CARLEMAN ESTIMATES FOR STATIONARY @Q-VALUED MAPS: A
VARIATIONAL APPROACH

ARIA HALAVATI AND LUCA SPOLAOR

ABSTRACT. We prove a Carleman-type estimate for Dirichlet-stationary multivalued
functions and apply it to give a different proof of the optimal dimension of the singular set of
Dir-minimizing multivalued functions, originally due to Almgren and to De Lellis-Spadaro.
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1. INTRODUCTION

Recall that a Q-valued map f € WH2(Q, Ag(R™)), @ C R" open, is Dir-stationary (with
respect to outer and inner variations of the Dirichlet energy) if it is a critical point of the
Dirichlet energy, that is it satisfies an outer variation formula

O(f,v¥) = /ZKDfi(x) t Dotp(z, fi(w))) + (Dfi(z) : Duy(z, fi(z)) - Dfi(z))] dv =0,
' (1.1)

for every ¥ (x,u) € C°(Q x R™;R™) with compact support in x and
Dy < C<oo  and  [Y[+ [Dgtp| < C(1+ul),

and an inner variation formula
Q
2(£.0) =2 [ S(Dfi s Dfi- Do)~ [IDIP divo =0, ¥oe CFQEY. (12)
i=1

We will say that a Q-valued map f € W12(Q, Ag(R™)) is weakly stationary if O(f,-) =0,
i.e. stationary with respect to outer variations only.

For the derivation of these formulas as the Euler-Lagrange equations of the Dirichlet
energy and the related Sobolev theory of Q-valued maps, see [5, Sections 2 and 3], whose
notations we follow.

Multivalued maps that minimize an appropriate Dirichlet energy were introduced by
Almgren in [1] in his celebrated proof of the optimal bound on the dimension of the
singular set of area minimizing currents in high codimension, as the appropriate linearized

problem. More recently, De Lellis and Spadaro revisited this theory with metric techniques
1



2 A. HALAVATI AND L. SPOLAOR

in [5, 7, 6, 8, 9] (see also [11] for minimizers taking values in a smooth compact Riemannian
manifold, and [3] for minimizers of the p-Dirichlet energy).

The main difficulty in proving such optimal bound is the presence of branch points:
points at which the blow-up is regular but the presence of multiplicity causes singularity
to appear. Almgren’s innovative insight was to understand how such branch points can
be studied with the same techniques that are used in the study of unique continuation
properties for elliptic PDEs. However multivalued functions do not satisfy a PDE in
the usual sense, and so he had to find a variational approach to unique continuation
which gave birth to the so-called frequency function. However, another technique that has
been extensively used in the context of standard PDEs to study unique continuation type
question is the so called Carleman estimates technique (see for instance [4, 2, 14, 16, 13, 18]).
In this paper we give the first variational proof of such an estimate for ()-valued functions
and we use it to recover Almgren’s optimal bound on their singular set. We point out
that Carleman estimates have been used in a similar setting for J-holomorphic maps by
Riviere-Tian (see [17]) where they take advantage of the complex structure to turn the
problem into a first order elliptic system, our approach is different (partially inspired by
the proofs in [10]).

We remark that, although our methods differ, the information obtained through Carleman
estimates is essentially captured by the frequency function approach. The main purpose
of this note is to make the community aware of this technique (mainly the two inner and
outer variations needed to find the estimates).

1.1. Main results. The main result of the paper is the following Carleman-type estimate.

Theorem 1.1 (Carleman estimate). Let f € WH2(By; Ag(R™)) be a Dir-stationary Q-
valued function, B; C R", and let 7 > 0 and n = % Then the following estimate
holds

Q 2 2 2 2
Z fi Dfi-x—nf; Z Dfl f
1 =1

for any compactly supported function x € C° (By \ {0}).

We remark that in the literature the name Carleman estimate is usually associated to
estimates of the form

el Dul| 20y < [l Aut]| o (14)

(for large 7 > 0) which are then used to derive expressions of the form Eq. (1.3). However
in our case the Laplacian is replaced by inner and outer variations for the Dirichlet energy,
so Eq. (1.4) doesn’t make sense in our setting and we have to give a variational proof of
Eq. (1.3), that is by testing inner and outer variations with proper vector fields..

A straightforward consequence of Theorem 1.1 is the following strong unique continuation
result

Theorem 1.2 (Strong unique continuation). Let f € W12(By, Ag(R™)), with By C R",

be a Dir-stationary map and suppose that

lim / If|*> = VN eN.

r—0 ’r'N
Then f = Q[0] in By.

Moreover, we are also able to recover the optimal bound on the singular set of Dir-
minimizing multivalued functions. We recall that a point = € Q is regular if there exists a
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neighborhood B C Q of x and @ analytic functions f;: B — R such that

= Z [fi(y)] for almost every y € B,

and either fj(z) # fj(x) for every x € B or f; = f;. The singular set Xy of f is the
complement in 2 of the set of regular points.

Theorem 1.3 (Dimension of the singular set). Let f € Wh2(Q, Ag(R™)), with Q C R",
be a Dir-minimizing map. Then dimy(3Xf) < n — 2. Moreover if n =2, then ¥y is locally
finite.

We remark that Theorem 1.3 is already known, see [1, 5]. Our main contribution is the
use of Eq. (1.3) in place of the monotonicity formula for the frequency function to prove
them.

Finally, as an instructive remark, we note that by adapting ideas from [12], one can
reprove the result therein for two-dimensional Dir-stationary multivalued functions, replac-
ing frequency function techniques with our Carleman estimate in combination with Weiss’
energy.

2. PROOF OF CARLEMAN ESTIMATE: THEOREM 1.1

For a compactly supported positive test function x € C°(B; \ {0}) we test the outer

U
variation Eq. (1.1) with the admissible test function ¢ (z,u) = x R to obtain
x

/ [ IDfi*  (Dx: Dfi)fi ., Onfifi
B1 =1

27 227 X |22

(2.1)

‘ZE|2T |ZE|2T |l‘|27—+2 T |ZE’2T+1

/ Z[ ]sz\2 (Dx : Dfi>fi+7_(n_2_27_)x |fil b |fil? 7
B1 i=1

where the last equality is obtained by an integration by parts. Next we want to test the
inner variation Eq. (1.2) with the admissible vector field ¢ = x ﬁ We compute

1 X X
D¢ = I1-2 2.2
¢ 227 |27 T |22 TR, (2:2)

: Irx X
div(¢) = ’$|;T_1 + (n—27) PR (2.3)

This implies that

J

Now we name 7 = w, multiply Eq. (2.1) by 7 and add it to Eq. (2.4) to see that:

|8 fz|2 2 |fz|2 |Df1’2 |fz|2
~/B1 P |: |x‘27 —-n ’{L‘|2T+2:| - ( >/ ’D ’Z[ ’27’ 1 |$’27—+1:| . (25)

n—27'—2) ]Dfi]2
2
[ 227 + 27X 227 2 o7 1 |z [27

larfip 87“X ’sz’2 <sz DX> <Dfl x>] —0.

1i=1

(2.4)
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This is a first Carleman estimate: to conclude we need to complete the square on the left
hand side. We calculate as follows:

2 2
/ 2n XZ | ’éll+2 = /Sn1 </0 2 XZ 2’TfZL+3 >d9

_ / </1 _nxar(T_QT—HH_z) Z ’fz’Q d’l") do
gn—1 0 °

=1

1 Q
= / </ o 2Tt Z fiOr fi dr) dé
Sn—1 0 .

=1

1 Q
+/ (/ T]E)TXT%JF"QZ]]‘}]Z(ZT) do
Sn—1 0 X

=1

that is
2 |fz|2 f sz' _ |fz|2
/31 & Z |27 2 _/ Z 22 =1 DX z Z |z [27+2 (2.6)
Then, combining Eq. (2.5) and Eq. (2.6), we see that:

Dz' 7 Dz2 z'2
/ Z‘ A |D|Z(|’x,i‘1 L) e

To estimate the L? term on the left hand side of Eq. (1.3), we can see Eq. (2.6) for 7 — &
in place of 7 and the obvious modification for 7:

ST DA | 1A
B XZ (|a7“fl‘ _( ) |f’£ > C |D ’Z ‘ 27—1 |.%"2T+1 : (28)
=1
Combining this, with Eq. (2.7) and the following computation, we conclude:

IDfix —nfil 10, fi]? o1 fil? o |fil®

/ Z |z 222 Z z2r2-2e ~ Tgpri-oe T 272
10, fil* 2 |fil®

= /Bl ; |$‘2T+2 5 + (1" = 2n(n — 5))|x|27*25

Z / XZ 2 ’|'£:_ 2¢e
sz2 fi2
_C/ ’D ‘Z <‘|.I'|27—|1 ‘J|27’+1> '

Eq.

O

Corollary 2.1 (Three sphere inequality). There exists a constant C' > 0, possibly depending
on the dimension, with the following property. For any constant T > 0 (possibly large) any

Dir-stationary multifunction f € W12(By; Ag) and three radii ry < r2 <13 <1 Iz\ with
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ro’ T

min (5 7"—2) > 2 and x € By, the following estimate is true:

[ 1 . 1 ] \|f||%2(32rz\3r2(w))

1+1log(rs/r2)? 1+ log(re/r1)? rar
HfH%Q(BQT \Br, (z)) HfH%Q(BQr \Br; (z))

< C 1 1 +C 3 3

>~ T‘%T ,,,,%T

Proof. First testing the outer variation Eq. (1.1) with ¥(z,u) = ¢?(z)u we get the
Caccioppoli inequality:

/ QD < C / D2 (2.9)
B B

Without loss of generality we assume that x is the origin. Then we distinguish two cases.

Case I: If log(rs/r2) > log(ra/r1) (meaning that ro is closer to r; than r3) we rescale
such that rq becomes the unit radius. Then we choose x =1 on By 17/, \ Bi.g, supported
in By gr,\r, \ Br1, and to decay linearly to zero in Bji and outside By i,/ so that
|IDx| < C~!in Byg\ By and |Dx| < C(rs/r1)~! in B1.9ry/r \ Biarg/r - Then we use
Theorem 1.1 and rescale back with r; > 0 to see that for any € > 0:

2e
e’ (2) ry / fP<Cr™T / [P+ 22D fI?
1 Bary \Brqy () Bi.9r\B1.1r ()
+er | F2+ 2D,
B1.9r5\B1.1r4 ()

Taking a smooth test function ¢ = 1 on By.g,, \ B1.1r, () and ¢ = 0 outside By, \ By, (2)
with |d¢| < Cr{ 1 and similarly for r5 and using the Cacciopoli inequality we can bound
the gradient terms to get that:

2e
/r. —4ZT — 2T —2zT
&2 (2) n | <o [ 124y | 2.
™ Bary \Bry (1) Bary \Br () Barg\Brs ()

1

v/In(ra/r1)2+1"

Case II: If log(r3/r2) < log(r2/r1) Then we rescale so that rs radius becomes unit scale
and perform the same analysis. The result follows by adding the two possibilities. O

2e
The desired estimate comes from optimizing &2 (%) and plugging in € =

3. THE VANISHING ORDER AND ITS PROPERTIES

This part of our paper is inspired by the work of [15], and we follow their strategy. We
start by defining the vanishing order of a Dir-minimizing multivalued function as follows:

Definition 3.1 (Vanishing order). Let f € W12(B;, Ag) be a Dir-stationary multi-valued
function. Then around any point « € B; we define the vanishing degree x, as follows:

log (fBQT\BT(I) |f |2> . log (fBzr\Br(x) f ’2)

faf = AP 21og(r) r50 21og(r)

When it’s clear from the context we will drop the subindex f.

Remark 3.2. We define the vanishing order around all points, however only collapsed
points are relevant since non-collapsed points have 0 as their vanishing order. Also notice
that if f(x) = Q [y], for some y € R™, then a more meaningful definition of vanishing order
could be obtained by replacing |f|? with |f © y|? in the integral. However, later we will
consider function with zero average, and so we will not change the definition here. Finally
we observe that, if f = @ [0] in a neighborhood of a point z, then clearly , = co.
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In the next two subsections we will prove that the vanishing order is well defined (i.e.,
the limit exists) and we will show some of its properties, namely upper semicontinuity and
homogeneity of suitable sequences of blow-ups.

3.1. The vanishing order and strong unique continuation. In order to prove that the
limit above is well defined we will need the following immediate corollary of Theorem 1.1.
Using the three sphere inequality first we show that:

Lemma 3.3 (Strong unique continuation). Let f be an average free, Dir-stationary
functions on an open and connected domain 2. If there exists a point x € Q such that
Ky = +00, then f = Q[0] in Q. In Particular Theorem 1.2 is true.

Proof. Take the set S = {x € Q: k; = 00} and assume it is non-empty. We aim to show
that S is either empty or S = ). By contradiction, assume that 2 # S. Then for any
point = € S we have:

108 ( £3,.1,00) 1/12)

lim su = 00.
—0 P 2log(r)

This means that the L?-norm of f vanishes faster than any polynomial. Hence we can take
r1 — 0 in the Carleman estimate of Theorem 1.1 to see that for any 7 > 0 and r; > ra:

27
T
[ rsamren(Z) [ e
Bary \Bry () ™ Bar \ By, (z)

We can take 7 — 0o to see that for all r < w

/ 2 =0.
Ba,\Br(z)

Hence we see that f(x) = Q[0] and x, = oo for all x € By (x,90) (7). Hence we have just
shown that:

for all z € S we have Byig(s,00)(7) C S

Since €2 is connected, we can find a continuous path v : [0, 1] — Q between any two points
7(0) =z € S and y(1) =y € 2\ S. Now take rg := info<;<1 dist(y(¢), 9€2). Note that
since ¥([0, 1]) is closed, we have ro > 0. Consider 7" = sup{0 < ¢ < 1: v(t) € S} and note
that T' < 1 since y(1) ¢ S. But since we know that B, (v(T)) C Baist(y(1),00)(Y(T)) C S
and by continuity we can verify that for small enough £ we have v(T' + ¢) € B,,(v(T)),
so that f = Q[0] in a neighborhood of (T + ¢) and therefore v(T + ¢) € S. This is in
contradiction with the definition of T" and our claim follows. Hence S = Q and f = Q[0]
in Q.

Notice that Theorem 1.2 follows since the assumption therein guarantees that f = @ [0]
and moreover that kg y = oo. ]

Having ruled out the case k, = 0o, we can show that for a nontrivial Dir-stationary
multivalued function k, is well defined.

Lemma 3.4. Let f € WY2(Q, Ag(R™)) be a nontrivial, Dir-stationary multivalued func-
tion. Then for every x € Q, the vanishing order k, is well defined as

105 (f .00 1)
Ky = lim
r—0 2log(r)
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Proof. For any point z take a sequence of radii {r;}?2; realizing the lim-sup x, < oo.
Taking j large enough so that

log (fBQTj\Brj 0 |F1) o€

2log(rj) =My

we see, since log(r;) < 0, that

2 2Ky —
][ ‘f| < 7’]‘” .
Bar,\By, (x)

Let 7 > 0 be such that r;_1 > 7 > r;. Then the three sphere inequality for 7 =k, + 5 — ¢
states

2 2
fBQT\BT‘(l’) ’f‘2 CfBQTJ\Br] (;U) ‘f‘ CfB27‘]71\Br7_1(.1’) ‘f‘

(log(r)2 + 1)7’2’%_25 — 7,]2‘/%725 7']2'5?725

Hence we see that for all j > jo(e) large enough and r as above:
fon @l o

s re.

(log(r)2 + 1)r2re—2e = = J=1 =

Taking logarithm, for r sufficiently small we have

2
log (JCBQT\BT(I) |1 ) e Clog(log(r)) -

> — — 2¢.
21og(r) - log(r) — Fra ‘
This means that
o 8 (Foar. 0 1112)
e =00 2log(r) '
and we are done. OJ

Remark 3.5 (Frequency and vanishing order coincide). As a consequence of [5, EQ (3.42)]
and Lemma 3.4, for Dir-stationary multi-valued functions, the vanishing order and the
frequency (defined via a linear cut-off as in [9, Definition 3.1]) coincide:

Kpf = Iy 5. (3.1)
Note that the same conclusion of [5, EQ (3.42)] applies, hence integrating from s to ¢

yields:
log (i@) —log <§(81)> _ / 2[7(_7')d7

For s < r < § small enough, we know that the frequency is saturated |I(r) — I, | < e,

hence
log (i@) ~log <i(81)> = (2.5 + O(¢)) log (g) .

By the definition of vanishing order, for small enough § > 0:

H(r) H(s) - r
log <r"—1> — log (Sn_l = (24,5 + O(e)) log (;) .
This shows that:
|Imvf - Hxvf‘ = 0(6) J

for all € > 0 and we conclude.
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3.2. Properties of the vanishing order. In this section we will show upper-semi
continuity of k., and indeed that x, is uniformly bounded on Bj, and also study the
homogeneity of subsequential blow-up limits.

Lemma 3.6. Let f be a Dir-stationary multi-valued functions with zero average, then
vanishing degree T v Ky 1S upper-semi continuous.

Proof. We can compare close-by points by using the three-sphere inequality. Without loss
of generality via a translation we only need to prove upper-semi continuity for the origin,
that is we aim to show that for every € > 0 there is § > 0 such that kg > K, — ¢ for any
x € Bs. This will follow if we can show that for any = € By there exists ro(z,e) > 0 such
that Vr < ro(x,e) we have

/ |f’2 > 7,,2;404-71—}—25 .
B, \Br(z)

To achieve this, note that for any three radii r < K16 < K9 with large 2 < K1 < Ky/2
(to be chosen later), Corollary 2.1 with 7 = ko + § + € says:

2 2
fBKIE\BKTlé(x) |1 J[‘BKTS\BKTQ(S(‘%) |1

2
_c < otmmw I
(10g(K1/K2)2 + 1)(K16)2I€0+2E (K25)2n0+25 T2no+25

Note that here we take r so small so that log(Ko/K7) < log(K16/r). Now for = € Bs and
large enough K we have that Bap s\ B%Klé(o) C Bg,s5 \ Bxys (), hence:
5 =

f 7> f 12> O, (3.3
BKlé\B@(x) Ba e 5\B3 1 5(0)

for small enough 6 > 0. This follows from the vanishing order definition. Similarly, for
large enough K3 and small enough ¢ we also have that By s\ Ba e 5(%) C Br,s \ Biys (0),
5 5 5

(3.2)

hence we see that:

f

Putting together Eqs. (3.3) and (3.4) with the three sphere inequality Eq. (3.2), we conclude
that:

P2 < f 2 < O(K8)20< (3.4)
(z) Br,5\B K,5 (0)

%Kzé\B%Kzé

TBa\Bo(e) P (K416)~°
r (T > _ —3e .
O 2 <1og<K2/K1>2 (#:0) )

(FK19) = (K20)~% and we conclude that:

We can take K5 large enough such that Tog(Ra/R1)2

CfBQT\BT(x) |f|2

7’2’{0+2E Z C(K17 K27 57 8) )

for all » > 0 sufficiently small. Since the right hand side is independent of r, we take a
logarithm, and conclude that:

Ke < Kg+e€.
This is indeed the desired conclusion. We see in fact that for any x € Bi:

Kz > limsup Ky, .
Yy—x
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The upper semi-continuity of Lemma 3.6 together with strong unique continuation in
Lemma 3.3 imply that the vanishing order x, is uniformly bounded in z.

In the next proposition, we prove that around any point x € Bj there exists a sequence
of radii such that the solution becomes k, homogeneous along the sequence.

Theorem 3.7. Let f € Wl’Z(Bl;AQ) be a Dir-stationary multi-valued function. Then
around any point x there exists a sequence of radii v; — 0 and vanishing constants €; — 0
such that:

Q
/ Z\szxfﬁxfd <5j/ Z|f¢|2. (3.5)
BQT \BT (x) B27‘j\ s ) i=1

i=1 §\T
Proof. 1t is enough to prove the result for the origin. The proof is by contradiction. Indeed
assume that there exists g > 0 such that for all small radii » < rg we have:

Q
/ Z \Dfix — kpfil® > Eo/ IR (3.6)
BQT‘\BT B27‘\B7‘(z) =1

The idea is from [15] and is as follows. Instead of the precise weights used in Theorem 1.1,
we use the following

inner variations: ze~27?1°e(12) & outer variation: ue27¢Ues(=D)

Take a compactly supported function x € C°(B; \ {0}); The inner variation Eq. (1.2)
implies:

_7 ( 1, X%—muf)g(m)))
Q

n—21¢ —2 o
:/ BT Z2NN (DR 4 200, £i) e 2retes(aD)

2 i (3.7)

> ( P (D D) (D g ) ettt
14=1

For the outer variation Eq. (1.1), with the same smooth cut-off x we see that:

0 = O(f, xue2eUos(lz]))

Q
1Onfifi\ ~2ro(iog(lxl))
R e
/31 Z}( |z (3.8)
/ Z Dy.Df;) fre~2r¢oa(lal)

B =1
Then we multiply Eq. (3.8) by n = W and add to Eq. (3.8) to get the following
inequality:

/ Xi <|6 f<|2 — U2W> o~ 27¢(log(|z)))
B n |22

=1

@ 12
= C/ X1 (IwHDfiF T '|f"> ¢~ 2roliog(le])
B i=1 x

Q 12
+C1 - ¢’HOO/B S <|sz-12 + ||{U"2> J—2ré(iog(lel))
1 =1
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Performing the same integration by parts in the proof of Theorem 1.1 in Eq. (2.6) we see

that:
Q 2
/ Z o, f; — JL|" e=2rotog(al)
B =1
12
< c/ |Dy| Z <]w\|Df,-]2 + ’ﬂ) e~ 279 (log(|2))) (3.9)
B i=1 v

C (=4l +107) [ Xz<|sz|2 '|fz|'2>e2w<log<wl>>.

Now we use the contradiction assumption (Eq. (3.6)). The idea is to bend slightly the graph
of ¢(t) with a convexity of size 9 > 0. With that we gain a three-sphere inequality with
€0 > 0 more weight for the left hand side. Using this we gain a contradiction with the fact
that the vanishing order is a limit in Lemma 3.4. Now for any two radii r < ro < ro(z)
we introduce ¢; as follows:

ps(t) > (1 —0)t for log(r1) <t <log(2ry) or log(re) <t <log(2rq),
¢s(t) < (1+26)t  for log(y/rirz) <t <log(2y/r172),
|¢'] + |¢"] < C6.
Moreover we put:
_ 26, +m —2 oy = 21 —n+2 —
2 2

Now using Eq. (3.9) and Eq. (3.6) and the Cacciopoli inequality on dyadic annuli between
r1 and 7o we see that:

2
/ XE:Q ~2ré5(oglel)) < 005 (Dx ,+|D2X‘):f|2 ~2r5(log(|]))

Now take x to be the smooth cut-off such that x = 1 on B,, \ Ba, (x) and it linearly
decreases to 0 on By, (z) and (Bay,(z))¢. Then we can see that for 6 = cg( for small enough
¢ > 0, there exists a constant C(eg, z) such that:

2 2 2
fBZ\/rTr\BwTr £l fB2r1\Br1 (=) /] fB%z\Bv-z (=) U
2Kz +2ceg+n < ¢ €0, T 2Kz —Ccep+n 2Ky —ceQ+N
r1ro 71 Ty

By the definition of vanishing order k,, for any 1 > 0 there exists r¢(n, x) such that for all
radii » < ro(n, z) we have:

2
s ][ [fP) <rmemm.
Bay\B,(z)

Combining the last two displays, we arrive at:

2n—2 —2 —2
VI < Cleo) (0T 4 50T

We can take n small enough so that 2n — 2ceg < 0 and cgg — 2n > 0, hence the right
hand side becomes bounded by C(gp). Then taking r; < ro small enough we reach a
contradiction and conclude. (|

Remark 3.8. The previous proof actually implies that for every sequence of radii r; — 0
there exists a subsequence r; — 0 and a sequence of constants ¢;, — 0 for which (3.5)
holds.
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4. PROOF OF THE DIMENSIONAL BOUND: THEOREM 1.3

The dimensional bound in Theorem 1.3 follows as in [5, Proof of Theorem 0.11] from
the following Lemma.

Lemma 4.1. Let Q be connected and f € W12(Q, Ag(R™)) be Dir-minimizing. Then,
either f = Q [¢] with &: Q — R™ harmonic in ), or the set

N i={reQ: f(z)=Qy],y eR"}
(which is relatively closed in Q since f is continuous) has Hausdorff dimension at most
n — 2 and it is locally finite for n = 2.

First we notice that we can assume &,y = 0 in Lemma 4.1, since we can subtract the
average of f by [5, Lemma 3.23]. Next we define the blow-up sequence

_ 2 fy+pr)

V fBP(y) |f‘2

The proof of Lemma 4.1 will then follow as in the proof of [5, Proposition 3.22] replacing
Theorem 3.19 therein with the following

Lemma 4.2. Let f € W'2(By, Ag(R™)) be Dir-minimizing. Assume f(0) = Q[0] and
1 fllz2(B,)) > 0 for every p < 1. Then, for any sequence (f,, )k, with px | 0, a subsequence,
not relabeled, converges locally uniformly to a function g: R™ — Ag(R™) with the following
properties:

fyp(@) :

(1) llgllz2(,) =1 and gla is Dir-minimizing for any bounded €;
(2) g(z) = |x|%g <ﬁ), where o = ko ¢ > 0 is the vanishing order of f at 0.

Before we prove Lemma 4.2, we need the following doubling estimate to guarantee that
the sequence f, is uniformly bounded.

Proposition 4.3 (Doubling estimate). Let f € WY2(B, Ag) be a Dir-stationary multi-
function. Then for any point x € By there exists a radius v, > 0 and a constant C, such
that for all radii r < r, we have:

/ rf|2§cx/ 2
Bay(z) B, (z)

Proof. 1t is enough to prove that:

/ e / P
Boy\Br(x) B (x)

The strategy is to use the three sphere inequality for the three radii e < 2¢ <« r3 for rg > 0
to be chosen later:

2 2
fBQs\Bs(LB) |f|2 < fB&\BE/Q(I) ’f| + fB2T3\BT3(I) ‘f‘
(25)27' — e27 TZ’Q;T

Multiplying and rearranging we see that:

2T
[ upscr | m2+c(€) / TR,
Bac\Be(x) <\B:/2(z) 3 B2y \Brg (x)

Now by Lemma 3.4, we know that for any n > 0 there exists a radius 7 (1, z) small enough
such that for all radii r < ro(n, x) we have that:

7,,2/%—&-71-‘,—77 § / |f’2 S T2ﬁx+n—n .
By, \Br(z)

C
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We take r3 < ro(n, z), and we see that:

2T 2T
()L 22
3 Barg \Brg (z) 3

Take 7 = w and we see that the above display reads:

2T
c(2) [ g [,
T3 Bayg\Bry (2) Bac\Be()

Taking € > 0 small enough we see that we can we can reabsorb the second term on the
right hand side of Eq. (4.1) and end up with the desired estimate:

/ 2 < Clayn) / 2.
By \Be () B.(z)
J

Proof of Lemma 4.2. We consider any ball By of radius N centered at 0. It follows from
Proposition 4.3 and the Caccioppoli inequality Eq. (2.9) that |[f,|lw1.2(p,) is uniformly
bounded in p. Hence, the functions f, are all Dir-minimizing and [5, Theorem 3.9] implies
that they are locally equi-Holder continuous. Since f(0) = @ [0], the f,’s are also locally
uniformly bounded and the Ascoli-Arzeld theorem yields a subsequence (not relabeled)
converging uniformly on compact subsets of R to a continuous @)-valued function g. This
implies easily the weak convergence (see [5, Definition 2.9]), so we can apply [5, Proposition
3.20] and conclude (1) (note that || f,[|z2(p,) = 1 for every p).

Next notice that up to choosing a further subsequence g is kg r(0)-homogeneous by
Lemma 4.2. Finally, assume by contradiction that kg ¢(0) = 0. Then, by what shown so
far, the blowups converge to a continuous 0-homogeneous function g, with ¢g(0) = @ [0].
This implies that g = Q [0], a contradiction to | g|z2(p,) = 1. O

5. THE 2-DIMENSIONAL CASE

For the reader’s convenience we give a proof of the 2-dimensional case combining the
monotonicity of the Weiss energy with the reasoning above on the vanishing order of a
Dir-minimizing multivalued map. We start with the following:

Proposition 5.1 (Weiss’ monotonicity formula). If f € W2(Q, Ag(R™)) and B,(z) C (,
then we define the Weiss Boundary adjusted energy by

1 /i%f
Wep(r) = W(fer) == Tm+z,w_2/B " IDf” - rm+2,w_1/88 . IfI7

Then the map r — Wy ¢(r) is absolutely continuous and

v gt0) = B 2y g i)k [ 050 (il

dr xz,f\T") = r z,r z,r r Jon, - zr)i L — Kg flJzr)il
(5.1)

where f7,(y) == |y|* fur(x/|2]) is the k-homogeneous extension of the trace of fy, in Bi.

In particular if f is Dir-minimizing in Q then
(1) LW, +(r) > 0 and so there exists Wy, ¢(r) > W, (0) = lim, o Wy ¢(r) = 0;
(2) d%Wx,f(T) = 0 if and only if for is Ky, p-homogeneous.

Proof. The proof of the above is standard and can be found for instance in [19, Section 9]
(adjusting the constants therein to account for ). In particular notice W, ¢(0) = 0 follows
from Lemma 4.2 since W, r(0) = Wy 4(1), where g is a x, y homogeneous function and so
Wo4(1) = 0. O
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Next we have the following standard epiperimetric inequality.

13

Lemma 5.2 (Epiperimetric Inequality). There is a positive constant 0, depending only
on Q, with the following property. Assume f € Wh2(By, Ag(R™)), By C R?, is Dir-

minimizing. Then, for f*, the k homogeneous extension of f, we have

/B (IDf5? = [Df?) = 6 Wo,p(1) .

(5.2)

Proof. In short, we construct competitors by unwinding the boundary conditions, extending
harmonically inside and rewinding again. We use the same notation as in [5, Proposition

5.2]; precisely, fix a radius r and let f(re) = g(6) = Z}]:1 lgj(0)] be an irreducible
decomposition as in [5, Proposition 1.5]. Then for each g; we can find v; : S — R™ such

that:

wo-£ ()]

Now take the Fourier decomposition of ~;:

%2‘,0 + Z [ajesin(£0) + bj , cos(40)] ,
=1

7;(0) =
and its harmonic extension:

a; = -
Ci(p,0) = 37’0 + Z p [a; o sin(€) + b; ¢ cos(£6)] .
=1

Calculating the Dirichlet energy as in [5, EQ (5.18)], we obtain:
/B IDF* <> Dir(¢, B) =7y > r* (|aj,
" J i !

We also calculate the Dirichlet energy for the k-homogeneous extension:

2 + |bj7[’2) .

s K K £2
JRLIEEDNCARRES 9 ol LRSS (NS
" J i L

Hence we can estimate for » = 1:
k02
[ 105 P -1prP 2w TS (5 4 5 - ] (asal + i)
1 j ¢

Now we calculate the Weiss energy using competitors:

W(fe1) <3 Dir(j, B1) — /a = Ty > 10— kQ5) (Jajel® + [bjel?) -
J ! VN

Since @; > 1, it is enough to show that there exists some ¢ such that:

2 K
ﬂ+§—£25(€—/€>
It is easy to verify that the following choice for ¢ satisfies Eq. (5.5)
k| +1—k
2k
Putting together Eqgs. (5.3) and (5.4), we conclude that:

/B DR~ |DJJ2 > 6Wo(1).

)=

(5.3)

(5.4)

(5.5)
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Combining the two propositions above we have the following

Lemma 5.3 (Uniqueness of tangent map). Let f € WH2(By, Ag(R™)) be a Dir-minimizing
Q-valued functions, with Dir(f, B1) > 0 and f(0) = Q[0]. Then, the maps f., converge
locally uniformly to a unique tangent mat g.

Proof. The proof follows from a standard reasoning, see for instance [19, Lemma 12.14 &
Proposition 2.14]. O

The proof of the 2-dimensional case of Theorem 1.3 then follows in the same way as in
[5, Subsection 5.3], replacing Theorem 5.3 therein with Lemma 5.3.

(1]

,_H
i)

18]

[19]
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