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Abstract. We prove that if an N-vortex pair nearly minimizes the Yang-Mills-Higgs

energy, then it is second order close to a minimizer. First we use new weighted

inequalities in two dimensions and compactness arguments to show stability for

sections with some regularity. Second we define a selection principle using a penalized

functional and by elliptic regularity and smooth perturbation of complex polynomials,

we generalize the stability to all nearly minimizing pairs. With the same method,

we also prove the analogous second order stability for nearly minimizing pairs on

nontrivial line bundles over arbitrary compact smooth surfaces.
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2 A. HALAVATI

1. Introduction

1.1. Background and main results. Let (u,∇) be a section and connection on the

trivial line bundle R2 × C → R2. The self-dual U(1)-Yang-Mills-Higgs functional after a

suitable re-scaling is

E(u,∇) =

ˆ
R2

|∇u|2 + |F∇|2 +
(1 − |u|2)2

4
,(1.1)

where F∇ is the curvature two-form of ∇ (see Section 2 for details). One can show that

in two dimensions the energy is lower bounded by a topological constant (see [1, 30])

E(u,∇) ≥ 2π|N | ,(1.2)

where N = deg(u) is the rotation number of u
|u| at infinity (Which is well defined when

the energy (1.1) is finite, see Lemma 2.1). It is well known that minimizers of this

functional satisfy a system of first order vortex equations, also known as the Bogomolny

equations. In his PhD thesis ([30, 31]) C.H.Taubes shows that after prescribing the zero

set, the solution exists and is unique, up to a change of gauge (see also [19]). Later in

[26], A.Pigati and D.Stern consider the ε-rescaled Yang-Mills-Higgs energy in higher

dimensions:

Eε(u,∇) =

ˆ
Mn

|∇u|2 + ε2|F∇|2 +
(1 − |u|2)2

4ε2
,

where Mn is a compact Rimmannian n-manifold and they use this energy to construct

minimal sub-manifolds of co-dimension two. Precisely, they show that in the ε → 0

limit, the energy measure of critical points with uniformly bounded energy converge

sub-sequentially to an integer rectifiable stationary varifold V of co-dimension two.

Moreover they show that the currents dual to the curvature two-form converge to an

integer rectifiable (n− 2)-cycle Γ with |Γ| ≤ µV .

As a first step towards understanding the quantitative behavior of minimizers of the

ε-rescaled energy in higher dimensions and regularity properties of the vortex set via a

blow-up analysis, it is necessary to have a complete understanding of the stability of the

energy (1.1) in two dimensions for arbitrary pairs. In fact, these estimates are mainly

motivated by their importance in [8]. Roughly speaking, for an almost flat critical point

of the re-scaled functional (1.3) in dimension n ≥ 3, transversal 2-dimensional slices

nearly minimize the two dimensional energy, with an error quantified by the flatness.

For any sharp functional inequality it is also natural to ask ”Can we estimate the

distance to critical points by the discrepancy between the left and right hand side for

some appropriate notion of distance?”.

For instance this question has been extensively studied for the isoperimetric inequality

(see [5, 6, 10, 12, 13, 11, 14, 24]) via methods of PDE and symmetrization. In [6] Cicalese

and Leonardi use a penalization technique and regularity theory for quasi-minimizers

of the perimeter to find uniform C1 approximations of sets, for which they use PDE
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techniques to prove stability. The methods in this article are partly inspired from this

approximation technique (see Section 4).

We first observe in Section 2 that the discrepancy is

E(u,∇) − 2πN =

ˆ
R2

r2| ⋆ d log(r) +A− dθ|2 + | ⋆ dA− 1 − r2

2
|2 ,

where r = |u| and A is the real connection one-form of ∇ : d − iA. This leads us to

investigate the perturbed vortex equations:

⋆d log |u| +A− dθ =
f1
|u|

and ⋆ dA− 1 − |u|2

2
= f2 ,(1.3)

for some f1, f2 in L2(R2). The main difficulty is the error term f
|u| for which Muckenhoupt

theory [7] and Caffarelli-Kohn-Nirenberg inequalities [4] fall short.  Lojasiewicz inequalities

are also a possible technique (as used in classical GMT applications e.g. by L. Simon in

[28]). However obtaining the inequality with the sharp power (such as the techniques of

Topping in [33]) is rather difficult. However we are able to improve the existence and

known results to the following sharp stability:

Theorem 1.1. For any integer N there exists a constant C|N | > 0 such that for any

section and connection (u,∇) ∈W 1,2
loc (R2) on the trivial line bundle L = R2 × C → R2

with deg(u) = N and small enough discrepancy E(u,∇) − 2π|N | we have that:

min
(u0,∇0)∈F

∥u− u0∥2L2(R2) + ∥F∇ − F∇0∥2L2(R2) ≤ C|N | [E(u,∇) − 2π|N |] ,

where (up to a conjugation) F is the family of all N-vortex minimizers of the Yang-

Mills-Higgs energy.

The proof relies on two main tools: Weighted elliptic inequalities of [16] (Recalled in

Appendix B), in particular the weighted Hodge decomposition and a selection principle

(inspired by [6]) using a penalized functional (see Section 4). Roughly speaking, this

method is analogous to running the gradient flow for unit time. However the proof of

existence for minimizers of the penalized functional (4.1) is straightforward as apposed

to existence of the gradient flow (especially on an unbounded domain).

As a by product of these methods, we also prove a weighted Sobolev stability for

regular enough pairs in the following theorem:

Theorem 1.2. For any Λ > 1 and integer N , there exists constants CΛ,|N |, ηΛ,|N | > 0

with the following property. Let (u,∇) ∈W 1,2
loc (R2) be an N -vortex section and connection

such that

(i) ⋆d
(

( u
|u|)

∗(dθ)
)

= 2π
∑|N |

k=1 δxk
for a collection of points {xk}

|N |
k=1 ⊂ R2 counted

with multiplicity.

(ii) E(u,∇) − 2π|N | ≤ η2Λ,|N |,

(iii) Λ−1|u0| ≤ |u| ≤ Λ|u0| for some N -vortex solution (u0,∇0) with {xk}
|N |
k=1 as the

zero set (counted with multiplicity).
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Then for any 0 < ε < 1
Nˆ

R2

|u0|2+2ε

[∣∣∣∣d log

(
|u|
|u0|

)∣∣∣∣2 + |A0 −A|2
]
≤
CΛ,|N |

ε2
[E(u,∇) − 2π|N |] ,

up to a choice of ±A.

Remark. The assumption (i) is satisfied if u
|u| ∈ W 1,1

loc (R2). This is in fact a direct

consequence of [20, Theroem 1.2]. However it is not clear if (i) can be inferred from (ii)

and (u,∇) ∈W 1,2(R2).

A central tool in the analysis of the abelian Higgs model in any dimension n is the

Yang-Mills-Higgs Jacobian J(u,∇), which is a two-form defined as follows:

J(u,∇)(j, k) := ⟨2i∇ju,∇ku⟩ + ω(j, k)(1 − |u|2) , for all 1 ≤ j < k ≤ n ,

where ω is the real curvature two-form associated to the connection ∇. It is the analogue of

the Jacobian in the Ginzburg-Landau model (see [21]). In Section 3.3 using Theorem 1.2,

we prove the second order stability of the Jacobian for regular pairs:

Theorem 1.3. For any Λ > 1 and integer N there exists constants CΛ,|N |, ηΛ,|N | > 0

such that for any (u,∇) ∈ W 1,2
loc (R2) satisfying (i),(ii) and (iii) in Theorem 1.2 the

following estimate holds:ˆ
R2

|J(u,∇) − J(u0,∇0)| ≤ CΛ,|N |
√
E(u,∇) − 2π|N | ,

up to a conjugation of u.

To prove an improvement of flatness type result in [8], we rely on energy comparison

with the pull-back of the two dimensional solution via a suitable harmonic competitor. The

key difficulty there is to attach the boundary data which uses Theorem 1.1, Theorem 1.2

and Theorem 1.3 as the main ingredients (See [8, Proposition 10.2]).

For a non-optimal  Lojasiewicz-type inequality for Yang-Mills-Higgs energy in complex

geometry see [9, Section 1.3.3]. Related to the estimates in this paper, in [29, Section 3],

D.Stuart defines a corrected Hessian for the Yang-Mills-Higgs energy (to mod out the

gauge freedom) and derives coercive estimates. Further studies on the Yang-Mills-Higgs

energy on Kähler manifolds has been done in [17, 22, 2]. For stability type results on

the Yang-Mills functional we refer the reader to [32, 34]. It is also worthy to mention

the articles [26, 25] for results connecting the variational theory of the re-scaled Yang-

Mills-Higgs functional and minimal surfaces and [27] for the magnetic Ginzburg-Landau

theory.

At the present we do not know how to obtain the estimates of Theorem 1.2 for the

case ε = 0. The reason is that the embeddings of Proposition B.2 are no longer compact

for ε = 0. The stability in this problem is also deeply related to Poincaré inequalities on

the unbounded one-sided cylinder R+ × S1 via the log-polar coordinate, which fail to

be true. However by increasing the power in the weight by a factor of ε, analogously,
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assigning an exponentially decaying weight on the height e−εt : (t, θ) ∈ R+ × S1 → R+,

we are roughly compactifying the domain with a total measure of order ε−2. This also

serves as an intuition for the factor in the right hand side of Theorem 1.2. However the

power 2 is sharp. We also state the following problem:

Open problem. Do the estimates of Theorem 1.2 fail for the case ε = 0? In particular,

does there exists a sequence of N -vortex pairs {(uk,∇k)}∞k=1 such that the sharp stability

fails in the following sense

lim
k→∞

E(uk,∇k) = 2π|N | and lim
k→∞

E(u,∇) − 2π|N |
min(u0,∇0)∈F ∥du− du0∥2L2(R2)

= 0 .

1.2. Results on compact surfaces. The Bogomolny trick also works on nontrivial

line bundles L→M over closed surfaces. In this case the energy is lower bounded by

the degree of the line bundle:

E(u,∇) ≥ 2π|deg(L)| .(1.4)

In this case the vortex equations take the same form:

∇∂1u+ i∇∂2u = 0 and ⋆ F∇ =
1 − |u|2

2
.(1.5)

Integrating the second equation over M , we see that:

| deg(L)| ≤ 1

4π
vol(M) .

In [15] Garćıa-Prada obtained the analogues existence and uniqueness (for a slightly

generalized functional) provided that the above constraint is satisfied. In this article we

also prove the analogues stability, in the following theorem:

Theorem 1.4. Let (M, g) be a smooth compact Riemann surface and L → M a

Hermitian line bundle over M with | deg(L)| ≤ 1
4πvol(M). Then there exists a constant

CM > 0 with the following property: Let (u,∇) be a section and connection on L such

that E(u,∇) − 2π|deg(L)| is small enough, then:

min
(u0,∇0)∈F

∥u− u0∥2L2(M) + ∥F∇ − F∇0∥2L2(M) ≤ CM [E(u,∇) − 2π| deg(L)|] ,

where (up to a conjugation) F is the family all minimizers of the Yang-Mills-Higgs

energy on L→M .

Similarly for compact Riemann surfaces, we have the following result for regular pairs:

Theorem 1.5. Let (M, g) be a smooth compact Riemann surface and L → M a

Hermitian line bundle over M with |deg(L)| ≤ 1
4πvol(M). For any Λ > 1, there exists

CΛ,M , ηΛ,M > 0 with the following property. Let (u,∇) ∈W 1,2
loc (M) be a pair such that

(i) ⋆d
(

( u
|u|)

∗(dθ)
)

= 2π
∑|deg(L)|

k=1 δxk
for a collection of points {xk}

|deg(L)|
k=1 ⊂ M

counted with multiplicity.

(ii) E(u,∇) − 2π|deg(L)| ≤ η2Λ,M ,
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(iii) Λ−1|u0| ≤ |u| ≤ Λ|u0| for some solution (u0,∇0) with {xk}
| deg(L)|
k=1 as the zero

set (counted with multiplicity).

Then for any 0 < ε < 1
N :

ˆ
M

|u0|2+2ε

[∣∣∣∣d log

(
|u|
|u0|

)∣∣∣∣2 + |A0 −A|2
]
≤
CΛ,M

ε2
[E(u,∇) − 2π|deg(L)|] .

up to a conjugation of u. Moreover the following inequality holds for the Jacobian:ˆ
M

|J(u,∇) − J(u0,∇0)| ≤ CΛ,M

√
E(u,∇) − 2π|deg(L)| .

1.3. Outline of the proof. Here we give an overview of the plan of the paper:

Step 1. In Section 2 we prove that the degree is well defined for pairs with finite

energy. Then we re-derive the first order vortex equations (2.4) and subsequently the

PDE (2.6) and we define the discrepancy (2.5). Then in Proposition 2.3 we show that

solutions are locally comparable to ΠM
k=1|x− ak|.

Step 2. Here we explain the case of just one vortex for the sake of clarity. The

ideas carry over to the case of multi vortex situations, since the elliptic and Poincaré

type inequalities of [16] (recalled in Appendix B) have uniform and explicit constants.

Now assume that u = ehu0 for a compactly supported real valued h ∈ C∞
c (B1(0))

and a one-vortex solution u0 centered at the origin. In this case after a suitable gauge

transformation we can linearize the discrepancy E(u,∇) − 2π = η2 as follows

η2 ∼
ˆ
B1

|x|2| ⋆ dh+B|2 + | ⋆ dB + V (x)h|2 ,

where h = log
(

|u|
|u0|

)
and B = A−A0 and C−1|u0|2 ≤ V (x) ≤ C|u0|2.

Now if the right hand side is zero, the first term tells us that ⋆dh = −B. Then we

substitute this in the second term to see that −∆h+ V (x)h = 0; testing this PDE with

h and integrating by parts, we conclude that h = 0.

Now we aim to make this quantitative. First it is instructive to see the compactness

argument if the first term was not weighted: Arguing by contradiction and scaling, we

can assume that ∥h∥L2 = 1 while η → 0. Then we see that ⋆dh is uniformly close in L2

topology to the co-exact part of −B, for which we have uniform W 1,2 bounds using the

second term. Then we conclude that h (up to extracting a sub-sequence) converges to

zero, strongly in L2. The idea is to adapt this proof to the weighted case.

For this purpose we introduce a |x|2-weighted Hodge decomposition of B as the

minimizer of the following weighted functional

inf
v∈W 1,2

0 (|x|2,B1)

ˆ
B1

|x|2|B − ⋆dv|2 ,

where W 1,2(|x|2, B1) is the |x|2-weighted Sobolev space (for details, see Appendix B).

With the direct method in the calculus of variation and Theorem B.1 we guarantee the
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existence of a minimizer. Then the Euler Lagrange equations of minimizers tells us that:

|x|B = ⋆|x|dv + |x|−1df and B = ⋆dp+ dq .

Then we rewrite the linearized discrepancy using these identities. To be more precise

we use the weighted Hodge decomposition for the first term and the standard Hodge

decomposition for the second term:

η2 ∼
ˆ
B1

|x|2|d(h+ v)|2 + |x|−2|df |2 + |∆p+ |u0|2h|2 .(1.6)

Then we apply the weighted elliptic estimates of [16] recalled in Proposition B.2 and we

estimate the distance of the weighted and the standard Hodge decomposition as follows:ˆ
B1

|x|2+2ε|d(v − p)|2 ≤ C

ε2

ˆ
B1

|x|−2|df |2 ≤ C

ε2
η2 ,

for any ε > 0. With this and (1.6) we get the uniform W 1,2(B1) estimates needed for

|x|1+εh near the vortex set to gain compactness.

To generalize this heuristic to many vortices, we note that all weights of the form

ΠM
k=1|x− ak|αk with αk > 0 satisfy the condition (B.1) to apply Theorem B.1.

Then with a concentration compactness type argument we glue the local weighted

estimates near the vortex set and uniform elliptic estimates far from the vortex set to

conclude the stability for regular sections.

Step 3. In Section 4 we generalize the stability to require only that the pair

(u,∇) ∈W 1,2
loc (R2) nearly minimizes the energy. We use a selection principle and construct

a new pair (u1,∇1) by a finite iterative process of replacing (u,∇) with the minimizer

of the auxiliary functional

E(u1, A1) + ∥u1 − u∥2L2(R2) + ∥A1 −A∥2L2(R2) .

By Lemma 4.4 we gain some regularity at each step so after finitely many steps we

have a pair (ũ, ∇̃) with uniform CN,α bounds in the local Coulomb gauge. Arguing

by contradiction and Arzela-Ascoli we conclude that with small enough discrepancy

u1 is close enough to u0 in CN topology. Since u0 is analytic, we see that u1 is a CN

perturbation of a complex polynomial with degree ≤ N . We then apply Lemma A.1 to

see that CN perturbations of complex polynomials with degree M ≤ N are uniformly

comparable to another complex polynomial. This reduces the problem to Theorem 3.1

in Section 3.

Step 4. We show that the methods above can be adapted, with little to no modifica-

tion, to prove stability for nontrivial line bundles over arbitrary smooth compact Riemann

surfaces. Here instead of polynomials, we use weights of the form Πn
k=1e

−αkGxk
(x) with

αk > 0, where Gx(y) is the Green’s function for a domain Ω ⊂M in a Compact Riemann

surface M . Note that in two dimensions, the Green’s function for the Laplacian is

proportional to − log d(x, y), where d(x, y) is the geodesic distance between x, y on M ;
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so essentially we work with weights proportional to Πn
k=1d(x, xk)αk . Notice that estimates

of Appendix B work with universal constants on any surface with boundary.

2. The vortex equations

We work on Hermitian line bundles over smooth manifolds; on the trivial bundle

L = C× R2, we can always write a metric connection ∇ as

∇ = d− iA,

for a real-valued one-form, meaning that ∇ξs = ds(ξ) − iα(ξ)s.

In general, for two vector fields ξ and η, typically ∇ξ and ∇η do not commute, meaning

that the connection has nontrivial curvature. Formally, the curvature F∇ is given by

F∇(ξ, η)(s) = [∇ξ,∇η]s−∇[ξ,η]s.(2.1)

A simple computation shows that F∇ is a two-form with values in imaginary numbers;

we will sometimes use the real-valued two-form ω given by

F∇(ξ, η)(s) =: −iω(ξ, η)s.(2.2)

On the trivial bundle, if ∇ = d− iA then we simply have

ω = dA.

Notice that the Yang-Mills-Higgs energy functional (1.1) enjoys the gauge invariance

(u,∇) → (ueiξ,∇− idξ) ,

for any compactly supported function ξ ∈ C∞
c (R2). Moreover, after fixing the connection

one-form ∇ : d− iA we can rewrite the energy (1.1) as follows:

E(u,A) =

ˆ
R2

|du− iu⊗A|2 + |dA|2 +
(1 − |u|2)2

4
.

The one-form A is sometimes called the magnetic vector potential. Observe that if

u = reiθ the energy can also be written in the following form:

(2.3) E(reiθ, A) =

ˆ
R2

|dr|2 + r2|A− dθ|2 + |dA|2 +
(1 − r2)2

4
.

Note that θ cannot be defined globally, however dθ is defined by pulling back the tangent

vector to S1 by the map u
|u| .

In [30] C.H.Taubes proves existence and uniqueness for minimizers of (1.1) using the

vortex equations which are as follows (up to a conjugation or a change of orientation):

(2.4) ⋆dr = −r(A− dθ) ⋆ dA =
1 − r2

2
.
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2.1. The degree and the discrepancy for finite energy pairs. In the following

lemma using the trick of Bogomolny [1] we first prove that pairs (u,∇) ∈W 1,2
loc (R2) with

finite energy have globally well-defined degree. Moreover we also derive the discrepancy

and the vortex equations.

Lemma 2.1. Let (u,∇) ∈W 1,2
loc (R2) be a pair of section and connection on the trivial

line bundle C× R2 with finite energy (1.1) E(u,∇) = Λ < ∞ and u = reiθ (for some

θ : R2 → S1) and ∇ : d− iA. Then:

(i) The degree of u, namely deg(u) = N is globally well defined.

(ii) The integral in (1.1) or equivalently (2.3) (possibly after a conjugation of u) can

be rewritten as:

E(reiθ, A) = 2π|N | +

ˆ
R2

| ⋆ dr + r(A− dθ)|2 + | ⋆ dA− 1 − r2

2
|2 .(2.5)

Proof. We use the notation u = reiθ and ∇ = d − iA as defined above. Note that

(u,∇) ∈W 1,2
loc (R2) ⊂ VMOloc(R2), which is the space of functions with locally vanishing

mean oscillation. We know from [3, II.2 Property 2] that the degree is locally well

defined. We need to show that it is also globally well-defined. First name the sub-level set

Z1/2 = {r < 1/2} with the disjoint open and connected components Z1/2 =
⋃∞

j=1 Ω
1/2
j .

By the Coarea formula we have that:
ˆ 1/2

0

∞∑
j=1

H1
(
{r = t} ∩ Ω

1/2
j

)
dt =

ˆ
Z1/2

|dr| ≤ C

ˆ
Z1/2

|dr|2 +
(1 − r2)2

4
≤ CΛ

Then by the mean value theorem we can find some threshold 1
4 < β < 1

2 such that∑∞
j=1H1(∂Ωβ

j ) < CΛ . Here Zβ =
⋃∞

j=1 Ωβ
j are the disjoint connected components of

Zβ = {|u| < β}. Now since perimeter bounds diameter we can see that:

∞∑
j=1

diam(Ωβ
j ) < CΛ .

Since each Ωβ
j has finite diameter, we can see that the degree deg(u, ∂Ωβ

j ) is well defined

on each domain. Now we proceed with a Cauchy-Schwartz and Stokes theorem:

∞ > Λ ≥
∞∑
j=1

ˆ
Ωβ

j

|dr|2 + r2|A− dθ|2 + |dA|2 +
(1 − r2)2

4

≥ C

∞∑
j=1

∣∣∣∣∣
ˆ
Ωβ

j

dA
(β2 − r2)

2
− r ⋆ dr ∧ (A− dθ)

∣∣∣∣∣
= C

∞∑
j=1

∣∣∣∣∣
ˆ
Ωβ

j

dA
(β2 − r2)

2
+ ⋆d(β2 − r2) ∧ (A− dθ)

∣∣∣∣∣
= C

∞∑
j=1

∣∣∣∣∣
ˆ
Ωβ

j

d(dθ)(β2 − r2)

∣∣∣∣∣ = Cβ2
∞∑
j=1

|deg(u, ∂Ωβ
j )|



10 A. HALAVATI

The last line follows from
´
Ωβ

j
d(dθ) =

´
∂Ωβ

j
∂τθ = deg(u,Ωβ

j ). This tells us that only

finitely many of the domains Ωβ
j have non-zero degree. Hence we can see that the degree

is also globally well-defined. We also name

deg(u) = N .

To prove the second point, we again replace |dr|2 with |⋆dr|2 and complete the squares

in (2.3):

E(reiθ, A) =

=

ˆ
R2

| ⋆ dr|2 + r2|A− dθ|2 + |dA|2 +
(1 − r2)2

4

=

ˆ
R2

| ⋆ dr + r(A− dθ)|2 + | ⋆ dA− 1 − r2

2
|2 − 2rdr ∧ (A− dθ) + dA(1 − r2) .

Using d(1 − r2) = −2rdr and Stokes theorem and noticing thatˆ
R2

−2rdr ∧ (A− dθ) + dA(1 − r2) ≤ CE(u,∇) <∞ ,

we see that:

E(reiθ, A) =

ˆ
R2

| ⋆ dr + r(A− dθ)|2 + | ⋆ dA− 1 − r2

2
|2 + d(dθ)(1 − r2) .

For any compact set K ∈ R2\{r = 0} we see that dθ ∈W 1,2(K) hence d(dθ) is supported

on the zero set of r we can see that:ˆ
R2

d(dθ)(1 − r2) =
∞∑
j=1

ˆ
Ωβ

j

d(dθ)(1 − r2) =
∞∑
j=1

ˆ
Ωβ

j

d(dθ) = 2π deg(u) .

Then after a possible conjugation of u we see that

E(reiθ, A) = 2π|deg(u)| +

ˆ
R2

| ⋆ dr + r(A− dθ)|2 + | ⋆ dA− 1 − r2

2
|2 .

We get equality if and only if:

⋆dr = −r(A− dθ) ⋆ dA =
1 − r2

2
.

These are called the first order vortex equations. □

Remark 2.2. Assuming sufficient decay for |∇u|(x) as |x| → ∞ (see the conditions in

[19, Chapter II, Theroem 3.1]) we can also see that:ˆ
R2

dA = 2πN .

For a detailed discussion see [19, Chapter II.3]. But here we do not need this result.

Notice that even if dA is sufficiently close to an integral two-form in L2(R2), since R2 is

unbounded, one can draw no conclusions on the integrality of dA.
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2.2. Estimates on solutions of the vortex equations. In the sequel without loss of

generality, we assume that N ≥ 0 after a possible conjugation of u. Here we first prove

that solutions of the vortex equations are comparable to modulus of polynomials on

their sublevel sets. We collect these information in the following lemma:

Proposition 2.3. There exists a constant CN > 1 depending only on N ≥ 0 with the

following property: Let (u0,∇0) be a solution to the vortex equations (2.4) as in [30]

with the prescribed zero set x1, . . . , xN ∈ R2 counted with multiplicity. Then there exists

M ≤ N balls {Bρk(zk)}Mk=1 and some 1
4 ≤ β ≤ 1

2 such that:

(i) Zβ = {|u0| ≤ β} ⊂
⋃M

k=1Bρk(zk) ,

(ii) B2ρi(zi) ∩B2ρj (zj) = ∅ for all 1 ≤ i < j ≤M ,

(iii) 1 ≤ ρk ≤ CN for all 1 ≤ k ≤M ,

(iv) C−1
N ωk ≤ |u0| ≤ CNωk in B2ρk(zk), s.t. ωk(x) = Πxi∈Bρk

(zk)|x − xi| for all

1 ≤ k ≤M .

Proof. First we estimate the measure of {|u| ≤ 1
2}. Then we use the co-area formula and

a mean value theorem to find a sub-level set {|u| ≤ β} set with bounded total perimeter.

Then we cover them with non intersecting balls and use (2.6) and the maximum principle.

Name r0 = |u0|; by the vortex equations, we know that r0 is a solution of the following

−∆ log(r0) +
1

2
(r20 − 1) = −

N∑
i=1

2πδxi ,(2.6)

where {x1, . . . , xN} ⊂ R2 is the zero set of r0 (counted with multiplicity) and δx is a

point-mass on x ∈ R2. Define the sub-level set and its disjoint connected components

Zβ = {r0 ≤ β} =
⋃∞

j=1 Z
j
β . Then we multiply (2.6) by r20 − β2 and integrate by parts on

each Zj
β:

0 ≤
ˆ
Zj
β

2|dr0|2 +
1

2
(1 − r20)(β2 − r20) = 2πβ2Kj .

Here Kj is the number of zeros in Zj
β; if Kj = 0 we see that r0 = β on Zj

β and

since solutions of the vortex equations are analytic (by [30, Proposition 6.1]), unique

continuation tells us that r0 = β globally, which is a contradiction if β < 1 or N ̸= 0;

so we conclude that Kj ≥ 1 for finitely many js. This means that there are at most N

connected components of Zβ for all β < 1.

Now we sum the estimates on Z 3
4
:

|Z 1
2
| +

ˆ
Z 1

2

|dr0|2 ≤ C

ˆ
Z 3

4

2|dr0|2 +
1

2
(1 − r20)(

9

16
− r20) ≤ CN .
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By the co-area formula and mean-value theorem we get that there exists some 1
4 ≤ β ≤ 1

2

such that:

H1(∂Zβ) ≤ C

ˆ 1
2

1
4

H1(∂Zs)ds ≤ C

ˆ
Z 1

2

|dr0| ≤ C|Z 1
2
|
1
2
( ˆ

Z 1
2

|dr0|2)
1
2 ≤ CN .

Since the set Zβ has at most N connected components {Zj
β}

M
j=1 for some M ≤ N we

get that max1≤j≤M diam(Zj
β) ≤ CN . Then we find M balls Br(z1), . . . , Br(zM ) with

1 ≤ r ≤ CN whose union covers Zβ ⊂ ∪M
i=1Br(zi) and zi ∈ Zβ . To find the balls covering

Zβ satisfying the assumptions, at each step we replace any two balls Bri(zi), Brj (zj)

that, if dilated, intersect B2ri(zi) ∩B2rj (zj) ̸= ∅ with the ball B3(ri+rj)(
zi+zj

2 ). Since at

each step the number of balls decreases, this procedure stops at maximum N − 1 steps.

Notice that in each step max(ri) increases at most by a factor of 6 so we are left with

M ≤ N balls Bρ1(zi), . . . , BρM (zM ) such that 1 ≤ ρi ≤ CN .

Now for each 1 ≤ j ≤ M define the weight ωj = Π
Kj

i=1|x− xi| where x1, . . . , xKj are

the zeros of r0 in the ball Bj
ρj (zj). Then we estimate ∥ log(ωj)− log(r0)∥

L∞(Bj
2ρ(zj))

using

(2.6):

−∆h =
1

2
(1 − r20) in Bj

2ρj
(zj) ,

h = log(r0) − log(ωj) .

Notice that by (2.6) we have ∆r20 = 4|dr0|2 − r20(1 − r20) and with an application of the

maximum principle and
´
R2 |dr0|2 <∞ we can see that r0 ≤ 1. We then notice that:

−∆h ≥ 0 and − ∆(h− ρ2j +
1

4
|x− zj |2) ≤ 0 in Bj

2ρj
(zj) .

By the weak maximum principle we get the estimates below:

∥h∥
L∞(Bj

2ρj
(zj))

≤ ρ2j + sup
∂Bj

2ρj
(zj)

|h| ≤ C2
N + sup

∂Bj
2ρj

(zj)

| log(r0)| + | log(ωj)| .

From the bound on β ≥ 1
4 we know that ∂Bj

2ρj
(zj) ⊂ Zc

β ⊂ {r0 > 1
4} and this yields

an upper bound on | log(r0)| on the boundary of the ball. Since {x1, . . . , xKj} ∈ Bj
ρj (zj)

and ρj ≥ 1, we get a lower bound for ωj which combined with ρj ≤ CN gives us an

upper bound on | log(ωj)|. Finally we estimate:

∥h∥
L∞(Bj

2ρj
(zj))

≤ CN ⇒ e−CNωj ≤ r0 ≤ eCNωj in Bj
2ρj

(zj) ,

and conclude. □

3. Stability of regular pairs

In this section we show stability under some regularity conditions:

Theorem 3.1. For any Λ > 1 and N ∈ N there exists ηΛ,N , CΛ,N > 0 with the following

property. Let (u,∇) be a section and connection on the trivial line bundle C× R2 → R2

that satisfy:
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(i) ⋆d
(

( u
|u|)

∗(dθ)
)

= 2π
∑N

k=1 δxk
for a collection of points {xk}

|N |
k=1 ⊂ R2 counted

with multiplicity.

(ii) E(u,∇) − 2πN ≤ η2Λ,N ,

(iii) Λ−1|u0| ≤ |u| ≤ Λ|u0| for some N -vortex solution (u0,∇0) with {xk}
|N |
k=1 as the

zero set (counted with multiplicity).

Then:

∥|u| − |u0|∥2L2(R2) + ∥F∇ − F∇0∥2L2(R2) ≤ CΛ,N [E(u,∇) − 2πN ] .

We divide the proof of this theorem to two parts. In the first part we deal with

estimates near the vortex set and in the second part we combine these estimates with

uniform elliptic estimates far from the vortex set.

3.1. Compactness estimates near the vortex set. This section contains the main

ingredients of the paper, which are weighted inequalities near the vortex set, in the

following proposition:

Proposition 3.2. For any constant Λ > 0, radius R > 0 and integer N ∈ N there

exists a constant CΛ,R,N > 0 with the following property. For any function h ∈ C∞
c (BR),

one-form B ∈ C∞
c (
∧1BR) and weight ω such that

ω(x) = ΠM
i=1|x− xi| for x1, . . . , xM ∈ BR counted with multiplicity for 1 ≤M ≤ N ,

we have the following inequality:ˆ
BR

ω2|h|2 ≤ CΛ,R,N

ˆ
BR

ω2| ⋆ dh+B|2 + | ⋆ dB + V (x)h|2 ,

provided that 0 ≤ V (x) ≤ Λω(x)1+
1
N .

Proof. Here we implicitly use the fact that all positive powers of ω as above are admissible

weights for (B.1). Note that for any weight ω(x) = ΠM
i=1|x−xi|αi with αi > 0 the condition

(B.1) is satisfied. For any ϕ ∈ C∞
c (R2)

ˆ
R2

ω2∆ log(ω)ϕ =

ˆ
R2

ω(x)

M∑
i=1

αi∆ log |x− xi|ϕ

= 2π

ˆ
R2

ω(x)
M∑
i=1

αiδxiϕ = 2π
M∑
i=1

αiω(xi)ϕ(xi) = 0 .

The last line follows from ω(xi) = 0 if αi > 0.

Now we divide the rest of the proof into 5 steps:

Step 1. We argue by contradiction. Assume there is a sequence {hk, Bk, ωk, Vk}∞k=1

satisfying the assumptions such that:ˆ
BR

ω2
k|hk|2 = 1 ,
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δ2k =

ˆ
BR

ω2
k| ⋆ dhk +Bk|2 + | ⋆ dBk + Vk(x)hk|2 → 0 as k → ∞ .

Now by Proposition B.2 we write the standard Hodge decomposition and the weighted

Hodge decomposition for the one-form Bk:

Bk = ⋆dpk + dqk and ωkBk = ⋆ωkdvk + ω−1
k dfk ,(3.1)

where ω−1
k dfk ∈ L2(R2), qk, ωkvk ∈ W 1,2

0 (BR) and pk ∈ W 2,2
0 (BR); since ∆pk = dBk ∈

L2(BR).

Now we rewrite δ2k using (3.1) and Stokes theorem to see that:

δ2k =

ˆ
BR

ω2
k|d(hk + vk)|2 + ω−2

k |dfk|2 + |∆pk + Vk(x)hk|2 .(3.2)

Notice that the term dqk has disappeared from the expression and this is consistent with

the gauge invariance.

By (ii) in Proposition B.2 for any ε > 0 we estimate:

ˆ
BR

ω2+2ε
k |d(vk − pk)|2 ≤ CR,Nε

−2

ˆ
BR

ω−2
k |dfk|2 ≤ CR,N

δ2k
ε2
.(3.3)

Our goal is to use (3.2) to find uniform W 1,2 upper bounds on ω1+ε
k vk (for small enough

ε > 0) and a uniform non-zero lower bound on its L2 norm to arrive at a contradiction.

Step 2. In this step we find a lower bound for the L2 norm of ω1+ 1
2N hk. First we

show that there exists a positive constant CR,N > 0 such that for any ε < 1
N we have

the point-wise bound:

ω2
k ≤ CR,N

(
ω2+2ε
k + |dωk|2ω2ε

k

)
⇔ ω2ε

k

(
1 + |d log(ωk)|2

)
≥ CR,N ,(3.4)

for weights ωk as in the statement of this proposition. Arguing by contradiction, since

ωks form a compact family, (3.4) fails if and only if for some {yj}∞j=1 ∈ BR we have:

lim
j→∞

ω2ε
k (yj)

(
1 + |d logωk(yj)|2

)
= 0 .

We can see by compactness that there exists some y ∈ BR such that ω2ε
k (y)(1 +

|d logωk(y)|2) = 0, meaning also that ωk(y) = 0; now since the vanishing order at

zeros of ωε
k with at most N roots is less than εN < 1, we can see that ωε

k vanishes slower

than |d log(ωk)| ∼ O(|x− |−1); hence (3.4) follows. Then we can estimate:

1 =

ˆ
BR

ω2
k|hk|2 ≤ CR,N

ˆ
BR

(
ω2+2ε
k + |dωk|2ω2ε

k

)
|hk|2 ≤ CR,N

ˆ
BR

ω2+2ε
k |dhk|2 .

In the last inequality we used Theorem B.1 with the weight ω1+ε
k .

In the rest of the proof we fix

ε =
1

2N
.
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Step 3. In this step we show that ω1+εvk is also lower bounded in L2. We use (3.3) to

see: ˆ
BR

ω2+2ε
k |dhk|2 ≤ CR,N

(
δ2k +

ˆ
BR

ω2+2ε
k |dvk|2

)
≤ CR,N

(
δ2k
ε2

+

ˆ
BR

ω2+2ε
k |dpk|2

)
.

(3.5)

Now by standard elliptic estimates we have that for p ∈W 2,2
0 (BR):ˆ

BR

ω2+2ε
k |dpk|2 ≤ CR,N

ˆ
BR

|dpk|2

≤ CR,N

ˆ
BR

|∆pk|2 ≤ CR,N

(
δ2k +

ˆ
BR

V 2
k |hk|2

)
.

(3.6)

Then by the point-wise bound V (x) ≤ Λω
1+ 1

N
k we get that:ˆ

BR

V 2
k |hk|2 ≤ CR,N,Λ

ˆ
BR

ω2+2ε
k |hk|2 ≤ CR,N,Λ

ˆ
BR

ω2+2ε
k

(
|vk|2 + |vk + hk|2

)
.

By Poincaré inequality and Theorem B.1 with the weight ω1+ε
k , we get that:ˆ

BR

ω2+2ε
k |vk + hk|2 ≤ CR

ˆ
BR

∣∣d (ω1+ε
k (vk + hk)

)∣∣2 ≤ CR,N,Λδ
2
k .

Noting that ε = 1
2N , we get the following lower bound:

CR,N,Λ ≤
ˆ
BR

ω2+2ε
k |vk|2 ,(3.7)

provided that k is large enough.

Step 4. In this step we find uniform upper bounds on the W 1,2(BR) norm of ω1+ 1
2N vk.

For this we apply Theorem B.1 with ω1+ε
k , the inequality (3.3) and standard elliptic

estimates as follows:

∥ω1+ε
k vk∥2W 1,2

0 (BR)
≤ CR

ˆ
BR

|ωk|2+2ε|dvk|2 ≤ CR,N

(
δ2k +

ˆ
BR

ω2+2ε
k |dpk|2

)
≤ CR,N

(
δ2k +

ˆ
BR

|∆pk|2
)

≤ CR,N

(
δ2k +

ˆ
BR

V 2
k |hk|2

)
≤ CΛ,R,N

(
δ2k +

ˆ
BR

ω2
k|hk|2

)
≤ CΛ,R,N .

We also bound the weighted Sobolev norms of hk, pk and fk:

∥ω−1
k dfk∥2L2(BR) ≤ δ2k , ∥pk∥2W 2,2

0 (BR)
≤ CR,N,Λ and ∥ωkhk∥2L2(BR) ≤ CR,N,Λ .

Using Theorem B.1 with ωk we also estimate ωkvk:

∥ωkvk∥2L2(BR) ≤ 2

ˆ
BR

ω2
k

(
|hk|2 + |vk + hk|2

)
≤ CR

(
1 +

ˆ
BR

|d (ωk (hk + vk))|2
)

≤ CR

(
1 +

ˆ
BR

ω2
k|dhk + dvk|2

)
≤ CR

(
1 + δ2k

)
≤ CR .
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Step 5. In this last step we finish the compactness argument. By the compact embedding

W 1,2
0 (BR) ↪→c L

2(BR), Banach–Alaoglu and Rellich–Kondrachov theorem we can extract

a sub-sequence kj with some g∞, f∞, p∞, ω∞ such that:

ω1+ε
kj

vkj → ω1+ε
∞ v∞ strongly in L2(BR) ,

pkj → p∞ strongly in W 1,2
0 (BR) ,

ωkjvkj ⇀ ω∞v∞ weakly in L2(BR) ,

ω−1
kj
dfkj ⇀ ω−1

∞ df∞ weakly in L2(BR) ,

ωkjhkj ⇀ ω∞h∞ weakly in L2(BR) ,

ωkj → ω∞ in Ck(BR) for all k ≥ 0 ,

Vkj ⇀ V∞ weakly, in duality with L1(BR) .

Since δkj → 0 vanishes in the limit. By lower semi-continuity and (3.3)

f∞ = 0 and p∞ = g∞ ⇒ −∆v∞ + V∞(x)v∞ = 0 in the sense of distributions .

Finally we test by v∞ and use V∞(x) ≥ 0 to get that dv∞ = 0. Since v vanishes on the

boundary then v∞ = 0, but this contradicts (3.7) which concludes the proof. □

Corollary 3.3. As a consequence of the estimates in Proposition 3.2 we also get that

there exists a constant CΛ,R,N such that for any 0 < ε < 1
N :ˆ

BR

ω2+2ε|dh|2 ≤
CΛ,R,N

ε2

ˆ
BR

ω2| ⋆ dh+B|2 + | ⋆ dB + V (x)h|2 .

Proof. The above inequality follows immediately from applying the conclusion of Propo-

sition 3.2 to the estimate (3.5) and (3.6). □

3.2. Combining near and far estimates. In this section we combine local weighted

estimates near the vortex set and uniform elliptic estimates far from the vortex set

with a concentration compactness type argument. Roughly speaking, we show that the

discrepancy cannot concentrate in an intermediate annulus around the vortex set. This

allows us to glue the near and far estimates:

Proof of Theorem 3.1. Using the first assumption we can gauge fix (u,∇) in such a way

that u and u0 have the same phase almost everywhere; precisely:

(u,∇) → (uγ,∇− iγ∗(dθ)) where γ =
u0
|u0|

(
u

|u|
)−1 .

Note that d(γ∗(dθ)) = d(( u0
|u0|)

∗(dθ)) − d(( u
|u|)

∗(dθ)) = 0 since u and u0 have the same

zero set, counted with multiplicity. Then we can write the discrepancy as:

E(reiθ, A) − 2πN =

ˆ
R2

r2| ⋆ d log(r) +A− dθ|2 + | ⋆ dA− 1 − r2

2
|2

=

ˆ
R2

r2| ⋆ dh+B|2 + | ⋆ dB + r20
e2h − 1

2
|2 ,
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where h = log
(

r
r0

)
and B = A − A0. By the third assumption we have the bound

∥h∥L∞(R2) ≤ log(Λ) which also means e2h−1
2 is comparable with h:(

1 − Λ−2

2 log Λ

)
≤
(
e2h − 1

2h

)
≤
(

Λ2 − 1

2 log Λ

)
,

so we can write:

E(reiθ, A) − 2πN ≥
ˆ
R2

Λ−2r20| ⋆ dh+B|2 + | ⋆ dB + V (x)h|2 ,

for some positive potential
(
1−Λ−2

2 log Λ

)
r20(x) ≤ V (x) ≤

(
Λ2−1
2 log Λ

)
r20(x). Now by Proposi-

tion 2.3 we know that r0 behaves like the weights defined in Proposition 3.2; since h is

not necessarily compactly supported, in order to apply the estimates Proposition 3.2, we

use a concentration compactness type argument. Our goal is to prove that there exists a

constant CΛ,N > 0 such that:
ˆ
R2

r20|h|2 ≤ CΛ,N

ˆ
R2

r20| ⋆ dh+B|2 + | ⋆ dB + V (x)h|2 .(3.8)

Arguing by contradiction, there exists a sequence {r0k , hk, Bk, Vk}∞k=1 such that:
ˆ
R2

r20k |hk|
2 = 1 ,

η2k =

ˆ
R2

r20k | ⋆ dhk +Bk|2 + | ⋆ dBk + Vk(x)hk|2 → 0 as k → ∞ .

Now by Proposition 2.3 (applied for each k) there existsMk ballsBρk,1(zk,1), . . . , Bρk,Mk
(zMk

)

for some Mk ≤ N such that C−1
N ≤ ρk,j ≤ CN and {r0k ≤ βk} ⊂ ∪Mk

j=1Bρk,j (zk,j) for

some 1
4 < βk <

1
2 and B2ρk,i(zk,i) ∩ B2ρk,j (zk,j) = ∅ for all 1 ≤ i < j ≤ Mk. Now take

ϕk, ψk and χk to be three smooth cut-off functions on R2 defined as follows:ϕk = 0 on R2\
⋃Mk

j=1B2ρk,j (zk,j) ,

ϕk = 1 on
⋃Mk

j=1B(1+ 2
3
)ρk,j

(zk,j) ,ψk = 0 on
⋃Mk

j=1B(1+ 1
3
)ρk,j

(zk,j) ,

ψk = 1 on R2\
⋃Mk

j=1B(1+ 2
3
)ρk,j

(zk,j) ,χk = 0 on R2\
⋃Mk

j=1

(
B2ρk,j (zk,j)\Bρk,j (zk,j)

)
,

χk = 1 on
⋃Mk

j=1

(
B(1+ 2

3
)ρk,j

(zk,j)\B(1+ 1
3
)ρk,j

(zk,j)
)
,

with the point-wise estimate |dϕk| + |dψk| + |dχk| ≤ CN . Note that this is possible since

C−1
N ≤ ρk,j ≤ CN . Then there exists e1 ∈ L2(R2;R2) and e2 ∈ L2(R2;R) such that:

−∆hk + Vk(x)hk = −div(
e1
r0k

) + e2 ,(3.9)

∥e1∥2L2(R2) + ∥e2∥2L2(R2) = η2k .
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We test (3.9) with ψkhk, apply Young’s inequality and use the estimates on r0k in

Proposition 2.3 inside the annulus B2ρk,j\Bρk,j (zk,j) to see that

ˆ
Bk

|hk|2 + |dhk|2 ≤ CN (η2k +

ˆ
Ak

|hk|2) ,(3.10)

where Bk = R2\
Mk⋃
j=1

B(1+ 2
3
)ρk,j

(zk,j) and Ak =

Mk⋃
j=1

(
B(1+ 2

3
)ρk,j

\B(1+ 1
3
)ρk,j

(zk,j)
)
.

Now we apply Proposition 3.2 and Proposition 2.3 to ϕkhk, ϕkBk, together with C−1
Λ r2

0k
≤

Vk ≤ CΛr
2
0k

; then we collect the boundary terms using the bound |dϕk| ≤ CN to see

that:
ˆ
Bc
k

r20k |hk|
2 ≤ CΛ,N

ˆ
R2

r20k | ⋆ d(ϕkhk) + (ϕkBk)|2 + | ⋆ d(ϕkBk) + Vk(x)(ϕkhk)|2

≤ CΛ,N (η2k +

ˆ
Bk

|hk|2 + |dhk|2) ≤(3.10) CΛ,N (η2k +

ˆ
Ak

|hk|2) .

Then we add the estimate above to (3.10) to see the lower bound:

1 =

ˆ
R2

r20,k|hk|2 ≤ CΛ,N (η2k +

ˆ
Ak

|hk|2) .

So we get that for large enough k, for a possibly different constant:

ˆ
Ak

|hk|2 ≥ CΛ,N > 0 .

Finally testing (3.9) with χkhk we get that:

ˆ
Ak

|hk|2 + |dhk|2 ≤ CΛ,N .(3.11)

Notice that by definition Ak =
⋃Mk

j=1

(
B(1+ 2

3
)ρk,j

\B(1+ 1
3
)ρk,j

(zk,j)
)

is a disjoint union of

Mk ≤ N annuli so we get that there is at least one annulus in which the energy is

concentrating:

ˆ
Ak,0

|hk|2 ≥ CΛ,N where Âk = B(1+ 2
3
)ρk,j0

\B(1+ 1
3
)ρk,j0

(zk,j0) .(3.12)

Then we use Corollary 3.3, Theorem B.1 and similar computations in the preceding

paragraphs to get uniform bounds as follows:

∥r1+
1

2N

0k
hk∥2W 1,2(R2) ≤ CΛ,N .(3.13)

Note that if the right hand side of (3.8) is zero we get that −∆h+ V (x)h = 0. Testing

with h and integrating by parts we get that h = 0. From the uniform bounds (3.11)
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and (3.13) we get that there exists a sub-sequence (not relabeled) such that:

r̃
1+ 1

2N

0k
h̃k ⇀ 0 weakly in H1(R2) ,

h̃k → 0 strongly in L2(B1+ 2
3
\B1+ 1

3
) ,

where r̃
1+ 1

2N

0k
h̃k(x) = r

1+ 1
2N

0k
hk(ρk,j0x+ zk,j0) .

This contradicts the lower bound (3.12) on the annulus Âk and we conclude. □

Proof of Theorem 1.2. We apply Corollary 3.3 combined with the estimate (3.10) on

each annulus and conclude the proof. □

3.3. Stability of the Jacobian. Recall the definition of the Yang-Mills-Higgs Jacobian:

J(u,∇) = Ψ(u) + ω(1 − |u|2) where Ψ(u)(j, k) = 2⟨∇∂ju, i∇∂ku⟩ ,

for 1 ≤ j, k ≤ 2. Here ω is the real curvature two-form associated to F∇. Note that the

definition of the Yang-Mills-Higgs Jacobian is gauge invariant. We recall the statement

of Theorem 1.3:

Theorem. For any N ∈ N and Λ > 1 there exists CΛ,N , ηΛ,N > 0 with the following

properties. Let (u,∇) ∈W 1,2
loc (R2) be a section and connection on the trivial line bundle

R2 × C such that

(i) ⋆d
(

( u
|u|)

∗(dθ)
)

= 2π
∑N

k=1 δxk
for a collection of points {xk}Nk=1 ⊂ R2 (counted

with multiplicity).

(ii) E(u,∇) − 2πN ≤ η2Λ,N .

(iii) Λ−1|u0| ≤ |u| ≤ Λ|u0| for some N -vortex solution (u0,∇0) with {xk}Nk=1 as the

zero set (counted with multiplicity) .

Then we have the following estimate:

ˆ
R2

|J(u,∇) − J(u0,∇0)| ≤ CΛ,|N |
√
E(u,∇) − 2π|N | .

Proof. Recall the estimate of Theorem 1.2 for any 0 < ε < 1
N

ˆ
R2

|u0|2+2ε

[
|A−A0|2 +

∣∣∣∣d log

(
|u|
|u0|

)∣∣∣∣2
]
≤
CΛ,|N |

ε2
[E(u,∇) − 2π|N |] ,

Note that we can write the Jacobian in a gauge invariant way. Using (i) we can gauge fix

as in the proof of Theorem 3.1 such that u = reiθ and u0 = r0e
iθ have the same phase.

Then we can rewrite the Yang-Mills-Higgs Jacobian as follows:

J(u,∇) = (1 − r2)dA− 2rdr ∧ (A− dθ) .
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To estimate the difference, we see that:
ˆ
R2

|J(u,∇) − J(u0,∇0)| ≤
ˆ
R2

∣∣(1 − r2)dA− (1 − r20)dA0

∣∣
+

ˆ
R2

|2rdr ∧ (A− dθ) − 2r0dr0 ∧ (A0 − dθ)| = I + II .

We use Theorem 3.1 and estimate the first term:

I ≤
ˆ
R2

∣∣(1 − r2)dA− (1 − r20)dA0

∣∣
≤
[ˆ

R2

|r2 − r20|2
] 1

2
[ˆ

R2

|dA|2
] 1

2

+

[ˆ
R2

(1 − r20)2
] 1

2
[ˆ

R2

|dA− dA0|2
] 1

2

≤ CΛ,|N |
√
E(u,∇) − 2π|N | .

Then for the second term we proceed as follows:

II ≤
ˆ
R2

|rdr ∧ (A− dθ) − r0dr0 ∧ (A0 − dθ)|

≤CΛ

[ˆ
R2

r2ε−2
0 |rdr − r0dr0|2

] 1
2
[ˆ

R2

r2−2ε
0 |A0 − dθ|2

] 1
2

+CΛ

[ˆ
R2

r2+2ε
0 |A−A0|2

] 1
2
[ˆ

R2

r−2ε
0 |dr0|2

] 1
2

.

(3.14)

Take 1
3N < ε < 1

N and estimate as follows:

ˆ
R2

r2ε−2
0 |rdr − r0dr0|2 =

=

ˆ
R2

r2ε−2
0

∣∣r2d log(r) − r20d log(r0)
∣∣2

≤ CΛ

ˆ
R2

r2+2ε
0

∣∣∣∣d log

(
r

r0

)∣∣∣∣2 + r2ε−2
0 |d log(r0)|2(r2 − r20)2

≤ CΛ,|N | [E(u,∇) − 2π|N |] + CΛ

ˆ
R2

r2ε+2
0 |d log(r0)|2

∣∣∣∣log

(
r

r0

)∣∣∣∣2 .
(3.15)

In the last line we used assumption (iii) to see that

C−1
Λ | log

(
r

r0

)
| ≤ | r

r0
− 1| ≤ CΛ| log

(
r

r0

)
| .

Now let {Bρk(zk)}Mk=1 be the covering constructed in Proposition 2.3 and let ωk the

associated weights. Then locally we have:

∥d log (r0) − d log(ωk)∥L∞(B2ρk
(zk)) ≤ CN .

Moreover take smooth indicators ϕk for Bρk(zk) such that ϕ = 1 on Bρk(zk) and zero

outside B2ρk(zk) with |dϕk| ≤ CN ; we see that the last term in (3.15) is bounded as
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follows:ˆ
R2

r2ε+2
0 |d log(r0)|2

∣∣∣∣log

(
r

r0

)∣∣∣∣2 ≤ CN,Λ

M∑
k=1

ˆ
B2ρk

(zk)
ϕ2kω

2ε+2
k (1 + |d log(ωk)|2)

∣∣∣∣log

(
r

r0

)∣∣∣∣2
+CN,Λ

ˆ
R2\

⋃M
k=1 Bρk

(zk)
| log

(
r

r0

)
|2

Then we use Theorem B.1 with ω2+2ε
k and Poincaré inequality for the first sum in the

above display to see that:

M∑
k=1

ˆ
B2ρk

(zk)
ϕ2kω

2ε+2
k (C + |d log(ωk)|2)

∣∣∣∣log

(
r

r0

)∣∣∣∣2

≤ CN,Λ

M∑
k=1

ˆ
B2ρk

(zk)

∣∣∣∣ϕkω1+ε
k log

(
r

r0

)∣∣∣∣2 + ϕ2k|d(ω1+ε
k )|2

∣∣∣∣log

(
r

r0

)∣∣∣∣2

≤ CN,Λ

M∑
k=1

ˆ
B2ρk

(zk)
ϕ2kω

2+2ε
k

∣∣∣∣d log

(
r

r0

)∣∣∣∣2 ≤ CN,Λ [E(u,∇) − 2π|N |] .

Here the last line follows by Corollary 3.3 (or Theorem 1.2). We then use (3.10) to bound

log(r/r0) on R2\
⋃M

k=1Bρk(zk) and see that:
ˆ
R2

r2ε+2
0 |d log(r0)|2

∣∣∣∣log

(
r

r0

)∣∣∣∣2 ≤ CN,Λ [E(u,∇) − 2π|N |] .

Using the above display we can bound (3.15) as follows:ˆ
R2

r2ε−2
0 |rdr − r0dr0|2 ≤ CΛ,N [E(u,∇) − 2π|N |] .

Now all that remains is to bound the second term of (3.15). Notice that if ε < 1
N the

term r−2ε
0 is comparable to |x− p|2−δ around any vortex point p for some δ > 0. This

means that it is locally integrable, henceˆ
R2

r−2ε
0 |dr0|2 < CN,ε .

Here we used that the integral of |dr0|2 is bounded on the whole domain. Now we use

the estimates on the connection in Theorem 1.2 to see that for ε = 1
2N :

II ≤ CΛ,N

√
E(u,∇) − 2π|N | .

This is indeed the desired conclusion. □

4. A selection principle and the proof of stability

The main goal of this section is to drop the first and the third assumption in

Theorem 3.1. We prove that for any (u,∇) ∈ W 1,2
loc (R2) that nearly minimizes the

energy, we can select another pair (ũ, ∇̃) close enough to (u,∇) that satisfies the

assumptions of Theorem 3.1. We do this by inductively replacing (u,∇) with a minima

of the penalized functional (4.1) (proof of existence in Lemma 4.2). In each iteration



22 A. HALAVATI

while staying close to the original (u,∇) we gain at least one derivative of regularity

(proof of regularity in Lemma 4.4). Then using Lemma A.1 (smooth perturbation of

complex polynomials) we show that after finitely many steps the new pair (ũ, ∇̃) satisfies

the assumptions of Theorem 3.1.

Theorem 4.1. There exists constants CN ,ΛN > 0 with the property that for any N-

vortex section and connection (u,∇) with finite energy E(u,∇) = 2π|N |+ η2 there exists

another N -vortex section and connection (ũ, ∇̃) such that:

(i) ∥u− ũ∥2L2(R2) + ∥F∇ − F∇̃∥
2
L2(R2) ≤ CNη

2,

(ii) Λ−1
N |u0| ≤ |ũ| ≤ ΛN |u0| for some N-vortex solution (u0,∇0) to the vortex

equations (2.4),

(iii) 2πN ≤ E(ũ, ∇̃) ≤ E(u,∇),

provided that η is small enough.

To prove Theorem 4.1 we use a penalized energy to find a selection principle:

G(u,∇)(u1,∇1) = E(u1,∇1) + ∥u1 − u∥2L2(R2) + ∥A1 −A∥2L2(R2) .(4.1)

This energy also enjoys the coupled gauge invariance

(u,∇) → (ueiξ, A+ dξ) and (u1,∇1) → (u1e
iξ, A1 + dξ) ,

for any smooth compactly supported function ξ ∈ C∞
c (R2). Note that both pairs have

to be gauge transformed with the same function.

4.1. Existence. We first prove the existence of a minimizer of (4.1) via the direct

method of the calculus of variations:

Lemma 4.2. For any N -vortex section and connection (u,∇) with E(u,∇) = 2πN +η2,

the penalized energy G(u,∇) (4.1) achieves its minimum for some N -vortex pair (u1,∇1) ∈
W 1,2

loc (R2).

Proof. We have the lower bound:

G(u,∇)(u1,∇1) ≥ E(u1,∇1) ≥ 2πN .

Hence there exists an N -vortex sequence (vj ,∇j) realizing the infimum of (4.1):

lim
j→∞

G(u,∇)(vj ,∇j) = inf
(u1,∇1)∈W 1,2

loc

G(u,∇)(u1,∇1) .

Let Ω be any bounded smooth simply connected domain. By the gauge invariance of (4.1),

we can gauge fix (vj ,∇j) → (wj , Bj) in the Coulomb gauge such that Bj is divergence

free d∗Bj = 0 inside the domain Ω and its normal component vanishes ινBj = 0 on

the boundary ∂Ω. By Gaffney inequalities (see [18, Theorem 4.8]) and a compactness

argument we can bound:

∥Bj∥2W 1,2(Ω) ≤ CΩ∥dBj∥2L2(Ω) ≤ CΩ,N .
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By the global Sobolev embedding W 1,2(R2) ↪→c L
4(R2) we get the following bounds:

∥wj∥2W 1,2(Ω) =

ˆ
Ω
|wj |2 + |dwj |2

≤ CΩ

(
1 +

√ˆ
Ω

(1 − |wj |2)2
)

+ C

ˆ
Ω
|dwj − iwjBj |2 + |wjBj |2

≤ CΩ,N + C∥wjBj∥2L2(Ω) ≤ CΩ,N + C∥wj∥2L4(Ω)∥Bj∥2L4(Ω)

≤ CΩ,N + C∥wj∥2W 1,2(Ω)∥Bj∥2W 1,2(Ω) ≤ CΩ,N .

Then we can find a sub-sequence (wj , Bj) (not necessarily relabeled) and a limit section

and connection (u1,∇1) ∈ W 1,2
loc such that after gauge fixing (u1, A1) in the Coulomb

gauge in Ω we get that:

(wj , Bj) ⇀ (u1, A1) weakly in W 1,2
loc (R2) .

We need to show that (u1,∇1) is also an N -vortex pair. First observe that (u,∇) is a

competitor with energy G(u,∇)(u,∇) = 2πN + η2; by lower semi-continuity we get that:

∥u1 − u∥2L2(R2) ≤ lim inf
j→∞

∥vj − u∥2L2(R2) ≤ η2 .

In particular the difference is bounded in L2. Now consider a smooth kernel ϕ and let

the ε-rescaled version to be ϕε = 1
εϕ(xε ). Then consider the mollified functions u ∗ ϕε

and u1 ∗ ϕε. By the embedding W 1,2
loc (R2) → VMOloc(R2), where VMOloc is the space of

functions with locally vanishing mean oscillation, we can see that:

u ∗ ϕε → u and u1 ∗ ϕε → u1 in BMO ∩ L1
loc(BR) as ε→ 0 .

By [3, Property 2 in Chapter II.2] we can see that for small enough ε the degree of u ∗ϕε
and u1 ∗ ϕε is equal to the degree of u and u1, respectively. Now we can estimate for

fixed ε:

lim
R→∞

∥ϕε ∗ (u− u1)∥C0(R2\BR) ≤ lim
R→∞

ε−1∥u− u1∥L2(R2\BR) = 0 .

Hence for all R large enough, the degree of ϕε ∗ u coincides with ϕε ∗ u1 and we can

conclude that (u1,∇1) is indeed an N -vortex pair. □

Remark 4.3. Without loss of generality we may assume |u| ≤ 3, precisely: For any

(u,∇) with η > 0 small enough, we can find another section u1 such that |u1| ≤ 3 and:

∥u− u1∥2L2(R2) ≤ Cη2 and E(u1,∇) ≤ E(u,∇) ,

for some universal constant C.

Proof. Identifying u = reiθ and ∇ : d− iA, consider the super level set {r ≥ 2}. From

the energy bound we can see that:

|{r ≥ 2}| +

ˆ
{r≥2}

|dr|2 ≤ CN .
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Similar to the proof of Lemma 2.1, using the coarea formula and the mean value

theorem we can find 2 < β < 3 such that H1 (∂{r ≥ β}) ≤ CN . Since perimeter bounds

diameter, {r ≥ β} is made of a collection of bounded simply connected domains. Now

we unwrap the discrepancy in this domain (with the Bogomolny trick, for more details

see Lemma 2.1):

η2 ≥
ˆ
{r≥β}

| ⋆ dr + r(A− dθ)|2 + | ⋆ dA− 1 − r2

2
|2

=

ˆ
{r≥β}

|dr|2 + r2|A− dθ|2 + |dA|2 +
(1 − r2)2

4
− d(dθ)(1 − r2) .

Note that d(dθ) = 0 away from {r = 0}, hence we can see that:
ˆ
{r≥β}

(1 − r2)2

4
≤ η2 .(4.2)

Since (1 − r2)2 > 9 on {r ≥ β} hence (4.2) tells us that:

|{r ≥ β}| ≤ η2 .

Now we define u1:

u1 =

u on {|u| < 3} ,

3 u
|u| on {|u| ≥ 3} .

We estimate the energy difference:

E(u,∇) − E(u1,∇) =

ˆ
{r≥3}

|dr|2 + (r2 − 9)|A− dθ|2 + |dA|2 +
(1 − r2)2 − 64

4
≥ 0 ,

and the difference of sections using (4.2):

∥u− u1∥2L2(R2) =

ˆ
{r≥3}

|u1 − u|2 ≤ C|{r ≥ 3}| + C

ˆ
{r≥3}

r2 ≤ Cη2 ,

where the last inequality followed fromˆ
{r≥3}

r2 ≤ C

ˆ
{r≥3}

(1 − r2)2

4
≤ Cη2 .

This indeed gives us the desired conclusion. □

4.2. Regularity. In this section we derive regularity estimates for minimizers of the

penalized functional (4.1):

Lemma 4.4. Let (u,∇) be a section and connection with finite energy E(u,∇) =

2πN + η2, with small enough η > 0 and |u| ≤ 3. Moreover let (u1,∇1) be a minimizer

of (4.1). Then for any 0 < α < 1 we have the regularity estimates below:

(i) ∥u1∥C1,α(Ω) + ∥A1∥C1,α(Ω) ≤ CΩ,N,α,

(ii) ∥u1∥Ck+1,α(Ω) + ∥A1∥Ck+1,α(Ω) ≤ CΩ,N,k,α(∥u∥Ck,α(Ω) + ∥A∥Ck,α(Ω) + 1),



QUANTITATIVE STABILITY FOR ABELIAN HIGGS IN 2D 25

for all k ≥ 1 and any domain Ω where both (u1, A1), (u,A) are independently measured

in the Coulomb gauge in a slightly bigger domain U ⊃ Ω.

Proof. We inspire from the strategy in [26, Appendix]. However since we are in two

dimensions, the embedding W 2,2(R2) ↪→ Cα(R2) greatly simplifies the proof.

For any open bounded smooth domain Ω we take three bigger domains Ω ⊂ Ω1 ⊂
Ω2 ⊂ Ω3. Then we gauge fix (u1, A1) in Ω3 in the Coulomb gauge such that d∗A1 = 0

inside Ω3 and A1(ν) = 0 on ∂U . Now the Euler Lagrange equations for minimizers of

(4.1) are as follows:

∆u1 = 2⟨idu1, A1⟩ + |A1|2u1 −
1

2
(1 − |u1|2)u1 + (u1 − u) ,(4.3)

∆HA1 = ⟨du1 − iu1A1, iu1⟩ +A1 −A .(4.4)

Here ∆H is the Laplace Beltrami operator for one-forms. The Euler Lagrange equations

for the difference in gauge is as follows:

d∗A = ⟨u, iu1⟩ .(4.5)

By Gaffney type inequalities in [18] we estimate:

∥A1∥W 1,2(Ω3) ≤ C∥dA1∥L2(Ω3) ≤ CN .

The Euler-Lagrange equation for |u1|2 is as follows:

∆
1

2
|u1|2 = |∇1u1|2 −

1

2
(1 − |u1|2)|u1|2 + |u1|2 − ⟨u, u1⟩ .(4.6)

We apply the maximum principle for (4.6) and the bound |u| ≤ 3 to deduce that

|u1| ≤ max (|u|, 1) ≤ 3. Then by (4.4) we get that:

∥A1∥W 2,2(Ω2) ≤ CN,Ω2,Ω3 .

Now by the Sobolev embedding W 2,2(R2) ⊂ Cα(R2) for any 0 < α < 1 and W 2,2(R2) ⊂
W 1,p(R2) for all 1 ≤ p <∞ we estimate that:

∥A1∥Cα(Ω2) ≤ Cα,N,Ω2,Ω3 and ∥A1∥W 1,p(Ω2) ≤ Cp,N,Ω2,Ω3 .

Then we use this pointwise bound with (4.3) to see that ∆u1 is bounded in L2. By

standard elliptic estimates we get that:

∥u1∥W 2,2(Ω1) ≤ CN,Ω1,Ω2,Ω3 ⇒ ∥u1∥Cα(Ω1) ≤ Cα,Ω1,Ω2,Ω3 .

We use the embedding W 2,2(R2) ⊂W 1,p(R2) again to see that:

∥u1∥W 1,p(Ω1) ≤ CN,Ω1,Ω2,Ω3 .

Then by (4.3) and (4.4) we get that ∆u1 and ∆HA1 are both bounded in Lp for all

1 < p <∞, so we can improve the W 2,2 estimates to W 2,p as follows:

∥u1∥W 2,p(Ω) + ∥A1∥W 2,p(Ω) ≤ CN,Ω,p .
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From the embedding W 2,p(R2) ⊂ C1,α(R2) for p > 2 and α = 1 − 2
p we get Holder

estimates as follows:

∥u1∥C1,α(Ω) + ∥A1∥C1,α(Ω) ≤ Cα,N,Ω .(4.7)

To gain higher regularity estimates consider the Hodge decomposition of A in U :

A = dϕ+A′ ,

Where (u′, A′) is in the Coulomb gauge, precisely d∗A′ = 0 in Ω2 and A′(ν) = 0 on

the boundary ∂Ω2. Then we rewrite the system of equations (4.3) to (4.5) using this

decomposition:

∆u1 = 2⟨idu1, A1⟩ + |A1|2u1 −
1

2
(1 − |u1|2)u1 + (u1 − eiϕu′) ,

∆HA1 = ⟨du1 − iu1A1, iu1⟩ +A1 −A′ − dϕ ,

∆ϕ = ⟨u1 − eiϕu′, iu1⟩ .

(4.8)

We gain higher regularity estimates with standard iteration arguments in intermediate

domains starting from the apriori estaimtes (4.7) and Schauder estimates for the system

of equations (4.8). □

Proof of Theorem 4.1. Take any section and connection (u,∇) with energy E(u,∇) =

2πN + η2 with small enough η > 0. First using Remark 4.3 we may assume |u| ≤ 3,

without loss of generality. Then we replace (u,∇) with a minimizer of the penalized

energy G(u,∇) in (4.1) (existence provided by Lemma 4.2). In fact we repeat this process

N times. Then from Lemma 4.4 we use the regularity estimate (i) at the first step

and (ii) inductively after the second step. We end up with a new N -vortex section and

connection (ũ, ∇̃) with the following estimates for some fixed 0 < α < 1:

∥u− ũ∥2L2(R2) +
[
E(ũ, ∇̃) − 2πN

]
≤ η2 ,

∥ũ∥CN,α(Ω) +
∥∥∥Ã∥∥∥

CN,α(Ω)
≤ CΩ,N,α , .

for any smooth connected open domain Ω where (ũ, Ã) is measured in the Coulomb

gauge in a slightly bigger domain ((u,∇) is also simultaneously gauge transformed).

Now we consider the sublevel set Ω 1
2

= {|ũ| ≤ 1
2} and its disjoint connected components

∪∞
k=1Ω

k
1
2

= Ω 1
2
. We start with the perturbed vortex equations for |ũ|:

∆ log(|ũ|) +
1 − |ũ|2

2
= ⋆d

(
(
ũ

|ũ|
)∗(dθ)

)
+ div(

e1
|ũ|

) + e2 ,

∥e1∥2L2(R2) + ∥e2∥2L2(R2) ≤ η2 .

We test this equation with (14 − |ũ|2)+ and estimate for each component Ωk
1
2

:

|Ωk
1
2

∩ {|ũ| ≤ 1

4
}| +

ˆ
Ωk

1
2

|d|ũ||2 ≤ C deg(ũ, ∂Ωk
1
2

) + Cη2 .
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First notice that for all k ∈ N the degree deg(ũ,Ωk
1
2

) ≥ 0 is positive (provided η is small

enough). Then consider the set I0 ⊂ N of indices k where ũ has zero rotation number

around Ωk
1
2

and I ⊂ N the components with positive rotation number. By mean value

theorem there exists a 1
8 ≤ β ≤ 1

4 such that:

∑
k∈I0

H1(∂{|ũ| ≤ β} ∩ Ωk
1
2

) ≤ C
∑
k∈I0

ˆ 1
4

1
8

H1(∂{|ũ| ≤ t} ∩ Ωk
1
2

)dt .

Then by the coarea formula and then Young’s inequality we get that:∑
k∈I0

H1(∂{|ũ| ≤ β} ∩ Ωk
1
2

) ≤ C
∑
k∈I0

ˆ
{|ũ|≤β}∩Ωk

1
2

|d|ũ|| ≤ Cη2 ,

where we also used the measure estimates on Ωk
1
2

for k ∈ I0. Since for connected sets,

perimeter bounds diameter, by a Vitali covering argument we find disjoint balls Bρk(xk)

for k ∈ I0 such that:∑
k∈I0

ρk ≤ Cη2 and ∪k∈I0 Ωk
1
2

∩ {|ũ| ≤ β} ⊂ ∪k∈I0Bρk(xk) .

Moreover we get that 1
8 ≤ |ũ| ≤ 3 on ∪k∈I0∂Bρk(xk). Then by Lipschitz bounds and

diameter estimates we can clear out the set as follows; note that 1
8 ≤ |ũ| ≤ 3 on the

boundary of the balls with zero degree, namely ∪k∈I0∂Bρk(xk) and |d|ũ|| ≤ CN . However

since these balls have small diameter, precisely
∑

k∈I0 ρk ≤ CNη
2, we see that necessarily

|ũ| ≥ 1
16 inside ∪k∈I0Bρk(xk) (provided η is small enough). Then for the connected

components with positive rotation number we can find balls Bρk(xk) for k ∈ I with

|I| ≤ N such that:

max
k∈I

ρk ≤ CN and ∪k∈I Ωk
1
2

∩ {|ũ| ≤ β} ⊂ ∪k∈IBρk(xk) and |I| ≤ N .

Then for each k ∈ I consider (u1, A1) with uniform local CN,α estimates. Arguing by

contradiction and Arzela-Ascolli, we deduce that for small enough discrepancy η > 0 the

section u1 is locally a CN perturbation of a solution to the vortex equations (2.4):

ũ(z) = u0(z) +R(z) for z ∈ ∪k∈IBρk(xk) such that ∥R∥CN (∪k∈IBρk
(xk))

≤ εη ,

where εη vanishes as η → 0. By Proposition 2.3 and [30] we know that solutions are

locally, up to a smooth change of gauge, complex polynomials multiplied by an analytic

nonzero function. More precisely there exists an analytic function Λ−1
N ≤ g(z) ≤ ΛN

uniformly bounded away from zero and uniform CN bounds only depending on N such

that:

ũ(z)

g(z)
= ΠM

k=1(z − ak) +
R(z)

g(z)
for z ∈ ∪k∈IBρk(xk) .

Finally we are in a position to apply Lemma A.1 and conclude that (ũ, Ã) satisfies the

assumptions of Theorem 3.1. □
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4.3. Proof of stability in R2. Here we prove the stability in its general form:

Proof of Theorem 1.1. By Theorem 4.1 we find (ũ, Ã) satisfying the regularity assump-

tions of Theorem 3.1 for some (u0,∇0). Then we apply Theorem 3.1 and estimate:

∥u− u0∥2L2(R2) ≤ 2∥u− ũ∥2L2(R2) + 2∥ũ− u0∥2L2(R2) ≤ CNη
2 and

∥F∇ − F∇0∥2L2(R2) ≤ 2∥F∇ − F∇̃∥
2
L2(R2) + 2∥F∇̃ − F∇0∥2L2(R2) ≤ CNη

2,

and we conclude with the proof. □

4.4. The power 2 is optimal. One may perturb any N -vortex solution (u0,∇0) with

a smooth real valued function h ∈ C∞
c (R2) to see that:

E(u0e
h,∇0) − 2πN =

ˆ
R2

|u0|2| ⋆ dh|2 + |u0|2|
e2h − 1

2
|2 .

We can choose h to be a mollified indicator function of a ball BR(x) sufficiently far from

the vortex set (as in Proposition 2.3) to see that:

E(u0e
h,∇0) − 2πN ≥ CR2 ≥ C∥h∥2L2(R2)

≥ C∥u0eh − u0∥2L2(R2) ≥ C min
(u,∇)∈F

∥u0eh − u∥2L2(R2) .

Taking R→ 0 we see that there exists a sequence {(uk,∇k)}∞k=1:

E(uk,∇k) → 2πN and lim
k→∞

E(uk,∇k) − 2πN

min(u0,∇0)∈F ∥u0 − uk∥2L2(R2)

> 0 .

Hence we can see that the power 2 may not be improved.

5. Stability for compact surfaces

In this section we show that the methods above can be adapted to obtain stability

for nontrivial line bundles over compact Riemannian surfaces. The proofs are mostly

unchanged with slight modifications. Let (M, g) be a smooth Riemann surface and let

L→M be a nontrivial Hermitian line bundle over M . Using a Stokes theorem, we have

that for any section and connection (u,∇):

E(u,∇) = 2π| deg(L)| +

ˆ
M

[
|∇∂1u+ i∇∂2u|2 + | ⋆ ω − 1 − |u|2

2
|2
]
.(5.1)

Naturally, the vortex equations take the same form:

∇∂1u+ i∇∂2u = 0 and ⋆ ω =
1 − |u|2

2
.(5.2)

Where ω is the real two-form associated to F∇. Integrating the second equation over M

we see that:

| deg(L)| ≤ 1

4π
vol(M) .



QUANTITATIVE STABILITY FOR ABELIAN HIGGS IN 2D 29

In [15] Garćıa-Prada proves if the condition above is satisfied, once we prescribe the zero

set (counted with multiplicity), the solution is unique and smooth. We now recall the

statement of Theorem 1.4:

Theorem. Let M be a smooth compact Riemannian surface and L→M a Hermitian

line bundle over M with 0 ≤ deg(L) ≤ 1
4πvol(M). Then there exists a constant CM > 0

depending only on M , with the following property: Let (u,∇) ∈ W 1,2(M) be a section

and connection on L such that E(u,∇) − 2π deg(L) is small enough, then:

min
(u0,∇0)∈F

∥u− u0∥2L(M)
+ ∥F∇ − F∇0∥2L(M)

≤ CM [E(u,∇) − 2π deg(L)] ,

where F is the family all minimizers of the Yang-Mills-Higgs energy on L→M .

Remark. Before diving into the proof, note that on compact surfaces the Sobolev space

W 1,2(M) embeds into the space of functions of vanishing mean oscillation VMO(M),

hence the degree is well defined.

5.1. Preliminary estimates on solutions. Here we prove some facts about solutions

of the vortex equations on smooth compact surfaces. First using the vortex equations,

we can see that
1

2
∆|u0|2 = |∇0u0|2 −

1

2
|u0|2(1 − |u0|2)

and by an application of the maximum principle, since M is compact, we can see that

|u| ≤ 1 on M .

Proposition 5.1. For any compact smooth Riemann surface (M, g) there exists small

constants cM , βM > 0 and a constant CM > 1 depending on M with the following

property. Let L → M be a Hermitian line bundle on M with 0 ≤ deg(L) ≤ 1
4πvol(M)

and (u0,∇0) be a solution to the vortex equations (2.4) with the prescribed zero set

x1, . . . , xdeg(L) ∈M counted with multiplicity. Then there exists a geodesic ball Bρ(x0)

such that:

(i) |u0| ≥ βM > 0 on B2ρ(x0) with cM ≤ ρ ≤ 2cM ,

(ii) C−1
M ω ≤ |u0| ≤ CMω, where ω(x) = Π

deg(L)
k=1 d(x, xk) ,

(iii) All geodesic balls of radius less than 2cM are uniformly bi-Lipschitz to euclidean

balls of comparable radius.

Here d(x, y) is the geodesic distance between x, y on M .

Proof. The proof is essentially the same as Proposition 2.3 with some modifications in

the case of compact surfaces. First notice that the modulus r0 = |u0| satisfies a similar

equation:

−∆g log(r0) +
1

2
(r20 − 1) = −

deg(L)∑
k=1

2πδxk
.(5.3)
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Multiplying the above display by (β2 − r20)+ and integrating by parts we see that:ˆ
{r0≤β}

|dr0|2 +
1

2
(1 − r20)(β2 − r20) = 2πβ2 deg(L) .

Now we take βM small enough and using the smooth coarea formula in the place of the

euclidean one, following the proof of (i) in Proposition 2.3 we can cover the vortex set

{r0 ≤ βM} with a collection of n ≤ deg(L) geodesic balls {Bσ(zk)}nk=1 with small enough

radius σ > 0; namely, {r0 ≤ βM} ⊂
⋃n

k=1Bσ(zk). Now since n ≤ deg(L) ≤ 1
4πvol(M),

we can take σ, βM small enough such that the complement contains a geodesic ball.

Precisely, there exists a point x0 and a radius ρ > cM such that r0 > βM on B2ρ(x0).

This proves (i).

Now we prove part (ii) in each ball Bσ(zk). Consider the zeros of r0 inside Bσ(zk)

and name them x1, . . . , xnk
(without loss of generality). Now consider the function

ω̃k(x) = Πnk
j=1e

−Gxj (x), where Gp(x) is the Green’s function for the ball B2σ(zk) centered

on p. We see that:

−∆g log(ω̃) = −
nk∑
j=1

δxj inside Bσ(zk) .

Subtracting the above display from (5.3) and using the maximum principle, we can see

that ∥ log( ω̃k
r0

)∥L∞(Bσ(zk)) ≤ CM . By [23, eq (1.1)] (see (B.2) and the paragraph after) we

can see that ω̃k is locally comparable to Πnk
j=1d(x, xj). Then we put together this estimate

for all k = 1, . . . , n and use the global bound |u0| ≤ 1 together with compactness of M

to obtain (ii).

Item (iii) simply follows by compactness and choosing cM small enough. □

5.2. Stability for regular pairs. The goal now is to prove the stability for regular

enough pairs (analogous to Theorem 3.1), in the following theorem:

Theorem 5.2. For any compact smooth Riemann surface (M, g) and Λ ≥ 1 there exists

ηΛ,M , CΛ,M > 0 with the following property: Let L→M be a Hermitian line bundle on

M with 0 ≤ deg(L) ≤ 1
4πvol(M) and let (u,∇) be a pair such that:

(i) ⋆d(( u
|u|)

∗(dθ)) = 2π
∑deg(L)

k=1 δxk
,

(ii) E(u,∇) − 2π deg(L) ≤ η2Λ,M ,

(iii) Λ−1|u0| ≤ |u| ≤ Λ|u0|,
where (u0,∇0) is the solution of the vortex equations (2.4) on L→M with the zero set

x1, . . . , xdeg(L) ∈M (counted with multiplicity). Then:

∥|u| − |u0|∥2L2(M) + ∥F∇ − F∇0∥2L2(M) ≤ CΛ,M [E(u,∇) − 2πN ] .

First we prove the analogous statement to Proposition 3.2. We need to subtract a

geodesic ball from the manifold, since the estimates of Appendix B only work on surfaces

with boundary. More precisely, there are no non-constant weights that satisfy (B.1) on

compact surfaces, so the statements of Appendix B are empty on a compact manifold.



QUANTITATIVE STABILITY FOR ABELIAN HIGGS IN 2D 31

Proposition 5.3. Let (M, g) be a Riemannian surface. Then for any Λ > 1 and integer

n > 0 there exists a constant Cn,Λ,M with the following property. Let ω be a weight as in

(B.2) with integer powers. Precisely:

ω = Πn
k=1d(x, xk) for a collection {xk}nk=1 ⊂M counted with multiplicity .

Moreover let Bρ(x0) be a geodesic ball with radius cM ≤ ρ ≤ 2cM . Then for any

compactly supported function h ∈ C∞
c (M\Bρ(x0)) and one-form B ∈ C∞

c (
∧1M\Bρ(x0))

the following weighted inequality holds:ˆ
M\Bρ(x0)

ω2|h|2 ≤ Cn,Λ,M

ˆ
M\Bρ(x0)

[
ω2| ⋆ dh+B|2 + | ⋆ dB + V (x)h|2

]
,

provided that 0 ≤ V (x) ≤ Λω(x)1+
1
n .

Proof. Since the estimates in Appendix B have universal constants and work on arbitrary

surfaces with boundary, we can apply the proof of Proposition 3.2 almost verbatim. The

only difference is that we also need to keep track of a sequence of geodesic balls Bρk(x0k)

subtracted from the manifold. However since the radius is bounded above and below

away from zero (cM ≤ ρk ≤ 2cM ) and the manifold M is compact, we can extract a

sub-sequential limit to some M\Bρ∞(x0∞) with cM ≤ ρ0∞ ≤ 2cM . The rest of the proof

is unchanged. □

In the rest of this subsection we work to patch the estimates of the subtracted ball to

the rest of the manifold and conclude the stability for regular enough pairs.

Proof of Theorem 5.2. Up to conjugating u, assume that deg(L) ≥ 0. Now observe that,

after identifying ∇ : d− iA and u = reiθ for some θ : M → S1 and one-form A ∈
∧1(M)

the energy has the following form:

E(u,∇) − 2π deg(L) =

ˆ
M

[
r2| ⋆ d log(r) +A− dθ|2 + | ⋆ dA− 1 − r2

2
|2
]
.

Then by the assumption (i) we can gauge fix such that u
|u| = u0

|u0| , namely u, u0 have

equal phase. Then naming h = log( r
r0

) for r0 = |u0| and B = A− A0 for ∇0 : d− iA0,

we see that:

E(u,∇) − 2π deg(L) =

ˆ
M

[
r2| ⋆ dh+B|2 + | ⋆ dB + V (x)h|2

]
,

where V (x) = r20
e2h−1
2h . By assumption (iii) we can see that ∥h∥L∞(M) ≤ log(Λ), hence

C−1
Λ r20 ≤ V (x) ≤ CΛr

2
0. Now we proceed similar to the proof of Theorem 3.1. In fact,

we prove that as a consequence of Proposition 5.3 and the Poincaré inequality on small

geodesic balls, the discrepancy cannot concentrate on the subtracted ball. In fact we

aim to prove that there exists some constant CM such that:ˆ
M
r2|h|2 ≤ CM

ˆ
M

[
r2| ⋆ dh+B|2 + | ⋆ dB + V (x)h|2

]
.
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Arguing by contradiction, assume there is a sequence {rk, hk, Bk, Vk}∞k=1 satisfying the

assumptions, such that:ˆ
M
r2k|hk|2 = 1 ,

η2k =

ˆ
M

[
r2k| ⋆ dhk +Bk|2 + | ⋆ dBk + Vk(x)hk|2

]
→ 0 .

Defining e1 = ⋆dhk +Bk and e2 = ⋆dBk + Vk(x)hk the above display takes the following

form:

−∆ghk + Vk(x)hk = ⋆d(
e1
rk

) + e2 with ∥e1∥2L2(M) + ∥e2∥2L2(M) ≤ Cη2k .(5.4)

Now take the geodesic ball Bρk(xk) as in (i) Proposition 5.1 and define the two cut-off

functions 0 ≤ ψk, ϕk ≤ 1 as follows:
ϕk = 1 on Bρk/2(xk) ,

ϕk = 0 on M\Bρk(xk) ,

|dϕk| ≤ CM .


ψk = 1 on M\Bρk/2(xk) ,

ψk = 0 on Bρk/3(xk) ,

|dψk| ≤ CM .

First we test (5.4) with ϕkhk, integrate by parts and use the estimates for rk on Bρk(xk)

with Young’s inequality to see that:ˆ
Bρk/2(xk)

|hk|2 + |dhk|2 ≤ CM,Λη
2
k +

ˆ
Bρk

(xk)
|hk|2 .(5.5)

Now we apply Proposition 5.3 for ψkhk, ψkBk to see that (using assumption (iii) and

(iii) in Proposition 5.1):ˆ
M\Bρk/2(xk)

r2k|hk|2 ≤
ˆ
M\Bρk/3(xk)

r2k|ψkhk|2

≤ CM,Λ

ˆ
M\Bρk/3(xk)

[
r2k| ⋆ d(ψkhk) + ψkBk|2 + | ⋆ d(ψkBk) + Vk(x)(ψkhk)|2

]
≤ CM,Λ

[
η2k +

ˆ
Bρk/2(xk)

|hk|2 + |dhk|2
]
≤(5.5) CM,Λ

[
η2k +

ˆ
Bρk

(xk)
|hk|2

]
.

Notice that on Bρk(xk) we have rk ≥ βM > 0. Combining the above display with

∥rkhk∥L2(M) = 1 we see that for large enough k:ˆ
Bρk

(xk)
|hk|2 ≥ CM,Λ > 0 .

Similarly testing (5.4) with χkhk such that χk = 1 on Bρk(xk) and χk = 0 on M\B2ρk(xk),

we see that: ˆ
Bρk

(xk)
|hk| + |dhk|2 ≤ CM,Λ .

Note that by (iv) in Proposition 5.1 and cM ≤ ρk ≤ 2cM the geodesic balls Bρk(xk) are

uniformly bi-Lipschitz to the unit disk in the euclidean plane. Combining the last two
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displays, using Banach-Alagolu, Rellich–Kondrachov theorem together we the bounds on

the radius, we may extract a convergent sub-sequence in W 1,2. Moreover the weak limit

satisfies (5.4) with ∥e1∥L2(M) = ∥e2∥L2(M) = 0, testing the equation by h we see that

any weak limit of hk should be 0. However since the L2 norm of hk is uniformly bounded

below and away from zero, by the strong L2 convergence, contradiction follows. □

Similar to Corollary 3.3 we have that:

Corollary 5.4. As a consequence of the estimates above we also get that there exists a

constant CΛ,M > 0 such that for any 0 < ε < 1
N :

ˆ
M
ω2+2ε|dh|2 ≤

CΛ,R,N

ε2

ˆ
M
ω2| ⋆ dh+B|2 + | ⋆ dB + V (x)h|2 .

5.3. Selection principle and proof of stability on compact surfaces. Here we find

a regular enough pair satisfying the assumptions of Theorem 5.2 second order close to any

nearly minimizing pair (u,∇) ∈W 1,2(M). The proof is adapted with little modification.

Theorem 5.5. Let (M, g) be a compact Riemannian surface. Then there exists constants

ηM , CM ,ΛM with the following property: Let L → M be a Hermitian line bundle with

0 ≤ deg(L) ≤ 1
4πvol(M). Then for any pair of section and connection (u,∇) ∈W 1,2(M)

such that E(u,∇) − 2π deg(L) ≤ η2M . Then there exists another pair (ũ, ∇̃) with the

following properties:

(i) ∥u− ũ∥2L2(M) + ∥F∇ − F∇̃∥
2
L2(M) ≤ CN [E(u,∇) − 2π deg(L)] .

(ii) Λ−1
M |u0| ≤ |ũ| ≤ ΛM |u0| for some solution (u0,∇0) with E(u0,∇0) = 2π deg(L) .

(iii) 2π deg(L) ≤ E(ũ, ∇̃) ≤ E(u,∇) .

Proof. The proof is essentially the same as Theorem 4.1. Similar to Remark 4.3 we

can assume without loss of generality that |u| ≤ 3. Then we replace (u,∇) with the

minimizer of the following auxiliary energy:

G(u,∇)(u1,∇1) = E(u1,∇1) + ∥u− u1∥2L2(M) + ∥A−A1∥2L2(M) .

The existence and regularity follow verbatim as in Lemma 4.2 and Lemma 4.4 respectively.

(In fact the proof of existence is a bit simplified since it is straightforward to prove that

the degree passes to the limit) Iterating the process deg(L) times, we see that we can

find a pair (ũ, ∇̃) such that:

∥ũ− u∥2L2(M) + ∥F∇̃ − F∇∥2L2(M) ≤ CM [E(u,∇) − 2π deg(L)] .

Moreover, for any simply connected domain Ω ∈M there exists a constant CΩ,M with

the following property: After a suitable gauge transformation (ũ, Ã) → (ũeiξ, Ã+ dξ) for

ξ ∈W 1,2
0 (Ω) such that:

∆gξ = d∗Ã inside Ω ⊂M and ∇νξ = ινÃ on ∂Ω ,
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we have the following estimate:

∥ũeiξ∥Cdeg(L),α(Ω) ≤ CM,Ω .

Arguing by contradiction and compactness, using Arzala-Ascoli we can see that if η2M is

small enough, then ũeiξ is a CN perturbation of some solution u0. Now we take a local

chart of U ⊂ Ω and map everything onto an euclidean ball; then taking small enough

domains and arguing by compactness, we can apply Lemma A.1 to conclude as in the

proof of Theorem 4.1. □

Proof of Theorem 1.4. Using Theorem 5.5 and Theorem 5.2, the proof of Theorem 1.1

applies verbatim. □

Proof of Theorem 1.5. The proof follows from Corollary 5.4, similar to the proof of

Theorem 1.2 and Theorem 1.3. □

Appendix A. Smooth perturbation of complex polynomials

Lemma A.1. For any integer N > 0 there exists constants ΛN > 1 and εN > 0 with the

following property: Let P (z) = ΠN
k=1(z − ai) be a complex polynomial with degree N with

a1, . . . , aN ∈ B 1
2
(0). Then for any perturbation R : B1(0) → C with ∥R∥CN (B1(0)) ≤ εN

there exists another complex polynomial Q(z) = ΠN
k=1(z − bj) with b1, . . . , bN ∈ B 2

3
(0)

such that:

Λ−1
N ≤ |P (z) +R(z)|

|Q(z)|
≤ ΛN .

Proof. We prove the lemma by induction. By the bound |R(z)| ≤ εN ≤ |P (z)| on ∂B1

and Rouche’s theorem, there exists a point a ∈ B1 such that P (a) +R(a) = 0. Then we

define R̃(z) = R(z) + P (a) so that R̃(a) = 0 and we write:

P (z) +R(z)

z − a
=
P (z) − P (a) + R̃(z)

z − a
=
P (z) − P (a)

z − a
+
R̃(z)

z − a
.

Since R̃(z) = R(z) −R(a) we get that ∥R̃∥CN (B1) ≤ 2εN . Then by a Taylor expansion

we estimate:

∥ R̃(z)

z − a
∥CN−1(B1) ≤ CN∥R̃∥CN (B1) ≤ CNεN .

Now since P (z)−P (a)
z−a is a complex polynomial with degree N − 1, by induction we see

that there exists a complex polynomial Q̃(z) such that:

Λ−1
N−1 ≤

∣∣P (z) − P (a) + R̃(z)

Q̃(z)(z − a)

∣∣ ≤ ΛN−1 .

Naming Q(z) = Q̃(z)(z − a) we get that:

Λ−1
N ≤ |P (z) +R(z)|

|Q(z)|
≤ ΛN .

The case N = 1 follows by a standard transversality argument. □
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Appendix B. Weighted elliptic inequalities

Here we state some results from [16] for convenience of the reader. Let Ω be a smooth

bounded open domain Ω ⊂ M of a smooth Riemannian two-manifold. We work with

weights ω ∈W 1,2(Ω) that formally satisfy:

ω2∆g log(ω) = 0 in Ω,

in a weak sense. Precisely for any ϕ ∈ C∞
c (Ω) the following identity holds:ˆ

Ω

[
4|dω|2ϕ− ω2∆gϕ

]
= 0 .(B.1)

In the case of M := R2 all weights of the form

ω(x) = Πn
k=1|x− ak|αk with {ak}nk=1 ⊂ R2 and αk > 0 ,

are admissible. More generally (as in [16]) for a smooth open and bounded domain

Ω ⊂M in a smooth two-manifold, the weights can take the following form:

ω(x) = Πn
k=1e

−αkGpk
(x) with {pk}nk=1 ⊂ Ω and αk > 0 ,(B.2)

where Gp(x) = G(p, x) is the Green’s function for the domain Ω centered on p, namely

the fundamental solution for the Laplacian on Ω (for a comprehensive account of the

Green’s function on smooth manifolds see [23]). Following the observation in [23, eq

(1.1)], we see that there is some constant C > 0 such that any weight of the form (B.2)

satisfies:

C−nω(x) ≤ Πn
k=1d(x, pk)αk ≤ Cnω(x) in Ω ,

where d(x, y) is the geodesic distance between x, y on M . Now we state the theorems:

Theorem B.1. Let (M2, g) be a smooth 2-manifold and Ω ⊂M2 a smooth open domain

with boundary. Consider a weight ω as in (B.1). Then for any compactly supported

function f ∈ C∞
c (Ω) we have that:ˆ

Ω
|∇ω|2|f |2 ≤

ˆ
Ω
ω2|∇f |2 .

The next proposition contains the ideas of the weighted Hodge decomposition in a

general settings:

Proposition B.2. Let B be a smooth compactly supported one form B ∈ C∞
c (
∧1 Ω) and

Ω a smooth simply connected open domain with boundary on a two-manifold Ω ⊂M2

and let ω be a weight satisfying (B.1). Then we have the following:

(i) There exists functions h, f with
´
Ω ω

2|dh|2 +ω−2|df |2 <∞ such that h minimizes

the weighted functional
´
Ω ω

2|B − ⋆dh|2. Consequently, we have the weighted

Hodge decomposition as follows:

ωB = ⋆ωdh+ ω−1df .
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(ii) Let ψ, ϕ ∈W 1.2
0 (Ω) be the exact and co-exact part of the standard Hodge decom-

position of B

B = ⋆dϕ+ dψ .

Then we have the estimates below for any ε > 0:

∥ω1+ε(dh− dϕ)∥2L2(Ω) ≤ C
supΩ ω

2ε

ε2
∥ω−1df∥2L2(Ω) .

(iii) Let ωk,Bk be a sequence of weights and one-forms such that

ωkBk = ⋆ωkdhk + ω−1
k dfk and Bk = ⋆dϕk + dψk

with ω−1
k dfk → 0 strongly in L2(Ω) .

Then for any fixed ε > 0, we have that:

ω1+ε
k (hk − ϕk) → 0 strongly in L2(Ω) and weakly in W 1,2(Ω) .

Proof. Define the weighted Sobolev space W 1,2
0 (ω2,Ω) as the completion of C∞

c (Ω)

under the weighted norm
´
Ω ω

2(|du|2 + |u|2). This norm is equivalent to
´
Ω |d(ωu)|2 by

Theorem B.1 and Poincaré inequality:ˆ
Ω
|dω|2|u|2 ≤

ˆ
Ω
ω2|du|2 and

ˆ
Ω
ω2|u|2 ≤ CΩ

ˆ
Ω
|d(ωu)|2 ≤ CΩ

ˆ
Ω
ω2|du|2 .

We can guarantee the existence of a minimizer of
´
Ω ω

2|B − ⋆dh|2 by the direct method

of the calculus of variations. The Euler Lagrange equations for minimizers tell us that:

d(ω2(B − ⋆dh)) = 0 ⇒ there exists f ∈W 1,2
0 (ω−2,Ω) such that ω2(B − ⋆dh) = df .

We also write the standard Hodge decomposition of B

B = ⋆dϕ+ dψ .

Then observe that:

⋆dϕ+ dψ = ⋆dh+ ω−2df ⇒ ∆g(h− ϕ) = 2
dω

ω3
∧ df .

Then we can estimate ˆ
Ω

ω4

|dω|2
|∆g(h− ϕ)|2 ≤ 4

ˆ
Ω
ω−2|df |2 .

Now we apply Theorem B.1 directly to seeˆ
Ω
ω2+2ε|d(h− ϕ)|2 ≤ C

(supΩ ω)2ε

ε2

ˆ
Ω

ω4

|dω|2
|∆g(h− ϕ)|2 ,

and we finally estimateˆ
Ω
ω2+2ε|d(h− ϕ)|2 ≤ C

(supΩ ω)2ε

ε2

ˆ
Ω
ω−2|df |2 .

Where C ≤ 8ε2+5(1+ε)4

8(1+ε)2
and is comparable to 5

8 as ε→ 0. This also proves (iii). □
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