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Model Selection
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Which model should we choose?

(1): f1(x) = a0 + a1x (2): f2(x) =
3∑

j=0

ajxj (3): f3(x) =
104∑
j=0

ajxj
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A Function-Space View

Consider the simple linear model,

f (x) = w0 + w1x , (1)

w0,w1 ∼ N (0, 1) . (2)
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Model Construction and Generalization

p(D|M)
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How do we learn?

▶ The ability for a system to learn is determined by its support (which solutions
are a priori possible) and inductive biases (which solutions are a priori likely).

▶ We should not conflate flexibility and complexity.

▶ An influx of new massive datasets provide great opportunities to automatically
learn rich statistical structure, leading to new scientific discoveries.

Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Wilson and Izmailov, NeurIPS 2020
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What is Bayesian learning?

▶ The key distinguishing property of a Bayesian approach is marginalization
instead of optimization.

▶ Rather than use a single setting of parameters w, use all settings weighted by
their posterior probabilities in a Bayesian model average.
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Bayesian Marginalization

Sum rule: p(x) =
∑

x p(x, y). Product rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x).

p(y|x∗, y,X) =
∫

p(y|x∗,w)p(w|y,X)dw . (3)

▶ Think of each setting of w as a different model. Eq. (3) is a Bayesian model
average, an average of infinitely many models weighted by their posterior
probabilities.

▶ Automatically calibrated complexity even with highly flexible models.

▶ Can view classical training as using an approximate posterior
q(w|y,X) = δ(w = wMAP).

▶ Typically more interested in the induced distribution over functions than in
parameters w. Can be hard to have intuitions for priors on p(w).
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Rethinking Generalization

Can We Understand Deep Learning With
Probability?
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Double Descent

Belkin et. al (2018)

Reconciling modern machine learning practice and the bias-variance trade-off. Belkin et. al, 2018
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Double Descent

Should a Bayesian model experience double descent?
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Bayesian Model Averaging Alleviates Double Descent
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Double Descent Explained by Occam’s Razor
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Rethinking Parameter Counting in Deep Models: Effective Dimensionality Revisited.
W. Maddox, G. Benton, A.G. Wilson, 2020.
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Gaussian processes: a function space view

Definition
A Gaussian process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution. Gaussian processes assign priors directly
in function-space.

Nonparametric Regression Model
▶ Prior: f (x) ∼ GP(m(x), k(x, x′)), meaning (f (x1), . . . , f (xN)) ∼ N (µ,K),

with µi = m(xi) and Kij = cov(f (xi), f (xj)) = k(xi, xj).
GP posterior︷ ︸︸ ︷

p(f (x)|D) ∝
Likelihood︷ ︸︸ ︷

p(D|f (x))
GP prior︷ ︸︸ ︷

p(f (x))
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Rethinking Generalization

Bayesian Deep Learning and a Probabilistic Perspective of Generalization.
A.G. Wilson, P. Izmailov, NeurIPS 2020
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Can we build generalist models?

Can we actually build “AGI”? Models that are simultaneously
good on many real-world problems?

The no free lunch theorems are sometimes used to argue that
we can’t.

The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum, Marc Finzi, Keefer Rowan, Andrew Gordon Wilson

March 2023
arXiv:2304.05366

Appearing at ICML 2024
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No Free Lunch Theorems

▶ Every learner is equally good in expectation over all datasets sampled
uniformly (Wolpert 1996; Wolpert & Macready 1997).

▶ No single learner can achieve high accuracy on every problem (Shalev-Shwartz
& Ben-David, 2014).

▶ Many others.

Suggests we may need to build highly specialized learners for particular tasks...

Do the no free lunch theorems preclude AGI?
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A Polymath Model

In practice, we see the opposite trend...
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How can we have generalist models?

▶ Naturally occurring problems could involve highly structured data.

▶ Aspects of this structure could be largely shared across problems.

▶ We can explore the alignment between structure in real-world data and machine
learning models through the lens of Kolmogorov complexity.

▶ Our contention: a single low-complexity biased prior can suffice on a wide
variety of problems due to the low Kolmogorov complexity of data.
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Kolmogorov Complexity and Generalization Bounds

▶ K(y|x): the length of the shortest program (in bits) that inputs x and outputs y.

▶ Consider the universal prior that assigns higher probability to compressible
hypotheses: P(h) = 2−Kp(h)/Z where Kp(h) ≤ K(h) + 2 log2 K(h).

R(h) ≤ R̂(h) +

√
Kp(h) log 2 + log 1/δ

2n
. (4)

Even under an arbitrarily large hypothesis space, generalization is possible if we
assign prior mass disproportionately to the highly structured data that typically
occurs.
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Key Findings

1. Models can significantly compress the labels of data.

2. CNNs provably generalize well on completely different modalities like tabular
data due to their simplicity bias!

3. GPT-3 generates low-complexity sequences with exponentially higher
probability than complex ones (and bigger models do more compression!)

4. Even randomly initialized GPT models have a low-complexity bias.

5. Worries about overfitting to benchmark test sets is overblown (see paper).

6. We can design models that work well in small and large data regimes, by
embracing a flexible hypothesis space combined with a strong simplicity bias.
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Cross-Domain Generalization Bounds
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Simplicity Bias
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Good in All Regimes?

The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum, Marc Finzi, Keefer Rowan, Andrew Gordon Wilson

March 2023
arXiv:2304.05366

Appearing at ICML 2024
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Large Language Models for Time Series Forecasting

Large Language Models are Zero-Shot Time Series Forecasters
N. Gruver, M. Finzi, S. Qiu, A.G. Wilson

NeurIPS 2023
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Uncertainty Representation in LLMTime
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LLMTime Results
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LLMs for Materials

Fine-Tuned Language Models Generate Stable Inorganic Materials as Text.
N. Gruver, A. Sriram, A. Madotto, A. G. Wilson, C. L. Zitnick, Z. Ulissi

ICLR 2014
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Bayesian Optimization for Protein Design

▶ Biological sequence design is a high-dimensional discrete optimization
problem, where querying the objective is expensive

▶ We develop state-of-the-art approaches based on deep kernel learning with
de-noising autoencoders and discrete diffusion models.

▶ Drug discovery is one of the most potentially impactful and up-and-coming
applications of machine learning

Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders.
S. Stanton, W. Maddox, N. Gruver, P. Mafetonne, E. Delaney, P. Greenside, A.G. Wilson, ICML 2022.

Protein Design with Guided Discrete Diffusion.
N. Gruver, S. Stanton, N. Frey, T. Rudner, I. Hotzel, J. Lafrance-Vanasse, A. Rajpal, K. Cho, A. G. Wilson,

NeurIPS 2023. 28 / 30



Numerical Linear Algebra is a Foundation for AI

Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra.
A. Potapczynski, M. Finzi, G. Pleiss, A. G. Wilson, NeurIPS 2023.
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Conclusions

▶ We can use probability theory to develop a prescriptive understanding of model
construction and generalization, resolving otherwise mysterious behaviour.

▶ We should not conflate flexibility with complexity, or do parameter counting.

▶ Universal learning (general intelligence) in the real world should be
possible.

▶ Neural networks represent many compelling solutions to a given problem,
which is perfect for Bayesian model averaging.

▶ Large language models combine expressiveness with a strong simplicity bias
for effective zero-shot and few-shot performance in many domains, including
time-series forecasting.

What is >100 years away? Discoveries scientific theories. How do we develop
algorithm that will propose a theory like general relativity?
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