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Interfaces and concentration sets

Several physical phenomena and their mathematical models lead to the
understanding of ”interfaces” and ”concentration sets”.

It’s the set where the phase changes or the ”phase transition” happens. It
typically has a fixed co-dimension (the dimension of the states).

Many of these models are set up to prefer some type of ”ordered” transition
and studying these interfaces illuminates beautiful and interesting
connections to geometry. If lucky some even yield interesting consequences
which are harder to obtain by pure geometric methods.
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Prelude

The story of co-dimension 1
The Allen-Cahn Model
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Allan-Cahn: The model

This model has a ”phase” parameter u : Rn ⊃ Ω → [−1,+1]:

The values u = ±1 correspond to pure states; i.e. water or oil.

The set {u = 0} represents the interface between the states (Note that
it has codimension 1). More precisely, one should think about
{|u| ≤ 1/2} as a diffuse interface between the two phases.

The energy of the model has the following form:

E (u) =

∫
Ω

|du|2︸︷︷︸
favors ordered transition

+
(1− u2)2

4︸ ︷︷ ︸
likes pure states

The stationary points satisfy the following semilinear PDE:

−∆u =
u − u3

2
.
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Allan-Cahn: The picture

One should imagine the domain Ω to be very large. Then we have the
exponential decay away from the transition layer:

|du(x)|+ |1− |u(x)|| ≲ e−C dist(x ,{u=0}) .

Then the expected picture is that u ∼ ±1 outside a strip of thickness ≈ 1.
Moreover the energy concentrates on the transition layer.
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Allan-Cahn: The rescaled picture

We can rescale the picture by considering uϵ(x) = u(x/ϵ), which means
looking at the following rescaled energy:

Eϵ(uϵ) =

∫
Ω
ϵ|duϵ|2 +

(1− u2ϵ )
2

4ϵ
.

We get that uϵ → ±1 as ϵ → 0 and we get the following picture:
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Allan-Cahn: minimal surfaces

In particular:

Eϵ(u) =

∫
Ω
ϵ|duϵ|2 +

(1− u2ϵ )
2

4ϵ
≥AM-GM

∫
Ω
|duϵ|(1− u2ϵ )

=Coarea formula

∫ +1

−1
(1− t2)Hn−1 ({uϵ = t}) dt ∼ c1Hn−1 ({uϵ = 0})

If the above achieves equality, it means that:

uϵ(x) = g(
signed-dist(x , {u = 0})

ϵ
) .

where g is the one dimensional solution g ′ = 1− g2.

This suggests this energy is related to minimal surfaces.
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Allan-Cahn: convergence to minimal surfaces

Theorem: Modica-Mortola

As ϵ → 0 the Allan-Cahn energy Eϵ Γ-converges to the functional:

u → Per({u = 1}) ,

for u ∈ BV(Ω; {−1, 1}).

More results:

Convergence of stationary points (Hutchinson-Tonegawa) and Gradient
flow (Ilmanen).

Most Non-degenerate minimal submanifolds can be recovered as limits
of critical points (Pacard-Ritorè, Del Pino-Wei, De Philippis-Pigati,
. . . )

Minimal surfaces can be constucted via minMax for Allan-Cahn
(Guaraco, Chodosh-Mantoulidis, Bellettini-Wickramasekera,. . . )
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Overture

It is well known that large scale behavior of the set {u = 0} is described by
minimal surfaces.

Question

Do level sets of Allen-Cahn inherit more ”interesting” behavior from
minimal surfaces?
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Rigidity results for minimal surfaces: Allard

Theorem: Allard

There exists τ(k , n) > 0 such that if Σ is a k-dimensional minimal surface
such that 0 ∈ Σ and:

lim
R→∞

Areak(Σ ∩ BR)

ωkRk
≤ 1 + τ .

Then Σ is a flat k-plane.

The above theorem is in fact a consequence of the following local result:

Theorem: Allard’s ϵ-regularity

There exists ϵ(k , n) > 0 such that if Σ ⊂ B1 is a k-dimensional minimal
surface (without boundary inside B1) such that 0 ∈ Σ and:

Areak(Σ ∩ B1) ≤ ωk(1 + ϵ) ,

then (up to a rotation) Σ ∩ B1/2 is the graph of a C 1,α function f with
∥f ∥C1,α ≲ ϵ.
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Rigidity results for minimal surfaces: Bernstein theorems

For the case of Hypersurfaces more can be said:

Bernstein theorems

Let Σ ∈ Rn be a complete immersed co-dimension 1 minimal hypersurface.
Then Σ is a plane if one of the following is true:

Σ is a graph and n ≤ 8. (Bernstein, Almgren, De Griogi, Simons)

Σ is stable and n ≤ 6. (Chodosh-Li, Chodosh-Li-Minter-Stryker,
Catino-Mastrolia-Roncoroni, Mazet)
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De Giorgi’s conjecture

Does a ”Bernstein” theorem holds for level-sets of Allan-Cahn?

De Giorgi’s Conjecture 78’

Let u : Rn → [−1,+1] be an entire critical point of the Allan-Cahn energy
such that:

∂nu > 0 .

Then u is one-dimensional, meaning after a possible rotation

u(x ′, xn) = g(xn)

where g is the one-dimensional profile (provided n ≤ 8).
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Savin’s result

In 2009 Savin proved the following version of De-Giorgi’s conjecture:

Theorem: Savin 09’

Let u : Rn → [−1,+1] be an entire critical point of the Allan-Cahn energy
such that:

∂nu > 0 and lim
xn→±∞

u(x ′, xn) = ±1 .

Then u is one-dimensional (provided n ≤ 8).
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Wang’s result

Wang also discovered a variational proof which implies Savin’s result:

Theorem: Wang 15’

There is a constant τ such that if u is an entire solution of AC with:

EAC(u)(BR)

Rn−1
≤ c1 + τ ,

then u is one-dimensional.
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Savin and Wang: Idea of the proof

First with a simple compactness argument and Allard, we can see that
the configuration is flat on large scales with respect to a (possibly
changing) plane.

The main idea is then an ”improvement of flatness”:

If the configuration is close to be flat at scale 1, then it is much closer to be
flat at scale 1/2.

Here closeness can be measured in different ways which depends on the
problem.

The intuition is that the area functional linearizes to the Laplace equation,
which enjoys good decay estimates. Take the surface as graph(f ):

Area(graph(f )) =

∫ √
1 + |∇f |2 ∼

∫
1 +

|∇f |2

2
= 1 + Dir(f )

The main (interesting) difficulty is to make this linearization rigorous.
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Savin: Toolbox

Svain’s proof relies on a viscosity type technique and partial Harnack
estimates.

His proof relies on the tool-box of maximum principle type arguments
and comparison functions which are ”scalar” in nature.

Co-dimension 1 is essential for this toolbox.
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Finale

The story of co-dimension 2
Abelian Higgs (Ginzburg

Landau)
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Co-dimension 2: The Ginzburg Landau model

For u : Ω ⊂ R3 → C and A : Ω → R3, the Ginzburg energy takes the
following form:

E (u,A) =

∫
Ω
|du − iAu|2 + |curl(A)|2 + κ

(1− |u|2)2

4
.

Here u is the order parameter and |u| = 1 reflects pure states; A is the
magnetic vector potential and curl(A) is the magnetic field.

Note the following gauge invariance of the energy:

(u,A)⇝ (ue iθ,A+ dθ)
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Co-dimension 2: The Abelian Higgs model

Let L → M be a complex line bundle over M, u a section and ∇ a metric
connection, then the Yang-Mills-Higgs energy take the following form:

E (u,∇) =

∫
M
|∇u|2 + |F∇|2 + κ

(1− |u|2)2

4
.

Here F∇ is the curvature of the connection ∇.

One can see that for a
(local) trivilization ∇ : d − iα:

E (u,∇) =

∫
M
|du − iuα|2 + |dα|2 + κ

(1− |u|2)2

4
.

Here the gauge invariant vortex set {|u| ≤ 1/2} plays the role of transition
layer for AC and is of codimension-2.
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Co-dim 2: A picture
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Ginzburg-Landau: Background

The case α = 0 has been studied by many mathematicians (Bethuel, Brezis,
Orlandi, Serfaty, Lin, Rivere, Pacard, Smets, . . . ) and it is quiet difficult to
analyze.

The energy localize very slowly. (energy grows like | log ϵ|), more
precisely on the set {|u| ≥ 1

2}:

|du(x)|2 ∼ |d( u

|u|
)|2 ∼ 1

dist2(x , u = 0)
.

so on a transversal 2-dim slice

∫
B2
1\B2

ϵ

|du(x)|2 ∼ | log ϵ|

Vortices repulse each other with energy of order | log(distance)|.
Because of this interaction, integrality of the limit sub-manifold is not
guaranteed (Pigati-Stern, Dávila-del Pino-Medina-Rodiac).

A. Halavati (CIMS): Decay of excess for the abelian Higgs model 21/53 .



Abelian Higgs: 2 dimensions

The case κ = 1 with magnetic field is special.

First we see that if u = re iθ and ∇ : d − iα:

|∇u|2 = |du − iuα|2 = |dr |2 + r2|α− dθ|2 .

Indeed on R2 it’s even better: we can see that (Bogomolny):

E (u,∇) =

∫
R2

|∇u|2 + |F∇|2 +
1

4
(1− |u|2)2

= 2π|N|+
∫
R2

|∇∂1u ± i∇∂2u|
2 + | ⋆ F∇ ∓ 1− |u|2

2
|2 .

Here N is the vortex number or the winding number of u at ∞ and is
a topological constant.
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Abelian Higgs: 2 dimensions

Minimizers satisfy a system of first order equations (up to a conjugation)
called the vortex equations:

∇∂1u + i∇∂2u = 0 and ⋆ F∇ =
1− |u|2

2
.

Taubes, in his PhD thesis, showed that:

On R2 all stationary points are minimizers. (Equivalence of first and
second order equations)

After prescribing the zero set u = 0 to be {a1, . . . , aN}, counting with
multiplicity, the solution is unique (up to a change of gauge).
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Abelian Higgs: stability in 2 dimensions (A necessary tool)

The uniqueness result can be strengthened as follows:

Theorem: H. 23’

For any N there exists C|N| such that any N-vortex pair (u,∇) satisfies:

min
(u0,∇0)∈F

∥u − u0∥2L2(R2) + ∥F∇ − F∇0∥2L2(R2) ≤ C|N| [E (u,∇)− 2π|N|] .

provided that E (u,∇)− 2π|N| is small enough. Here F is the moduli space
of all solutions to the vortex equations.

Ideas of proof:

If (u,∇)⇝ (re iθ,A) the discrepancy becomes:

E (u,∇)− 2π|N| =
∫
R2

r2|d log(r) + ⋆(A− dθ)|2 + | ⋆ dA− 1− r2

2
|2

New weighted CKN-type inequalities on two-manifolds needed (H.)

A smoothing method using a penalized functional (inspired by the
quantitative isoperimetric inequality Cicalese-Leonardi)
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A glimpse of the inequalities

H. 23’

Let ω be a positive weight on a two-manifold M (with boundary) such that:

ω2∆ logω = 0

Then for any f ∈ C∞
c (M) the following holds for ϵ ≤ 1:∫

M
|ω|2+2ϵ|df |2 ≤ 3 supM ω2ϵ

ϵ2

∫
M

ω4

|dω|2
|∆f |2 .

As a special case:∫
B2
1

|x |2+2ϵ|df |2 ≤ 3

ϵ2

∫
B2
1

|x |4|∆f |2 .

All weights of the form

ω = Πn
k=1|x − xk |αk

with {x1, . . . , xn} ⊂ R2 and αk > 0 are admissible.
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Abelian Higgs: The rescaled energy

In the sequel we take κ = 1.

We consider the rescaled pair:

(uϵ,∇ϵ) = ϕ∗
ϵ (u,∇) for ϕϵ(x) =

x

ϵ
.

The Yang-Mills-Higgs energy then takes the following form:

Eϵ(uϵ,∇ϵ) =

∫
Ω
|∇ϵuϵ|2 + ϵ2|F∇ϵ |2 +

(1− |uϵ|2)2

4ϵ2
.
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Abelian Higgs: The rescaled picture

in the case κ = 1, the energy decays exponentially away from the vortex set:

|∇ϵuϵ|+ ϵ|F∇ϵ |+ ϵ−1|1− |uϵ|| ≲ e−C dist(.,{|u|=0})/ϵ

Hence the expected picture is as below:
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Abelian Higgs → minimal submanifolds of co-dim 2

Analogous to Allan-Cahn we have the following result:

Thoerem: Pigati-Stern, Parise-Pigati-Stern

As ϵ → 0, the YMH functional Eϵ converges (in a suitable sense) to the
n − 2 area of the zero level set (the only gauge invariant one):

Hn−2({u = 0}) .

In fact the energy measures 1
2π eϵ(u,∇) converge to a stationary

co-dim 2 integral varifold V .

the Currents dual to the Jacobian J(u,∇) = d⟨iu,∇u⟩ converge
weakly to a cycle Γ with |Γ| ≤ µV .
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Question

We see that {u = 0} behaves like a minimal submanifold in the large scale.
As before we can ask:

Question

Does {u = 0} inherit any rigidity from minimal surfaces?
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Abelian Higgs: Rigidity of solutions

The answer is Yes!

Theorem 1: De Philippis-H.-Pigati 24’

There is τ such that for 2 ≤ n ≤ 4 an entire stationary pair (u,∇) for the
Yang-Mills-Higgs functional E1 with:

lim
R→∞

E1(u,∇)(BR)

ωn−2Rn−2
≤ 2π + τ

is necessarilly two dimensional; Meaning there is a projection P : Rn → R2

such that (u,∇) = P∗(u0,∇0), where (u0,∇0) is a one-vortex solution.
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Abelian Higgs: Rigidity of local minimizers

For minimizers we can remove the dimension restriction:

Theorem 2: De Philippis-H.-Pigati 24’

For any n ≥ 2 there is τ(n) > 0 such that an entire local minimizing pair
(u,∇) for the Yang-Mills-Higgs functional E1 with:

lim
R→∞

E1(u,∇)(BR)

ωn−2Rn−2
≤ 2π + τ

is necessarilly two dimensional; Meaning there is a projection P : Rn → R2

such that (u,∇) = P∗(u0,∇0), where (u0,∇0) is a one-vortex solution.
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Ideas of proof: Excess

We measure flatness in two ways:

E = E1 + E2 ,

E1(u,∇,BR) =
1

Rn−2

∫
BR

n∑
k=3

|∇∂ku|
2 +

∑
(j ,k )̸=(1,2)

|F∇(∂j , ∂k)|2 ,

E2(u,∇,BR) =
1

Rn−2

∫
BR

|∇∂1u − i∇∂2u|
2 + |F∇(∂1, ∂2)−

1− |u|2

2
|2 .

E1 measures how flat (u,∇) is and does not depend on orientation.
(parallel to varifold excess)

E2 measures how far (u,∇) to be a solution of the vortex equation (on
the slice) and depends on the orientation.
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Ideas of proof: More excess

In particular:∫
B2
1×Bn−2

1

eϵ(u,∇) = 2πωn−2 + E(u,∇,B1) + O(e−
K
ϵ ) .
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Ideas of proof: Excess decay for solutions

The main ingredient is the following:

Theorem 3: De Philippis-H.-Pigati 24’

For any n ≥ 2, there exists τ(n),R0(n) such that if (u,∇) is an entire
critical points of YMH energy such that:

E1(u,∇)(BR)

ωn−2Rn−2
≤ 2π + τ ,

with R ≥ R0. Then the first excess decays (after a possible rotation):

E1(u,∇,BR
2
) ≤ 1

2
E1(u,∇,BR) ,

or it is already small:

E1 ≲
| logE|2

√
E

R2
+ e−CR .

Unfortunately, for critical pairs, only E1 decays.
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Ideas of proof: Excess decay for minimizers

For minimizers, we have comparison arguments, hence we can do better:

Theorem 4: De Philippis-H.-Pigati 24’

For any n ≥ 2 and β > 0 there is τ(β, n),R0(β, n) such that if (u,∇) is an
entire local minimizer of YMH such that:

E1(u,∇)(BR)

ωn−2Rn−2
≤ 2π + τ ,

with R ≥ R0. Then the full excess decays (after a possible rotation)

E(u,∇,BR
2
) ≤ 1

2
E(u,∇,BR) .

or it is already small:

E(u,∇,BR) ≤
1

Rβ
.
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Idea of proof

It is not hard to see that (By Allard) the configuration is flat on large
scales with respect to a (possibly changing) plane.

We then aim to linearize in the regime where excess E1 vanishes and
radius R becomes large.

Equivalently in the rescaled picture we linearize the equation in the
regime E1 → 0 and ϵ → 0.
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Ideas of proof of Theorem 3: Lipschitz approximation

Lipschitz approximation ⇝ Gauge invariance means a generic level set of u
might be irregular

⇝ We slice the Jacobian:

J(u,∇) = d⟨iu,∇u⟩⇝ J(u,∇)1,2 = Jx : Rn−2 → M(B2
1 ) .

and take a Lipschitz approximation of the barycenter

⟨Jx , (x1, x2)⟩ :=
∫
B2
1×x

J(u,∇)1,2.(x1, x2)

to be
Φ(x) : Rn−2 → R2.

We also get L2 bounds: ∫
Bn−2
R

|dΦ|2 ≤ CE1 .
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Ideas of proof of Theorem 3: Harmonic approximation

Harmonic approximation:

The stress energy tensor (obtained by inner variations)

T (u,∇) = e(u,∇)Id − 2∇u∗∇u − 2ω∗ω

is (row-wise) divergence free (for smooth solutions).
It is also closely related to the Jacobian J(u,∇) with via E2. In fact:

∥J(u,∇)1,k − T (u,∇)2,k∥2L2 ≲
√
E1E for k = 3, . . . , n .

We test div(T (u,∇)) = 0 with an appropriate vector field to see:

|
∫

dΦ.dξ| ≲
√
E1E∥dξ∥∞

for any test function ξ : Rn−2 → R2 .
This and

∫
|dΦ|2 ≲ E1 gives us harmonic approximation for some h:∫

|Φ− h|2 ≲ o(E1) .

with ∆h = 0.
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Ideas of proof of Theorem 3: Caccioppoli and decay

Then with a Caccioppoli type inequality we get an excess-height bound

⇝ decay properties of harmonic functions means height decays

⇝ excess decays.

⇝ The obstruction in dimension comes from estimating the ”variance” of
slice measures ⇝ accurate up to order o(ϵ2 ∼ 1

R2 ).
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Theroem 4: Decay for local minimizers

Decay of the full excess for
local minimizers
A visual guide
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Ideas of proof of Theorem 4 (local minimizers)

Apriori the picture looks like this:
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Ideas of proof of Theorem 4 (local minimizers)

Iterating theorem 3 tells us that the vortex set lies ϵ near a line:
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Ideas of proof of Theorem 4 (local minimizers)

We find a good radius with small excess E1 + E2 on the boundary, to cut:
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Ideas of proof of Theorem 4 (local minimizers)

We replace inside with a line (harmonic function), length decays!

We want to mimick this on the energy level to contradict minimality.

A. Halavati (CIMS): Decay of excess for the abelian Higgs model 44/53 .



Ideas of proof of Theorem 4 (local minimizers)

We pull-back a one-vortex solutions with zero as this line.
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Ideas of proof of Theorem 4 (local minimizers)

Energy ∼ length inside.

However we need to attach to boundary conditions to have a competitor.
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Ideas of proof of Theorem 4 (local minimizers)

We need to interpolate with the boundary conditions ⇝ Quantitative
stability in some gauge, but which one? ⇝ a very delicate gauge fixing has
to be done ⇝ A crucial tool → the zero set is ϵ near a line (C 1 graph).
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Idea of proof of Theorem 4: The crazy gauge

Cover the vortex set with cylinders like B2
Cϵ × Bn−2

Cβ|ϵ log ϵ|. Using the
structure theorem 3 gives us ⇝ no two cylinders are on top of each other.
⇝ Gauge fix in each and then patch up using partition of unity and stability.
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Idea of proof of Theorem 4: The crazy gauge

ϵβ comes from the decay away from

e−β|ϵ log ϵ|/ϵ ≲ ϵβ ∼ 1

Rβ
.
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Idea of proof of Theorem 4: Decay and conclusion

⇝ with a comparison and using

Length ∼
∫
B2
1×Bn−2

1

eϵ(u,∇) ∼ 2πωn−2 + E(u,∇,B1) .

we conclude the decay.
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Summary

In the multiplicity one regime:

We were able to obtain rigidity for solution up to n ≤ 4.

and rigidity for local minimizers for all dimensions n ≥ 2.

the case of solutions for n > 4 remains open (There are some slight of
possible ways to push further but it is not clear at the moment).
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Discussion

It’s interesting to see if we can push the classification to all dimensions
for stationary points (In the multiplicity one regime)?

Applying this pipeline to Ginzburg Landau without magnetic field (In
the works).

This pipeline applies to diffuse energies (blowing down to minimal
sub-manifolds) who carry a self dual structure (or equivalently an
equi-partition of energy) like the Abelian Higgs and Allan Cahn.
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Thank you
for your attention!
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