be hard to have intuitions for priors on p(w).
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Can We Understand Deep Learning With
Probability?
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Reconciling modern machine learning practice and the bias-variance trade-off. Belkin et. al, 2018
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Should a Bayesian model experience double descent?
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Rethinking Parameter Counting in Deep Models: Effective Dimensionality Revisited.
W. Maddox, G. Benton, A.G. Wilson, 2020.
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Gaussian processes: a function space view

Definition

A Gaussian process (GP) is a collection of random variables, any finite number of

which have a joint Gaussian distribution. Gaussian processes assign priors directly
in function-space.

Nonparametric Regression Model

» Prior: f(x) ~ GP(m(x),k(x,x")), meaning (f(x1),...,f(xn)) ~ N(p, K),
with p; = m(x;) and Ky = cov(f(xi),f (%)) = k(xi, x5).
GP posterior Likelihood ~ GP prior
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Bayesian Deep Learning and a Probabilistic Perspective of Generalization.
A.G. Wilson, P. Izmailov, NeurIPS 2020
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Can we actually build “AGI”? Models that are simultaneously
good on many real-world problems?

The no free lunch theorems are sometimes used to argue that
we can’t.

The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum, Marc Finzi, Keefer Rowan, Andrew Gordon Wilson
March 2023
arXiv:2304.05366
Appearing at ICML 2024
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» Every learner is equally good in expectation over all datasets sampled
uniformly (Wolpert 1996; Wolpert & Macready 1997).

» No single learner can achieve high accuracy on every problem (Shalev-Shwartz
& Ben-David, 2014).

» Many others.

Suggests we may need to build highly specialized learners for particular tasks...

Do the no free lunch theorems preclude AGI?
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In practice, we see the opposite trend...

Segmentation

Depth Estimation ]

Dense CRF

Optical Flow
Estimation

SVM + HOG H Image Classification]

PoS Tagging]

Latent Dirichlet Allocation

Transformers

Hidden Markov Models

Time-Series Prediction

Recommender Systems
Spam Filtering
Malware Detection

Figure 1: Over time, tasks that were performed by domain-

specialized ML systems are increasingly performed by unified
neural network architectures.
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v

Naturally occurring problems could involve highly structured data.
Aspects of this structure could be largely shared across problems.

We can explore the alignment between structure in real-world data and machine
learning models through the lens of Kolmogorov complexity.

QOur contention: a single low-complexity biased prior can suffice on a wide
variety of problems due to the low Kolmogorov complexity of data.
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Kolmogorov Complexity and Generalization Bounds

» K (y|x): the length of the shortest program (in bits) that inputs x and outputs y.

» Consider the universal prior that assigns higher probability to compressible
hypotheses: P(h) = 275" /Z where K, (h) < K(h) + 2log, K(h).

R(k) < R(h) + \/ K, () log 22n+ log 1/5 “

Even under an arbitrarily large hypothesis space, generalization is possible if we
assign prior mass disproportionately to the highly structured data that typically
occurs.
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Key Findings

1. Models can significantly compress the labels of data.

2. CNNs provably generalize well on completely different modalities like tabular
data due to their simplicity bias!

3. GPT-3 generates low-complexity sequences with exponentially higher
probability than complex ones (and bigger models do more compression!)

4. Even randomly initialized GPT models have a low-complexity bias.
5. Worries about overfitting to benchmark test sets is overblown (see paper).

6. We can design models that work well in small and large data regimes, by
embracing a flexible hypothesis space combined with a strong simplicity bias.
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Figure 4: A single learner, which is more expressive than a ViT
but also prefers simple solutions representable by a GoogLeNet,
can simultaneously solve small and large scale problems.

The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum, Marc Finzi, Keefer Rowan, Andrew Gordon Wilson
March 2023
arXiv:2304.05366
Appearing at ICML 2024
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Prompt Samples
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Large Language Models are Zero-Shot Time Series Forecasters

N. Gruver, M. Finzi, S. Qiu, A.G. Wilson

NeurlPS 2023
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Fine-Tuned Language Models Generate Stable Inorganic Materials as Text.
N. Gruver, A. Sriram, A. Madotto, A. G. Wilson, C. L. Zitnick, Z. Ulissi
ICLR 2014
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Bayesian Optimization for Protein Design
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» Biological sequence design is a high-dimensional discrete optimization
problem, where querying the objective is expensive

iminative|

> We develop state-of-the-art approaches based on deep kernel learning with
de-noising autoencoders and discrete diffusion models.
» Drug discovery is one of the most potentially impactful and up-and-coming
applications of machine learning
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders.
S. Stanton, W. Maddox, N. Gruver, P. Mafetonne, E. Delaney, P. Greenside, A.G. Wilson, ICML 2022.

Protein Design with Guided Discrete Diffusion.
N. Gruver, S. Stanton, N. Frey, T. Rudner, I. Hotzel, J. Lafrance-Vanasse, A. Rajpal, K. Cho, A. G. Wilson,
NeurIPS 2023. 28730



Numerical Linear Algebra is a Foundation for Al

Compositional Linear Algebra

Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra.
A. Potapczynski, M. Finzi, G. Pleiss, A. G. Wilson, NeurIPS 2023.
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Conclusions

» We can use probability theory to develop a prescriptive understanding of model
construction and generalization, resolving otherwise mysterious behaviour.

» We should not conflate flexibility with complexity, or do parameter counting.

» Universal learning (general intelligence) in the real world should be
possible.

» Neural networks represent many compelling solutions to a given problem,
which is perfect for Bayesian model averaging.

» Large language models combine expressiveness with a strong simplicity bias
for effective zero-shot and few-shot performance in many domains, including
time-series forecasting.

What is >100 years away? Discoveries scientific theories. How do we develop
algorithm that will propose a theory like general relativity?
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