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Abstract. We prove a new class of L2-weighted elliptic estimates on smooth two-

manifolds for positive weights ω that formally satisfy ω2∆ln(ω) = −κ(x)ω2. The

proof is short and relies on a lemma about symmetric two dimensional matrices.

1. Introduction

We provide L2-weighted elliptic estimates for a class of positive weights ω ∈ W 1,2(M2)

on smooth Riemannian connected two-manifolds (M2, g) that weakly satisfy

(1.1) ω2∆g ln(ω) = −κ(x)ω2,

with the weak formulation in Definition 2.1 and where ∆g is the Laplace-Beltrami

operator on M2. The original motivation of this article is to investigate the weighted

Hodge decomposition of one-forms in two dimensions and provide estimates on the

distance of the weighted co-exact part and the standard co-exact part as follows:

Lemma 1.1. Let (M2, g) be a Riemannian 2-manifold and let Ω ∈ M2 be a smooth

open domain and ω is a weight as in Definition 2.1 with κ = 0. Any smooth one-form

A ∈ C∞
c (

∧1Ω) has a Hodge decomposition and a weighted Hodge decomposition as

follows:

A = ⋆dξ1 + dξ2 and ωA = ⋆ωdϕ1 + ω−1dϕ2 ,

for 4 compactly supported functions ξ1, ξ2, ϕ1, ϕ2. Moreover for any 0 ≤ ε ≤ C we have

the estimates:

∥ω1+εd(ξ1 − ϕ1)∥2L2(Ω) ≤ C
(supΩ ω)2ε

ε2
∥ω−1dϕ2∥2L2(Ω) .

These estimates are instrumental in the quantitative stability of Yang-Mills-Higgs

instantons in two dimensions in [3]. We present the results here in a more general

setting, in the belief that these inequalities will be useful in other contexts.

In two dimensions, our results improve on Caffarelli-Kohn-Nirenberg inequalities [1]

since we prove estimates for a wider class of weights, possibly vanishing on multiple

points, with universal constant (e.g. ω = |x||x− 1|). There are also weights who satisfy

(1.1) (e.g. ω = |x|) which are not in any Muckenhoupt class.
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1.1. Main results. Let Ω ⊂ M2 be a smooth open connected domain and let λ1 be

the first Dirichlet eigenvalue of the Laplace-Beltrami operator on Ω. First we provide a

generalization of Caffarelli-Kohn-Nirenberg interpolation inequalities in two dimensions:

Theorem 1.2. Let (M2, g) be a smooth 2-manifold and a weight ω as in Definition 2.1

and Ω ⊂ M2 a smooth open domain. Then for any function f ∈ C∞
c (Ω) we have that:

(1.2)

ˆ
Ω
|∇ω|2|f |2dvolg ≤

ˆ
Ω
ω2|∇f |2dvolg ,

provided that κ ≤ λ1.

In the next theorem we provide homogeneous elliptic estimates:

Theorem 1.3. Let (M2, g) be a smooth 2-manifold and a weight ω as in Definition 2.1

and Ω ⊂ M2 a smooth open domain. Then for any function f ∈ C∞
c (Ω) we have that:

(1.3)

ˆ
Ω
ω2|∇f |2dvolg ≤ τ−1

ˆ
Ω
2

ω4

|∇ω|2
|∆gf |2 + 5|∇ω|2|f |2dvolg ,

provided that −λ1
8 (2− τ) ≤ κ ≤ λ1 for some 0 ≤ τ ≤ 2.

Theorem 1.4 is the main ingredient used in the proof of the Lemma 1.1 on the weighted

Hodge decomposition. We break the homogeneity to remove the term |∇ω|f from the

right hand side, thereby introducing a constant on the right hand side as follows:

Theorem 1.4. Let (M2, g) be a smooth 2-manifold and a weight ω in Definition 2.1

with κ = 0 and ε ≥ 0 and Ω ⊂ M2 a smooth open domain. Then for any function

f ∈ C∞
c (Ω) we have that:

(1.4)

ˆ
Ω
ω2+2ε|∇f |2dvolg ≤ C

(supΩ ω)2ε

ε2

ˆ
Ω

ω4

|∇ω|2
|∆gf |2dvolg ,

with the bound C ≤ 8ε2+5(1+ε)4

8(1+ε)2
which is comparable to 5

8 as ε → 0.

Note that the Laplace-Beltrami operator ∆g on functions u ∈ W 1,2(M, g) is defined

by the duality relation below:ˆ
Ω
−∆guv dvolg =

ˆ
Ω
⟨∇u,∇v⟩ dvolg , for all v ∈ W 1,2

0 (Ω).

Examples of weights. For any bounded open subset Ω ⊂ R2 and a weight ω as

follows:

ω(x) = ΠN
i=1|x− xi|αi for x1, . . . , xN ∈ Ω ⊂ R2 and α1, . . . , αN > 0 .(1.5)

For any bounded open domain Ω ⊂ M2 of a smooth two manifold, let Gp be the green’s

function for Ω centered on p and ω as follows:

ω(x) = ΠN
i=1e

−αiGpi (x) for p1, . . . , pN ∈ Ω ⊂ M2 and α1, . . . , αN > 0 .(1.6)
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The weights (1.5) and (1.6) are generalizations of the Caffarelli-Kohn-Nirenberg inter-

polation results [1], in two dimensions. Moreover Theorem 1.2 and 1.4 provide weighted

elliptic estimates for the weight ω = |x|α:ˆ
R2

|x|2(α−1)|f |2 ≤ α−2

ˆ
R2

|x|2α|∇f |2 ,

ˆ
R2

|x|2α|∇f |2 ≤ α−2

ˆ
R2

|x|2(α+2)|∆f |2 + α2

ˆ
R2

5

2
|x|2(α−1)|f |2 ,

ˆ
B1

|x|2(α+ε)|∇f |2 ≤ C(εα)−2

ˆ
B1

|x|2(α+1)|∆f |2 ,

provided that α > 0.

The methods throughout the paper are inspired by [1] and [2] and are quiet elementary

and only use Stokes theorem. A crucial part of our proof, equation (2.5), uses Lemma 2.2

which is an identity about symmetric matrices in two dimensions which does not hold

in other dimensions.

Remark. In the case of unbounded domains (e.g. M2 = R2) we set λ1 = 0 in Theo-

rem 1.2 and 1.3.

Remark. Theorem 1.2 and 1.3 also work for the case of closed 2-manifolds Ω = M2

with the assumption that
´
Ω ωf dvolg = 0. However Theorem 1.4 is a trivial statement

for closed manifolds since the assumption κ = 0 tells us that ∆gω
2 = 4|dω|2 ≥ 0 and

this means that the only admissible weights are constants.

2. The Proof

Definition 2.1. The weak formulation of (1.1) for a weight ω ∈ W 1,2(M2) is as follows:

For any smooth test function ϕ ∈ C∞
c (M2) we have that:ˆ

Ω
(4|∇ω|2 − 2κω2)ϕ− ω2∆gϕ dvolg = 0 .

To prove Theorem 1.2 to 1.4 we use Stokes theorem to relate the integral of a carefully

chosen positive term, to the difference of the right and the left hand side of (1.2) to (1.4).

Proof of Theorem 1.2. We begin with the identity below:

0 ≤
ˆ
Ω
|∇(ωf)|2 dvolg =

ˆ
Ω
|ω∇f +∇ωf |2 dvolg

=

ˆ
Ω
ω2|∇f |2 + |∇ω|2|f |2 + 2⟨ω∇ω,∇ff⟩ dvolg .

After completing the derivative for the cross term and using Definition 2.1 we see that:ˆ
Ω
2⟨ω∇ω,∇ff⟩ dvolg =

ˆ
Ω
−ω2

2
∆g(f

2) dvolg =

ˆ
Ω
(κω2 − 2|∇ω|2)|f |2 dvolg .
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Then we use κ ≤ λ1 to estimate:ˆ
Ω
κω2|f |2 dvolg ≤

ˆ
Ω
|∇(ωf)|2 dvolg .

Finally we conclude that:

0 ≤
ˆ
Ω
ω2|∇f |2 − |∇ω|2|f |2 dvolg .

□

Proof of Theorem 1.3. Similarly we begin by integrating a positive term:

0 ≤
ˆ
Ω

∣∣ ω2

|∇ω|
∆gf + |∇ω|f

∣∣2 dvolg =

ˆ
Ω

ω4

|∇ω|2
|∆gf |2 + 2ω2f∆gf + |∇ω|2|f |2 dvolg .

By Stokes theorem for the cross term and Definition 2.1 we get that:ˆ
Ω
2ω2f∆gf dvolg =

ˆ
Ω
−2ω2|∇f |2 + (4|∇ω|2 − 2κω2)|f |2 dvolg .

Since the assumption for an unbounded domain is κ = 0 the proof follows immediately.

Otherwise by the assumption −κ ≤ λ1(
1
4 − τ

8 ) we see that:ˆ
Ω
−2κ|ωf |2 dvolg ≤ λ1(

1

2
− τ

4
)

ˆ
Ω
|ωf |2 dvolg .

By the characterization of the first eigenvalue of the Laplace-Beltrami operator ∆g we

see that:

λ1(
1

2
− τ

4
)

ˆ
Ω
ω2|f |2 dvolg ≤ (

1

2
− τ

4
)

ˆ
Ω
|∇(ωf)|2 dvolg .

Since κ ≤ λ1 , Theorem 1.2 applies and we get that:

(
1

2
− τ

4
)

ˆ
Ω
|∇(ωf)|2 dvolg ≤ (2− τ)

ˆ
Ω
ω2|∇f |2 dvolg .

Finally putting the estimates together, we conclude that:

0 ≤
ˆ
Ω
2

ω4

|∇ω|2
|∆gf |2 + 5|∇ω|2|f |2 − τω2|∇f |2dvolg .

□

In the proof of Theorem 1.4 we deal with the weighted hessian matrix ω2∇2 ln(ω) and

by the condition (1.1) we know that it is a two dimensional symmetric trace-free matrix.

The following lemma uses this structure and it is essential in the proof of Theorem 1.4:

Lemma 2.2. Let A ∈ R2×2 be a symmetric matrix, namely AT = A. Then we have

that for any two real vectors b, c ∈ R2:

(2.1) 2⟨A : b⊗ c⟩⟨b, c⟩ − ⟨A : b⊗ b⟩|c|2 − (A : c⊗ c)|b|2 = trace(A)⟨b, c⊥⟩2 ,

where ⟨:⟩ is the matrix element-wise inner product and c⊥ is the perpendicular vector

to c.
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Proof. We first calculate the expression above in dimension n. Since A is symmetric,

it has n distinct perpendicular eigen-vectors ei with real eigen-values µi. Then setting

bi = ⟨b, ei⟩ and ci = ⟨c, ei⟩ we compute:

2⟨A : b⊗ c⟩⟨b, c⟩ − ⟨A : b⊗ b⟩|c|2 − (A : c⊗ c)|b|2

=
∑

1≤i,j≤n

µi(aicj − ciaj)
2 .

In the case n = 2:

2⟨A : b⊗ c⟩⟨b, c⟩ − ⟨A : b⊗ b⟩|c|2 − (A : c⊗ c)|b|2 = trace(A)(b1c2 − c1b2)
2 .

□

Proof of Theorem 1.4. First we integrate a carefully chosen positive term of the form

below:

0 ≤
ˆ
Ω

∣∣ ω2

|∇ω|
∆gf + 2ω⟨ ∇ω

|∇ω|
,∇f⟩+ 2|∇ω|f

∣∣2 dvolg
=

ˆ
Ω

ω4

|∇ω|2
|∆gf |2 + 4ω2⟨ dω

|∇ω|
,∇f⟩2 + 4|∇ω|2|f |2(2.2)

+ 4
ω3

|∇ω|2
⟨∇ω,∇f⟩∆gf + 4ω2∆gff + 8⟨ω∇ω, f∇f⟩ dvolg .(2.3)

Then for the first cross term in (2.3) we calculate by Stokes theorem and (1.1) (with

the weak formulation in Definition 2.1) and the assumption κ ≥ 0 that:
ˆ
Ω
4

ω3

|∇ω|2
⟨∇ω,∇f⟩∆gf dvolg

=

ˆ
Ω
2divg(

ω3

|∇ω|2
dω)|∇f |2 − 4∇(

ω3

|∇ω|2
∇ω) : ∇f ⊗∇f dvolg

≤
ˆ
Ω
8ω2|∇f |2 − 4⟨∇(

ω3

|∇ω|2
∇ω) : ∇f ⊗∇f⟩ dvolg .(2.4)

Then we use the identity

ω∇2ω = ω2∇2 ln(ω) + dω ⊗ dω ,

for the second term in (2.4). We get that:

− 4⟨∇(
ω3

|∇ω|2
∇ω) : ∇f ⊗∇f⟩ =

=− 8ω2⟨∇f,
∇ω

|∇ω|
⟩2 + 4

ω4

|∇ω|4
[
2⟨∇2 ln(ω) : ∇ω ⊗∇f⟩⟨∇ω,∇f⟩

−⟨∇2 ln(ω) : ∇f ⊗∇f⟩|∇ω|2 − ⟨∇2 ln(ω) : ∇ω ⊗∇ω⟩|∇f |2
]
.(2.5)
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We apply Lemma 2.2 with:

A = ω2∇2 ln(ω) , b =
∇ω

|∇ω|
and c = ∇f ,

and trace(A) = ω2∆g ln(ω) = 0 to see that:

−4⟨∇(
ω3

|∇ω|2
∇ω) : ∇f ⊗∇f⟩ = −8ω2⟨∇f,

∇ω

|∇ω|
⟩2 .

For the second and third cross term in (2.3) we see that:ˆ
Ω
4ω2∆gff + 8⟨ω∇ω, f∇f⟩ dvolg =

ˆ
Ω
−4ω2|∇f |2 dvolg .

Then putting the estimates together we see that:

(2.6) 4

ˆ
Ω
ω2⟨∇f,

∇ω

|∇ω|
⟩2 − |∇ω|2|f |2 dvolg ≤

ˆ
Ω

ω4

|∇ω|2
|∆gf |2 dvolg .

Using (1.1) with κ = 0 we get that for (2.6):ˆ
Ω
ω2⟨∇f,

∇ω

|∇ω|
⟩2 − |∇ω|2|f |2 dvolg

=

ˆ
Ω
|ω⟨∇f,

∇ω

|∇ω|
⟩+ |∇ω|f |2 dvolg

≥(sup
Ω

ω)−2ε

ˆ
Ω
ω2ε|ω⟨∇f,

∇ω

|∇ω|
⟩+ |∇ω|f |2 dvolg .(2.7)

Notice that ω1+ε also satisfies (1.1) weakly in the case of κ = 0, so we compute (2.7) as

follows: ˆ
Ω
ω2ε|ω⟨∇f,

∇ω

|∇ω|
⟩+ |∇ω|f |2 dvolg

=

ˆ
Ω
ω2+2ε⟨∇f,

∇ω

|∇ω|
⟩2 + ω2ε|∇ω|2|f |2 + 2ω1+2ε⟨∇ω,∇f⟩f dvolg

=

ˆ
Ω
ω2+2ε⟨∇f,

∇ω

|∇ω|
⟩2 + ω2ε|∇ω|2|f |2 −∆g(

ω2+2ε

2 + 2ε
)|f |2 dvolg

=

ˆ
Ω
⟨∇f,

∇ω

|∇ω|
⟩2 − (1 + 2ε)ω2ε|∇ω|2|f |2 dvolg .(2.8)

Notice that for ω1+ε we have:

0 ≤
ˆ
Ω
ω2ε|ω⟨∇f,

∇ω

|∇ω|
⟩+ (1 + ε)|∇ω|f |2 dvolg

=

ˆ
Ω
ω2+2ε⟨∇f,

∇ω

|∇ω|
⟩+ (1 + ε)2ω2ε|∇ω|2|f |2 + 2(1 + ε)ω1+2ε⟨∇ω,∇f⟩f dvolg

=

ˆ
Ω
ω2+2ε⟨∇f,

∇ω

|∇ω|
⟩ − (1 + ε)2ω2ε|∇ω|2|f |2 dvolg .
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We expand the square (1 + ε)2) to get a lower bound for (2.8):ˆ
Ω
⟨∇f,

∇ω

|∇ω|
⟩2 − (1 + 2ε)ω2ε|∇ω|2|f |2 dvolg ≥ ε2

ˆ
Ω
ω2ε|∇ω|2|f |2 dvolg .

and we get a preliminary inequality as follows:

(2.9)

ˆ
Ω
ω2ε|∇ω|2|f |2 dvolg ≤ (supΩ ω)2ε

4ε2

ˆ
Ω

|ω|4

|∇ω|2
|∆gf |2 dvolg .

Then we use Theorem 1.3 for ω1+ε and κ = 0 and τ = 2 to see that:ˆ
Ω
2ω2+2ε|∇f |2 dvolg ≤

ˆ
Ω
2

ω4+2ε

(1 + ε)2|∇ω|2
|∆gf |2 + 5(1 + ε)2ω2ε|∇ω|2|f |2 dvolg .

Finally we use (2.9) to conclude that:
ˆ
Ω
ω2+2ε|∇f |2 dvolg ≤ (

8ε2 + 5(1 + ε)4

8(1 + ε)2
)
(supΩ ω)2ε

ε2

ˆ
Ω

ω4

|∇ω|2
|∆gf |2 dvolg .

□

Remark 2.3. In the case of M2 = B2
1(0) ⊂ R2 and ω = |x| after the log-polar

transformation B2
1 → R+ × S1 = C by the map t = − ln(|x|) and θ = arctan( yx) or

equivalently a conformal change of metric with the factor 1
|x|2 and defining f = |x|−1u

for f ∈ C∞
1 (B2

1(0)) we can see that:ˆ
B2

1(0)
|∇ω|2|f |2 =

ˆ
C
|u|2dvolC ,(2.10)

ˆ
B2

1(0)
ω2|∇f |2 =

ˆ
C
|∇u|2 + |u|2dvolC ,

ˆ
B2

1(0)

ω4

|∇ω|2
|∇f |2 =

ˆ
C
|∆u+ 2∂tu+ u|2dvolC .(2.11)

After squaring and integrating by parts we see that (2.11) becomes:
ˆ
B2

1(0)

ω4

|∇ω|2
|∇f |2 =

ˆ
C
|∂ttu|2 + |∂tθu|2 + 2|∂tu|2 + |∂θθu+ u|2 .

We can see that if u(t, θ) = sin(θ) then (2.11) vanishes however (2.10) does not vanish

so the term |∇ω|f on the right hand side of (1.3) is necessary. However the extra ε in

the power ˆ
B2

1(0)
ω2+2ε|∇f |2 =

ˆ
C
(|∇u|2 + |u|2)e−2εtdvolC ,

compactifies the domain R+×S1 with a total measure of ε−2. This provides some insight

on Theorem 1.4 and the constants in (1.4).

We conclude the paper with the proof of the weighted Hodge decomposition estimates:
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Proof of Lemma 1.1. We consider the two variational problems below:

inf
ξ∈C∞

c (Ω)

ˆ
Ω
|A− ⋆dξ|2 dvolg and inf

ϕ∈C∞
c (Ω)

ˆ
Ω
ω2|A− ⋆dϕ|2 dvolg .(2.12)

Let W 1,2
0 (ω2,Ω) be the completion of C∞

c (Ω) under the ω2-weighted norm

∥u∥
W 1,2

0 (ω2,Ω)
=

ˆ
Ω
ω2(|u|2 + |du|2) .

By Theorem 1.2 we see that

C−1∥u∥W 1,2(ω2,Ω) ≤ ∥ωu∥W 1,2(Ω) ≤ C∥u∥W 1,2(ω2,Ω) ,

and by the equivalence of the norms, the family of functions {u : ωu ∈ W 1,2
0 (Ω)} is

equivalent to W 1,2
0 (ω2,Ω) the existence of minimizers of (2.12) follows from convexity

and the direct method in the calculus of variations. The Euler Lagrange equations for

minimizers tell us that

⋆d(A− ⋆dξ1) = 0 ⇒ there exists ξ2 such that A− ⋆dξ1 = dξ2 and

⋆d(ω2(A− ⋆dϕ1)) = 0 ⇒ there exists ϕ2 such that ω2(A− ⋆dϕ1) = dϕ2 .

in the sense of distributions. Then with a direct application of Theorem 1.4

∥ω1+εd(ξ1 − ϕ1)∥2L2(M2) ≤ C
(supM2 ω)2ε

ε2
∥ ω2

|dω|
∆g(ξ1 − ϕ1)∥2L2(M2)

and

∥ ω2

|dω|
∆g(ξ1 − ϕ1)∥2L2(M2) = ∥ ω2

|dω|
d(ω−2dϕ2 − dξ1)∥2L2(M2) = 4∥ω−1dϕ2∥2L2(M2) .

we conclude the proof. □
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