

Quantitative stability in the 2D Abelian Higgs model

Aria Halavati

Courant Institute

2/14/2024

- \triangleright What is a Hermitian line bundles?
- ▶ The Abelian Higgs model in dimension 2 and the "vortex *equations"*
- \blacktriangleright Previous results.
- \blacktriangleright Motivating the question of quantitative stability
- \blacktriangleright Core ideas of proof: Weighted hodge decomposition and a selection principle

What is a line bundle?

- \blacktriangleright Informally, a line bundle over a smooth manifold is a 'twisted' Cartesian product of the manifold with the complex numbers.
- \blacktriangleright Think about the Mobius strip. Locally it is a Cartesian product, however globally it has a "twist", which gives the Mobius bands it nontrivial topology! (thus interesting :D)

What is a line bundle, Formally?

Definition [7, p.23-27]

A line bundle over a smooth manifold M is a triple (L, π, M) where:

- \bullet *L* is a smooth manifold and π is a smooth map of *L* to *M*.
- 2 For any $m \in M$ the set $L_m = \pi^{-1}(m)$ has the structure of a one dimensional complex vector space. (*L^m* is called the fiber over *m*)
- ³ There is an open cover *U^j* of *M* and a collection of $s_i: U_i \to L$ such that $\forall j$, $\pi \circ s_j = 1_{U_i}$ and the map $\psi_i: U_i \times \mathbb{C} \rightarrow \pi^{-1}(U_i): (m, z) \rightarrow z.s_i(m)$ is a diffeomorphism.

On line bundles, functions are replaced by the notion of "sections" and are usually denoted by the symbol $\Gamma(L)$.

What is a Hermitian line bundle?

A Hermitian line bundle is a line bundle $I \rightarrow M$ with two additional structures:

- \blacktriangleright A **Hermitian metric**: On each fiber over $m \in M$ there is a Hilbert space metric $\langle ., . \rangle_m$ which varies smoothly with *m*.
- A connection: There is a map ∇ which acts like a gradient in a twisted sense: It assigns to any vector field ξ , an endomorphism $\nabla_{\xi} : \Gamma(L) \to \Gamma(L)$ and it is linear in ξ and obeys the Leibniz rule (like a gradient).
- \blacktriangleright These two structures are **compatible**:

$$
\xi\langle s,t\rangle=\langle\nabla_{\xi}s,t\rangle+\langle s,\nabla_{\xi}t\rangle\,,\qquad (1)
$$

for any smooth vector field $\zeta \in \mathcal{U}(M)$ and smooth sections $s, t \in \Gamma(L)$.

The connection one-form

Given any connection ∇ on a Hermitian line bundle, we can construct another one by picking a "real" one-form $A \in \Omega^1(M)$ and defining:

$$
\nabla_1 = \nabla - iA. \tag{2}
$$

Intuitively, this means that we are rotating the base point of a fiber in the direction of any vector field ξ with the speed $A(\xi)$. This is not a coincidence, since all connections are of this form. Basically, after choosing a reference connection ∇_0 all other connection can be written as:

$$
\nabla = \nabla_0 - iA. \tag{3}
$$

In general, for two vector fields ξ, η with $[\xi, \eta] = 0$ the operators ∇_{ξ} and ∇_{η} might not commute, which hints at the presence of curvature. For any connection ∇ we define the curvature to be the two form:

$$
F_{\nabla}(\xi,\eta) = [\nabla_{\xi},\nabla_{\eta}] - \nabla_{[\xi,\eta]}.
$$
 (4)

In the formulation of the connection one-form $\nabla = \nabla_0 - iA$, if ∇_0 is flat, we can see that:

$$
F_{\nabla} := -idA. \tag{5}
$$

A crucial result is that this two-form is always integral, meaning that integrating this two-form always gives us an integer.

The Abelian Higgs model

Let $L \to M$ be a hermitian line bundle over M. Then for any section and connection (u, ∇) we define the Yang-Mills-Higgs energy as:

$$
E(u, \nabla) = \int_M |\nabla u|^2 + |F_\nabla|^2 + \frac{(1 - |u|^2)^2}{4}.
$$
 (6)

In an equivalent formulation, for any complex valued function and a one-form (u, A) we define the energy to be:

$$
E(u, A) = \int_M |du - iu \otimes A|^2 + |dA|^2 + \frac{(1 - |u|^2)^2}{4}.
$$
 (7)

Intuitively, minimizers of this energy want a section with non trivial topology close to 1 that does not vary too much w.r.t. a connection that does not curve too much.

For any function $\gamma : \mathbb{R}^2 \to \mathbb{R}$ the transformation:

$$
(u,\nabla)\rightarrow (ue^{i\gamma},\nabla+id\gamma).
$$

leaves the energy unchanged! This is called "Gauge invariance". This means that the Abelian Higgs functional has *U*(1) as its group of symmetries.

We see later on that the phase completely decouples from the modulus and the energy.

 \triangleright But these energies are special in two dimensions!

For the rest of the talk we take $L := \mathbb{C} \times \mathbb{R}^2 \to \mathbb{R}^2$ to be the trivial line bundle over the Euclidean space and we work with the Yang Mills Higgs energy in two dimensions:

$$
E(u, \nabla) = \int_{\mathbb{R}^2} |\nabla u|^2 + |F_{\nabla}|^2 + \frac{(1 - |u|^2)^2}{4}.
$$
 (8)

Equivalently, for any function $u : \mathbb{R}^2 \to \mathbb{C}$ and real one-form (vector field) $A : \mathbb{R}^2 \to \mathbb{R}^2$:

$$
E(u, A) = \int_{\mathbb{R}^2} |du - iuA|^2 + |\text{curl}(A)|^2 + \frac{(1 - |u|^2)^2}{4}
$$
 (9)

Two dimensions is special!

With a slight abuse of notation assume that $u = re^{i\theta}$ where $r = |u|$ and $\theta : \mathbb{R}^2 \to S^1$. Then we can rewrite the energy as:

$$
E(re^{i\theta}, A) = \int_{\mathbb{R}^2} |dr|^2 + r^2|A - d\theta|^2 + |dA|^2 + \frac{(1 - r^2)^2}{4}.
$$
 (10)

Notice that $|dr|^2 = |\star dr|^2$ where \star is the Hodge star operator and in two dimensions \star of a vector-field is a one-forms. Then by a completion of squares and integrating by parts:

$$
E(re^{i\theta}, A) = \pm 2\pi N + \int_{\mathbb{R}^2} | \star dr \pm r(A - d\theta) |^2 + | \star dA \mp \frac{1-r^2}{2} |^2.
$$

Magic! Here N is the rotation number of θ at infinity or equivalently:

$$
\int_{\mathbb{R}^2} \star dA = 2\pi N.
$$

The vortex equations

After fixing an orientation we see that

 $E(u, \nabla) > 2\pi N$

and the equality happens if and only if:

$$
\star dr + r(A - d\theta) = 0 \text{ and } \star dA = \frac{1 - r^2}{2} \tag{11}
$$

These are called the first order vortex equations! Dividing the first equation by *r* and substituting in the second equation, we see that:

$$
-\Delta \ln(r) + \frac{1}{2}(r^2 - 1) = -2\pi \sum_{r(x_k)=0} \delta_{x_k},
$$

where δ_x is a point mass centered on x.

In [8] C.H.Taubes proved that, after fixing the location of zeros of *u* the solution of these equations exists and are unique:

Theorem ([8] and [9] C.H.Taubes 1980)

Given any set of points $\{a_1, \ldots, a_N\} \subset \mathbb{R}^2$ *counted with multiplicity, there exists a unique smooth solution to the vortex equation which vanishes on* $\{a_k\}_{k=1}^n$ *with degree equal to the multiplicity. Moreover all stationary points are actually minimizers.*

In other words, solutions of this model behaves like non interacting vortices in two dimensions with a fixed mass.

Methods of Taubes

Given the vortex set (zero set) $\{a_1, \ldots, a_N\}$, look at - $ln(1x-a_{k})$

$$
v = \ln(r) - \frac{1}{2} \sum_{k=1}^{N} \ln(1 + \frac{\lambda}{(x - a_k)^2})^{\sqrt{N}} \tag{12}
$$

for some positive $\lambda > 0$. Taubes showed that *v* is a stationary point for a convex functional: w^{12} R^2 \subset RMO

$$
\int_{\mathbb{R}^2} \frac{|d\nu|^2}{2} - \nu(1-g_0) + e^{u_0}(e^{\nu}-1).
$$
 (13)

where $u_0 = \frac{1}{2} \sum_{k=1}^{N} \ln(1 + \frac{\lambda}{(x-a_k)^2})$ and $g_0 = -\Delta u_0 - 2\pi \sum_{k} \delta_{x_k}$.

 \blacktriangleright Existence and uniqueness follows by standard methods.

Minimal sub-manifolds of co-dimension two

In higher dimensions and on any closed manifold *M*, this model can also be used to produce stationary sub-manifolds of co-dimension two. First we define what is a stationary submanifold:

Definition

A stationary sub-manifold $\Sigma^k \subset M^n$ is a stationary point for the *k*-dimensional area functional with respect to domain variations, precisely for any family of diffeomorphisms $\phi_t : M^n \times [0, \delta) \to M^n$ with $\phi_0 = Id$:

$$
\frac{d}{dt}\mathrm{vol}_k(\Sigma_t) = 0\,,\tag{14}
$$

where Σ_t is the pushforward of Σ w.r.t. ϕ_t .

Minimal sub-manifolds of co-dimension two

For any $\varepsilon > 0$ consider the re-scaled energy for any pair (u, ∇) :

$$
E_{\varepsilon}(u,\nabla)=\int_{M}|\nabla u|^{2}+\varepsilon^{2}|F_{\nabla}|^{2}+\frac{(1-|u|^{2})^{2}}{4\varepsilon^{2}}.
$$
 (15)

In 2019 [6] A.Pigati and D.Stern showed that given a sequence of stationary points $(u_\varepsilon, \nabla_\varepsilon)$ with vanishing $\varepsilon \to 0$ and bounded energy $E_{\varepsilon}(u_{\varepsilon}, \nabla_{\varepsilon}) \leq \Lambda$, the energy measures $e_{\varepsilon}(u_{\varepsilon}, \nabla_{\varepsilon})dx$ concentrate along a Integeral stationary sub-manifold Σ of dimension $n - 2$ (in a weak sense). In particular the analysis of these energies closely resembles Allan-Cahn. (Modica bounds & equi-distribution of energy & Integrality)

Motivating the study of stability

- \blacktriangleright For any uniqueness result one might expect some stability.
- \blacktriangleright Having a quantitative version of the inequality $E(u, \nabla) > 2\pi N$.
- \blacktriangleright (The original motivation) The regularity theory of stationary sub-manifolds (in particular Allard's [1]) and stability of slices combined with the work of Pigati and Stern [6] gives us a De-Giorgi type result (as in the Allan Cahn model) for global solutions (This is a paper in preperation with Guido De philippis and Alessandro Pigati)
- It is some nice mathematics by itself : D

Quantitative stability

What I was able to prove:

Theorem ([5] H 2023)

For any $N > 0$ *there exists* $C_N, \eta_0 > 0$ *with the following property:* Let $L := \mathbb{C} \times \mathbb{R}^2 \to \mathbb{R}^2$ *be the trivial line bundle. Then any N*-vortex section and connection (u, ∇) with small enough *discrepancy* $E(u, \nabla) - 2\pi N = \eta^2 \leq \eta_0^2$ satisfies:

$$
\min_{(u_0,\nabla_0)\in\mathcal{F}}\|u-u_0\|_{L^2(\mathbb{R}^2)}^2+\|\mathcal{F}_{\nabla}-\mathcal{F}_{\nabla_0}\|_{L^2(\mathbb{R}^2)}^2\leq C_N\eta^2\,,\qquad(16)
$$

where F is the moduli space of all solutions of the vortex equations.

First notice that by completion of squares and integrating by parts we saw (up to a change of sign):

$$
E(u, \nabla) - 2\pi N = \int_{\mathbb{R}^2} r^2 | \star d \ln(r) + A - d\theta |^2 + | \star dA - \frac{1-r^2}{2} |^2.
$$

We aim to prove that this discrepancy bounds the distance with some solution.

Question

What happens if we linearize the discrepancy?

Answer: Good things!

Linearizing

For the sake of simplicity assume that $N = 1$ and (u, A) is smooth and |*u*| vanishes on the origin comparable to $|x| \sim |u_0|$ and it is a compact perturbation of the one-vortex solution (u_0, A_0) of Taubes:

$$
|u| = |u_0|e^h \text{ for } h \in C_c^{\infty}(B_1).
$$
 (17)

Then we gauge fix such that they have equal phase:

$$
\frac{u}{|u|}=\frac{u_0}{|u_0|}
$$

(this is possible since they are comparable) Then:

$$
E(u, \nabla) - 2\pi \sim \int_{B_1(0)} |x|^2 | \star dh + B|^2 + |\star dB + |u_0|^2 h|^2. \quad (18)
$$

Notice that $(|u| - |u_0|) \sim |x| h$. So L^2 stability is a question of weighted *L*² bounds on *h*.

A proof without weight?

Since the problem is linear now, we can approach by a compactness argument, First we give a try without the presence of the weight *|x|* ². Imagine a sequence of compactly supported functions:

$$
\int_{B_1} |h_k|^2 = 1 \text{ and } \int_{B_1} |\star dh_k + B_k|^2 + |\star dB_k + r_0^2 h_k|^2 \to 0.
$$

By Hodge decomposition:

$$
\begin{array}{c}\nB_k = \star dg_k + df_k\n\end{array}
$$
 (19)
We see that:

We see that:

$$
\int_{B_1} |d(h_k+g_k)|^2 + |\Delta g_k + r_0^2 h_k|^2 \to 0.
$$
 (20)

By standard elliptic estimates we see that $||h_k||_{W^{1,2}(B_1)} \leq C$, from which compactness follows immediately.

The Abelian Higgs model and the Aria Halavatic Communication of the Aria Halavatic Communication of the Aria Halavati

Weighted Hodge decomposition

We adapt this proof to the weighted case, First we define a weighted Hodge decomposition inpired by the **variational** formulation of Hodge decomposition: For any compactly supported vector field $A : B_1 \to \mathbb{R}^2$ we consider the minimization problem:

$$
\inf_{g \in C_c^{\infty}(B_1)} \int |x|^2 |A - \star dg|^2. \tag{21}
$$

To see that:

$$
|x|A = \star |x| dg + |x|^{-1} df \qquad (22)
$$

and the orthogonality:

$$
\int_{B_1} |x|^2 |A|^2 = \int_{B_1} |x|^2 |dg|^2 + |x|^{-2} |df|^2. \tag{23}
$$

This turns out to be just the right decomposition for our problem!

Weighted Hodge decomposition

Now again by a compactness argument imagine a sequence:

$$
\int_{B_1}|x|^2|h_k|^2=1 \text{ and } \int_{B_1}|x|^2|\star dh_k+B_k|^2+|\star dB_k+r_0^2h_k|^2\to 0\,.
$$

Then we perform the weighted Hodge decomposition and the standard Hodge decomposition:

$$
|x|B_k = x|x|dg_k + |x|^{-1}df_k \text{ and } B_k = xdp_k + dq_k
$$

and rewrite the discrepancy:

$$
\int_{B_1}|x|^2|d(h_k+g_k)|^2+|x|^{-2}|df_k|^2+|\Delta p_k+r_0^2h_k|^2\to 0
$$

Compactness

$$
\int_{B_1}|x|^2|d(h_k+g_k)|^2+|x|^{-2}|df_k|^2+|\Delta p_k+r_0^2h_k|^2\to 0
$$

To gain compactness from the quantity above we use a result of H [4] to see that we can quantify the distance of the standard and weighted Hodge decomposition:

$$
|x|B_k = x|x|dg_k + |x|^{-1}df_k \text{ and } B_k = dp_k + dq_k
$$

$$
\int_{B_1} |x|^{2+2\varepsilon} |d(g_k - p_k)|^2 \le C\varepsilon^{-2} \int_{B_1} |x|^{-2} |df_k|^2
$$

This gives us the desired compactness for the discrepancy and the conclusion!

Weighted inequalities

The tool we used is:

Theorem ([4] H. 2023)

For any function $f \in C_c^{\infty}(B_1)$ *:*

$$
\int_{B_1}|x|^{2+2\varepsilon}|df|^2\leq C\varepsilon^{-2}\int_{B_1}|x|^4|\Delta f|^2
$$

Moreover in [4] the inequality above is generalized with **uniform** constants for all weight ω on a 2-manifold that satisfy:

$$
-\omega^2 \Delta \ln(\omega) = 0. \tag{24}
$$

This covers all weights $\prod_{k=1}^{N} |x - x_k|^{\alpha_k}$ for $x_k \in \mathbb{R}^2$ and $\alpha_k > 0$. These inequalities can be thought of as generalizations to the interpolation results of Cafarelli-Kohn-Nirenberg [2].

Using Theorem 1.4 of [4] we can show the same stability for linearized equation in the case of many vortices:

Theorem ([5] H 2023)

For any Λ , N *there exists* $C_{N,\Lambda}$, η_0 *with the following property: Let* (u, ∇) be an N-vortex pair with small enough discrepancy $E(u,\nabla) - 2\pi N = \eta^2 \leq \eta_0^2$ such that $\Lambda^{-1}|u| \leq |u_0| \leq \Lambda|u|$, where (u_0, ∇_0) *is an N-vortex solution of Taubes. Then:*

$$
||u - u_0||^2_{L^2(\mathbb{R}^2)} + ||F_{\nabla} - F_{\nabla_0}||^2_{L^2(\mathbb{R}^2)} \leq C_{N,\Lambda} \eta^2,
$$

We showed that if $|u|$ is comparable to a vortex solution, we can linearize the problem and deduce quantitative stability.

Question

Given a pair (u, ∇) with small enough discrepancy, can we find a comparable pair nearby?

The answer is Yes!

Generalizing to non-regular pairs

To generalize to all pairs with small discrepancy:

- \triangleright We first show that any N vortex pair with small enough discrepancy can be uniformly approximated by $C^{N,\alpha}$ pairs with sharp estimates.
- \blacktriangleright Then we show that a pair with uniform C^N estimates and small enough discrepancy is comparable to some Taubes solution.
- \triangleright We inspire from techniques of the proof the quantitative isoperimetric inequality in [3].

The idea is that for any (*u, A*) we solve a new variational problem:

$$
\min_{(u_1,\nabla_1)} E(u_1,A_1) + \|u_1-u\|_{L^2(\mathbb{R}^2)}^2 + \|A_1-A\|_{L^2(\mathbb{R}^2)}^2 \qquad (25)
$$

to find a new pair (u_1, A_1) with more regularity. The remarkable fact is that, since the original pair (u, A) is a competitor, then:

$$
E(u_1, A_1) + ||u_1 - u||^2_{L^2(\mathbb{R}^2)} + ||A_1 - A||^2_{L^2(\mathbb{R}^2)} \leq E(u, A).
$$
 (26)

iterating this process, we get a final pair (u_M, A_M) with $|u_M|_{C^{N,\alpha}} \leq C_N$ in some local comloumb gauge.

Perturbation of complex polynomials

- It is not hard to show that functions $f : \rightarrow B_1 \subset \mathbb{C} \rightarrow \mathbb{C}$ that are close enough to z in $C¹$ topology are comparable to $|z - b|$ for some $b \in \mathbb{C}$.
- \blacktriangleright This can be generalized: Function that are close enough to $\prod_{k=1}^{N}$ ($z - a_k$) in C^N topology are uniformly comparable to some $\prod_{k=1}^{N} (z - b_k)$.
- \triangleright Since vortex solutions are comparable to modulus complex polynomials, we can see that for any pair with small enough discrepancy, we can find a pair quantitatively close to our original pair that satisfies stability.
- ▶ We are Done!

Thank you

Thank you for your attention!

References

Allard, W. K.

On the first variation of a varifold. *Annals of Mathematics 95*, 3 (1972), 417–491.

Caffarelli, L., Kohn, R., and Nirenberg, L.

First order interpolation inequalities with weights. *Compositio Mathematica 53*, 3 (1984), 259 – 275.

Cicalese, M., and Leonardi, G. P.

A selection principle for the sharp quantitative isoperimetric inequality. *Archive for Rational Mechanics and Analysis 206*, 2 (2012), 617 – 643.

Halavati, A.

Halavati, A.

Quantitative stability of yang mills higgs instantons in two dimensions. *arxiv preprint* (2023).

Pigati, A., and Stern, D.

Minimal submanifolds from the abelian higgs model. *Inventiones mathematicae 223*, 3 (2021), 1027 – 1095.

Simms, D., and Woodhouse, N.

Lectures on geometric quantization. Lecture notes in physics. Springer, 1976.

Taubes, C. H.

Arbitrary n-vortex solutions to the first order ginzburg-landau equations. *Communications in Mathematical Physics 72*, 3 (1980), 277 – 292.

Taubes, C. H.

On the equivalence of the first and second order equations for gauge theories. *Communications in Mathematical Physics 75*, 3 (1980), 207 – 227.

