
CARLEMAN ESTIMATES FOR STATIONARY Q-VALUED MAPS: A

VARIATIONAL APPROACH

ARIA HALAVATI AND LUCA SPOLAOR

Abstract. We prove a Carleman-type estimate for Dirichlet-stationary multivalued
functions and apply it to give a different proof of the optimal dimension of the singular set of
Dir-minimizing multivalued functions, originally due to Almgren and to De Lellis–Spadaro.
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1. Introduction

Recall that a Q-valued map f ∈W 1,2(Ω,AQ(Rm)), Ω ⊂ Rn open, is Dir-stationary (with
respect to outer and inner variations of the Dirichlet energy) if it is a critical point of the
Dirichlet energy, that is it satisfies an outer variation formula

O(f, ψ) :=

ˆ ∑
i

[⟨Dfi(x) : Dxψ(x, fi(x))⟩+ ⟨Dfi(x) : Duψ(x, fi(x)) ·Dfi(x)⟩] dx = 0 ,

(1.1)
for every ψ(x, u) ∈ C∞(Ω× Rm;Rm) with compact support in x and

|Duψ| ≤ C <∞ and |ψ|+ |Dxψ| ≤ C (1 + |u|) ,

and an inner variation formula

I(f, ϕ) := 2

ˆ Q∑
i=1

⟨Dfi : Dfi ·Dϕ⟩ −
ˆ

|Df |2 div ϕ = 0 , ∀ϕ ∈ C∞
c (Ω,Rn) . (1.2)

We will say that a Q-valued map f ∈W 1,2(Ω,AQ(Rm)) is weakly stationary if O(f, ·) = 0,
i.e. stationary with respect to outer variations only.

For the derivation of these formulas as the Euler–Lagrange equations of the Dirichlet
energy and the related Sobolev theory of Q-valued maps, see [5, Sections 2 and 3], whose
notations we follow.

Multivalued maps that minimize an appropriate Dirichlet energy were introduced by
Almgren in [1] in his celebrated proof of the optimal bound on the dimension of the
singular set of area minimizing currents in high codimension, as the appropriate linearized
problem. More recently, De Lellis and Spadaro revisited this theory with metric techniques
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2 A. HALAVATI AND L. SPOLAOR

in [5, 7, 6, 8, 9] (see also [11] for minimizers taking values in a smooth compact Riemannian
manifold, and [3] for minimizers of the p-Dirichlet energy).

The main difficulty in proving such optimal bound is the presence of branch points:
points at which the blow-up is regular but the presence of multiplicity causes singularity
to appear. Almgren’s innovative insight was to understand how such branch points can
be studied with the same techniques that are used in the study of unique continuation
properties for elliptic PDEs. However multivalued functions do not satisfy a PDE in
the usual sense, and so he had to find a variational approach to unique continuation
which gave birth to the so-called frequency function. However, another technique that has
been extensively used in the context of standard PDEs to study unique continuation type
question is the so called Carleman estimates technique (see for instance [4, 2, 14, 16, 13, 18]).
In this paper we give the first variational proof of such an estimate for Q-valued functions
and we use it to recover Almgren’s optimal bound on their singular set. We point out
that Carleman estimates have been used in a similar setting for J-holomorphic maps by
Riviere-Tian (see [17]) where they take advantage of the complex structure to turn the
problem into a first order elliptic system, our approach is different (partially inspired by
the proofs in [10]).

We remark that, although our methods differ, the information obtained through Carleman
estimates is essentially captured by the frequency function approach. The main purpose
of this note is to make the community aware of this technique (mainly the two inner and
outer variations needed to find the estimates).

1.1. Main results. The main result of the paper is the following Carleman-type estimate.

Theorem 1.1 (Carleman estimate). Let f ∈ W 1,2(B1;AQ(Rm)) be a Dir-stationary Q-

valued function, B1 ⊂ Rn, and let τ > 0 and η = 2τ−n+2
2 . Then the following estimate

holds

ˆ
B1

χ

Q∑
i=1

(
ε2

|fi|2

|x|2τ+2−ε
+

|Dfi · x− ηfi|2

|x|2τ+2

)
≤ C

ˆ
B1

|Dχ|
Q∑
i=1

(
|Dfi|2

|x|2τ−1
+

|f |2

|x|2τ+1

)
. (1.3)

for any compactly supported function χ ∈ C∞
c (B1 \ {0}).

We remark that in the literature the name Carleman estimate is usually associated to
estimates of the form ∥∥|x|−τDu

∥∥
L2(Ω)

≤
∥∥|x|−τ+1∆u

∥∥
L2(Ω)

, (1.4)

(for large τ > 0) which are then used to derive expressions of the form Eq. (1.3). However
in our case the Laplacian is replaced by inner and outer variations for the Dirichlet energy,
so Eq. (1.4) doesn’t make sense in our setting and we have to give a variational proof of
Eq. (1.3), that is by testing inner and outer variations with proper vector fields..

A straightforward consequence of Theorem 1.1 is the following strong unique continuation
result

Theorem 1.2 (Strong unique continuation). Let f ∈W 1,2(B1,AQ(Rm)), with B1 ⊂ Rn,
be a Dir-stationary map and suppose that

lim
r→0

1

rN

ˆ
Br

|f |2 = 0 ∀N ∈ N .

Then f ≡ Q J0K in B1.

Moreover, we are also able to recover the optimal bound on the singular set of Dir-
minimizing multivalued functions. We recall that a point x ∈ Ω is regular if there exists a
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neighborhood B ⊂ Ω of x and Q analytic functions fi : B → Rn such that

f(y) =

Q∑
i=1

Jfi(y)K for almost every y ∈ B ,

and either fi(x) ̸= fj(x) for every x ∈ B or fi ≡ fj . The singular set Σf of f is the
complement in Ω of the set of regular points.

Theorem 1.3 (Dimension of the singular set). Let f ∈W 1,2(Ω,AQ(Rm)), with Ω ⊂ Rn,
be a Dir-minimizing map. Then dimH(Σf ) ≤ n− 2. Moreover if n = 2, then Σf is locally
finite.

We remark that Theorem 1.3 is already known, see [1, 5]. Our main contribution is the
use of Eq. (1.3) in place of the monotonicity formula for the frequency function to prove
them.

Finally, as an instructive remark, we note that by adapting ideas from [12], one can
reprove the result therein for two-dimensional Dir-stationary multivalued functions, replac-
ing frequency function techniques with our Carleman estimate in combination with Weiss’
energy.

2. Proof of Carleman estimate: Theorem 1.1

For a compactly supported positive test function χ ∈ C∞
c (B1 \ {0}) we test the outer

variation Eq. (1.1) with the admissible test function ψ(x, u) = χ
u

|x|2τ
to obtain

0 =

ˆ
B1

Q∑
i=1

[
χ
|Dfi|2

|x|2τ
+

⟨Dχ : Dfi⟩ fi
|x|2τ

− 2 τ χ
∂rfi fi
|x|2τ+1

]

=

ˆ
B1

Q∑
i=1

[
χ
|Dfi|2

|x|2τ
+

⟨Dχ : Dfi⟩ fi
|x|2τ

+ τ(n− 2− 2τ)χ
|fi|2

|x|2τ+2
+ τ∂rχ

|fi|2

|x|2τ+1

]
,

(2.1)

where the last equality is obtained by an integration by parts. Next we want to test the
inner variation Eq. (1.2) with the admissible vector field ϕ = χ x

|x|2τ . We compute

Dϕ =
1

|x|2τ
Dχ⊗ x+

χ

|x|2τ
I − 2τ

χ

|x|2τ+2
x⊗ x , (2.2)

div(ϕ) =
∂rχ

|x|2τ−1
+ (n− 2τ)

χ

|x|2τ
. (2.3)

This implies that

ˆ
B1

Q∑
i=1

[
(n− 2τ − 2)

2
χ
|Dfi|2

|x|2τ
+ 2τχ

|∂rfi|2

|x|2τ
+
∂rχ

2

|Dfi|2

|x|2τ−1
− ⟨Dfi : Dχ⟩ ⟨Dfi : x⟩

|x|2τ

]
= 0 .

(2.4)

Now we name η = 2τ−n+2
2 , multiply Eq. (2.1) by η and add it to Eq. (2.4) to see that:

ˆ
B1

χ

Q∑
i=1

[
|∂rfi|2

|x|2τ
− η2

|fi|2

|x|2τ+2

]
≤ C

(η
τ

) ˆ
B1

|Dχ|
Q∑
i=1

[
|Dfi|2

|x|2τ−1
+

|fi|2

|x|2τ+1

]
. (2.5)
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This is a first Carleman estimate: to conclude we need to complete the square on the left
hand side. We calculate as follows:

ˆ
B1

2η2χ

Q∑
i=1

|fi|2

|x|2τ+2
=

ˆ
Sn−1

(ˆ 1

0
2η2χ

Q∑
i=1

|fi|2

r2τ−n+3
dr

)
dθ

=

ˆ
Sn−1

(ˆ 1

0
−ηχ∂r(r−2τ+n+2)

Q∑
i=1

|fi|2 dr

)
dθ

=

ˆ
Sn−1

(ˆ 1

0
2η χ r−2τ+n−2

Q∑
i=1

fi∂rfi dr

)
dθ

+

ˆ
Sn−1

(ˆ 1

0
η ∂rχ r

−2τ+n−2
Q∑
i=1

|fi|2 dr

)
dθ ,

that is

ˆ
B1

2η2χ

Q∑
i=1

|fi|2

|x|2τ+2
−
ˆ
B1

2η χ

Q∑
i=1

fiDfi · x
|x|2τ+2

= η

ˆ
B1

Dχ · x
Q∑
i=1

|fi|2

|x|2τ+2
(2.6)

Then, combining Eq. (2.5) and Eq. (2.6), we see that:

ˆ
B1

χ

Q∑
i=1

|Dfi · x− ηfi|2

|x|2τ+2
≤ C

ˆ
B1

|Dχ|
Q∑
i=1

(
|Dfi|2

|x|2τ−1
+

|fi|2

|x|2τ+1

)
. (2.7)

To estimate the L2 term on the left hand side of Eq. (1.3), we can see Eq. (2.6) for τ − ε
in place of τ and the obvious modification for η:

ˆ
B1

χ

Q∑
i=1

(
|∂rfi|2 − (η − ε)2|fi|2

)
≥ −C

ˆ
B1

|Dχ|
Q∑
i=1

(
|Dfi|2

|x2τ−1
+

|fi|2

|x|2τ+1

)
. (2.8)

Combining this, with Eq. (2.7) and the following computation, we conclude:

ˆ
B1

χ

Q∑
i=1

|Dfi.x− ηfi|2

|x|2τ+2−2ε
≥
ˆ
B1

χ

Q∑
i=1

|∂rfi|2

|x|2τ+2−2ε
− η

∂r|fi|2

|x|2τ+1−2ε
+ η2

|fi|2

|x|2τ−2ε

≥
ˆ
B1

χ

Q∑
i=1

|∂rfi|2

|x|2τ+2−2ε
+ (η2 − 2η(η − ε))

|fi|2

|x|2τ−2ε

Eq. (2.8)

≥
ˆ
B1

χ

Q∑
i=1

ε2
|fi|2

|x|2τ−2ε

− C

ˆ
B1

|Dχ|
Q∑
i=1

(
|Dfi|2

|x|2τ−1
+

|fi|2

|x|2τ+1

)
.

□

Corollary 2.1 (Three sphere inequality). There exists a constant C > 0, possibly depending
on the dimension, with the following property. For any constant τ > 0 (possibly large), any

Dir-stationary multifunction f ∈W 1,2(B1;AQ) and three radii r1 < r2 < r3 <
1−|x|

2 with
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min
(
r3
r2
, r2r1

)
> 2 and x ∈ B1, the following estimate is true:[

1

1 + log(r3/r2)2
+

1

1 + log(r2/r1)2

] ∥f∥2L2(B2r2\Br2 (x))

r2τ2

≤ C
∥f∥2L2(B2r1\Br1 (x))

r2τ1
+ C

∥f∥2L2(B2r3\Br3 (x))

r2τ3
.

Proof. First testing the outer variation Eq. (1.1) with Ψ(x, u) = ϕ2(x)u we get the
Caccioppoli inequality: ˆ

B1

ϕ2|Df |2 ≤ C

ˆ
B1

|Dϕ|2|f |2 . (2.9)

Without loss of generality we assume that x is the origin. Then we distinguish two cases.
Case I: If log(r3/r2) > log(r2/r1) (meaning that r2 is closer to r1 than r3) we rescale

such that r1 becomes the unit radius. Then we choose χ = 1 on B1.1r3/r1 \B1.9, supported
in B1.9r3\r1 \ B1.1, and to decay linearly to zero in B1.1 and outside B1.1r3/r1 so that

|Dχ| ≤ C−1 in B1.9 \ B1.1 and |Dχ| ≤ C(r3/r1)
−1 in B1.9r3/r1 \ B1.1r3/r1 . Then we use

Theorem 1.1 and rescale back with r1 > 0 to see that for any ε > 0:

ε2
(
r2
r1

)2ε

r−2τ
2

ˆ
B2r2\Br2 (x)

|f |2 ≤ Cr−2τ
1

ˆ
B1.9r1\B1.1r1 (x)

|f |2 + r21|Df |2

+Cr−2τ
3

ˆ
B1.9r3\B1.1r3 (x)

|f |2 + r23|Df |2 .

Taking a smooth test function ϕ = 1 on B1.9r1 \B1.1r1(x) and ϕ = 0 outside B2r1 \Br1(x)
with |dϕ| ≤ Cr−1

1 and similarly for r3 and using the Cacciopoli inequality we can bound
the gradient terms to get that:

ε2
(
r2
r1

)2ε

r−2τ
2

ˆ
B2r2\Br2 (x)

|f |2 ≤ Cr−2τ
1

ˆ
B2r1\Br1 (x)

|f |2 + Cr−2τ
3

ˆ
B2r3\Br3 (x)

|f |2 .

The desired estimate comes from optimizing ε2
(
r2
r1

)2ε
and plugging in ε = 1√

ln(r2/r1)2+1
.

Case II: If log(r3/r2) ≤ log(r2/r1) Then we rescale so that r3 radius becomes unit scale
and perform the same analysis. The result follows by adding the two possibilities. □

3. The vanishing order and its properties

This part of our paper is inspired by the work of [15], and we follow their strategy. We
start by defining the vanishing order of a Dir-minimizing multivalued function as follows:

Definition 3.1 (Vanishing order). Let f ∈W 1,2(B1,AQ) be a Dir-stationary multi-valued
function. Then around any point x ∈ B1 we define the vanishing degree κx as follows:

κx,f = lim sup
r→0

log
(ffl

B2r\Br(x)
|f |2

)
2 log(r)

= lim
r→0

log
(ffl

B2r\Br(x)
|f |2

)
2 log(r)

When it’s clear from the context we will drop the subindex f .

Remark 3.2. We define the vanishing order around all points, however only collapsed
points are relevant since non-collapsed points have 0 as their vanishing order. Also notice
that if f(x) = Q JyK, for some y ∈ Rn, then a more meaningful definition of vanishing order
could be obtained by replacing |f |2 with |f ⊖ y|2 in the integral. However, later we will
consider function with zero average, and so we will not change the definition here. Finally
we observe that, if f ≡ Q J0K in a neighborhood of a point x, then clearly κx = ∞.
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In the next two subsections we will prove that the vanishing order is well defined (i.e.,
the limit exists) and we will show some of its properties, namely upper semicontinuity and
homogeneity of suitable sequences of blow-ups.

3.1. The vanishing order and strong unique continuation. In order to prove that the
limit above is well defined we will need the following immediate corollary of Theorem 1.1.

Using the three sphere inequality first we show that:

Lemma 3.3 (Strong unique continuation). Let f be an average free, Dir-stationary
functions on an open and connected domain Ω. If there exists a point x ∈ Ω such that
κx = +∞, then f = Q J0K in Ω. In Particular Theorem 1.2 is true.

Proof. Take the set S = {x ∈ Ω : κx = ∞} and assume it is non-empty. We aim to show
that S is either empty or S = Ω. By contradiction, assume that Ω ̸= S. Then for any
point x ∈ S we have:

lim sup
r→0

log
(ffl

B2r\Br(x)
|f |2

)
2 log(r)

= ∞ .

This means that the L2-norm of f vanishes faster than any polynomial. Hence we can take
r1 → 0 in the Carleman estimate of Theorem 1.1 to see that for any τ > 0 and r1 ≥ r2:

ˆ
B2r2\Br2 (x)

|f |2 ≤ (log(r2)
2 + 1)

(
r2
r1

)2τ ˆ
B2r1\Br1 (x)

|f |2 .

We can take τ → ∞ to see that for all r < dist(x,∂Ω)
2 :

ˆ
B2r\Br(x)

|f |2 = 0 .

Hence we see that f(x) = QJ0K and κx = ∞ for all x ∈ Bdist(x,∂Ω)(x). Hence we have just
shown that:

for all x ∈ S we have Bdist(x,∂Ω)(x) ⊂ S .

Since Ω is connected, we can find a continuous path γ : [0, 1] → Ω between any two points
γ(0) = x ∈ S and γ(1) = y ∈ Ω \ S. Now take r0 := inf0≤t≤1 dist(γ(t), ∂Ω). Note that
since γ([0, 1]) is closed, we have r0 > 0. Consider T = sup{0 ≤ t ≤ 1 : γ(t) ∈ S} and note
that T < 1 since γ(1) ̸∈ S. But since we know that Br0(γ(T )) ⊂ Bdist(γ(T ),∂Ω)(γ(T )) ⊂ S
and by continuity we can verify that for small enough ε we have γ(T + ε) ∈ Br0(γ(T )),
so that f ≡ Q J0K in a neighborhood of γ(T + ε) and therefore γ(T + ε) ∈ S. This is in
contradiction with the definition of T and our claim follows. Hence S = Ω and f = QJ0K
in Ω.

Notice that Theorem 1.2 follows since the assumption therein guarantees that f = Q J0K
and moreover that κ0,f = ∞. □

Having ruled out the case κx = ∞, we can show that for a nontrivial Dir-stationary
multivalued function κx is well defined.

Lemma 3.4. Let f ∈W 1,2(Ω,AQ(Rm)) be a nontrivial, Dir-stationary multivalued func-
tion. Then for every x ∈ Ω, the vanishing order κx is well defined as

κx = lim
r→0

log
(ffl

B2r\Br(x)
|f |2

)
2 log(r)
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Proof. For any point x take a sequence of radii {rj}∞j=1 realizing the lim-sup κx < ∞.
Taking j large enough so that

log
(ffl

B2rj
\Brj (x)

|f |2
)

2 log(rj)
≥ κx −

ε

2

we see, since log(rj) ≤ 0, that  
B2rj

\Brj (x)
|f |2 ≤ r2κx−ε

j .

Let r > 0 be such that rj−1 ≥ r ≥ rj . Then the three sphere inequality for τ = κx +
n
2 − ε

states ffl
B2r\Br(x)

|f |2

(log(r)2 + 1)r2κx−2ε
≤ C

ffl
B2rj

\Brj (x)
|f |2

r2κx−2ε
j

+ C

ffl
B2rj−1

\Brj−1 (x)
|f |2

r2κx−2ε
j−1

.

Hence we see that for all j > j0(ε) large enough and r as above:ffl
B2r\Br(x)

|f |2

(log(r)2 + 1)r2κx−2ε
≤ C rεj−1 ≤ C rε .

Taking logarithm, for r sufficiently small we have

log
(ffl

B2r\Br(x)
|f |2

)
2 log(r)

≥ κx − ε− C
log(log(r))

log(r)
≥ κx − 2ε .

This means that

κx = lim
r→0

log
(ffl

B2r\Br(x)
|f |2

)
2 log(r)

.

and we are done. □

Remark 3.5 (Frequency and vanishing order coincide). As a consequence of [5, EQ (3.42)]
and Lemma 3.4, for Dir-stationary multi-valued functions, the vanishing order and the
frequency (defined via a linear cut-off as in [9, Definition 3.1]) coincide:

κx,f = Ix,f . (3.1)

Note that the same conclusion of [5, EQ (3.42)] applies, hence integrating from s to t
yields:

log

(
H(r)

rn−1

)
− log

(
H(s)

sn−1

)
=

ˆ r

s

2I(τ)

τ
dτ

For s ≤ r ≤ δ small enough, we know that the frequency is saturated |I(r) − Ix,f | ≤ ε,
hence

log

(
H(r)

rn−1

)
− log

(
H(s)

sn−1

)
= (2Ix,f +O(ε)) log

(r
s

)
.

By the definition of vanishing order, for small enough δ > 0:

log

(
H(r)

rn−1

)
− log

(
H(s)

sn−1

)
= (2κx,f +O(ε)) log

(r
s

)
.

This shows that:

|Ix,f − κx,f | = O(ε) ,

for all ε > 0 and we conclude.
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3.2. Properties of the vanishing order. In this section we will show upper-semi
continuity of κx, and indeed that κx is uniformly bounded on B1, and also study the
homogeneity of subsequential blow-up limits.

Lemma 3.6. Let f be a Dir-stationary multi-valued functions with zero average, then
vanishing degree x 7→ κx is upper-semi continuous.

Proof. We can compare close-by points by using the three-sphere inequality. Without loss
of generality via a translation we only need to prove upper-semi continuity for the origin,
that is we aim to show that for every ε > 0 there is δ > 0 such that κ0 ≥ κx − ε for any
x ∈ Bδ. This will follow if we can show that for any x ∈ Bδ there exists r0(x, ε) > 0 such
that ∀r ≤ r0(x, ε) we have ˆ

B2r\Br(x)
|f |2 ≥ r2κ0+n+2ε .

To achieve this, note that for any three radii r ≪ K1δ ≤ K2δ with large 2 < K1 < K2/2
(to be chosen later), Corollary 2.1 with τ = κ0 +

n
2 + ε says:

ffl
BK1δ

\BK1δ
2

(x) |f |
2

(log(K1/K2)2 + 1)(K1δ)2κ0+2ε
− C

ffl
BK2δ

\BK2δ
2

(x) |f |
2

(K2δ)2κ0+2ε
≤ C

ffl
B2r\Br(x)

|f |2

r2κ0+2ε
. (3.2)

Note that here we take r so small so that log(K2/K1) ≤ log(K1δ/r). Now for x ∈ Bδ and
large enough K1 we have that B 4

5
K1δ

\B 3
5
K1δ

(0) ⊂ BK1δ \BK1δ
2

(x), hence:

 
BK1δ

\BK1δ
2

(x)
|f |2 ≥

 
B 4

5K1δ
\B 3

5K1δ
(0)

|f |2 ≥ C(K1δ)
2κ0+ε , (3.3)

for small enough δ > 0. This follows from the vanishing order definition. Similarly, for
large enough K2 and small enough δ we also have that B 4

5
K2δ

\B 3
5
K2δ

(x) ⊂ BK2δ \BK2δ
2

(0),

hence we see that: 
B 4

5K2δ
\B 3

5K2δ
(x)

|f |2 ≤
 
BK2δ

\BK2δ
2

(0)
|f |2 ≤ C(K2δ)

2κ0−ε . (3.4)

Putting together Eqs. (3.3) and (3.4) with the three sphere inequality Eq. (3.2), we conclude
that:

C

ffl
B2r\Br(x)

|f |2

r2κ0+2ε
≥ C

(
(K1δ)

−ε

log(K2/K1)2
− (K2δ)

−3ε

)
.

We can take K2 large enough such that (K1δ)−ε

log(K2/K1)2
> (K2δ)

−3ε and we conclude that:

C

ffl
B2r\Br(x)

|f |2

r2κ0+2ε
≥ C(K1,K2, δ, ε) ,

for all r > 0 sufficiently small. Since the right hand side is independent of r, we take a
logarithm, and conclude that:

κx ≤ κ0 + ε .

This is indeed the desired conclusion. We see in fact that for any x ∈ B1:

κx ≥ lim sup
y→x

κy .

□
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The upper semi-continuity of Lemma 3.6 together with strong unique continuation in
Lemma 3.3 imply that the vanishing order κx is uniformly bounded in x.

In the next proposition, we prove that around any point x ∈ B1 there exists a sequence
of radii such that the solution becomes κx homogeneous along the sequence.

Theorem 3.7. Let f ∈ W 1,2(B1;AQ) be a Dir-stationary multi-valued function. Then
around any point x there exists a sequence of radii rj → 0 and vanishing constants εj → 0
such that:

ˆ
B2rj

\Brj (x)

Q∑
i=1

|Dfi.x− κxfi|2 ≤ εj

ˆ
B2rj

\Brj (x)

Q∑
i=1

|fi|2 . (3.5)

Proof. It is enough to prove the result for the origin. The proof is by contradiction. Indeed
assume that there exists ε0 > 0 such that for all small radii r ≤ r0 we have:

ˆ
B2r\Br(x)

Q∑
i=1

|Dfi.x− κxfi|2 ≥ ε0

ˆ
B2r\Br(x)

Q∑
i=1

|fi|2 . (3.6)

The idea is from [15] and is as follows. Instead of the precise weights used in Theorem 1.1,
we use the following

inner variations: xe−2τϕ(log(|x|)) & outer variation: ue−2τϕ(log(|x|)) .

Take a compactly supported function χ ∈ C∞
c (B1 \ {0}); The inner variation Eq. (1.2)

implies:

0 = I
(
f, χxe−2τϕ(log(|x|))

)
=

ˆ
B1

χ
n− 2τϕ′ − 2

2

Q∑
i=1

(
|Dfi|2 + 2τ |∂rfi|2

)
e−2τϕ(log(|x|))

+

ˆ
B1

Q∑
i=1

(
(Dχ.x)

|Dfi|2

2
− (Dχ.Dfi)(Dfi.x)

)
e−2τϕ(log(|x|)) .

(3.7)

For the outer variation Eq. (1.1), with the same smooth cut-off χ we see that:

0 = O(f, χue−2τϕ(log(|x|)))

=

ˆ
B1

χ

Q∑
i=1

(
|Dfi|2 − 2τϕ′

∂rfifi
|x|

)
e−2τϕ(log(|x|))

+

ˆ
B1

Q∑
i=1

(Dχ.Dfi)fie
−2τϕ(log(|x|)) .

(3.8)

Then we multiply Eq. (3.8) by η = 2τ−n+2
2 and add to Eq. (3.8) to get the following

inequality:

ˆ
B1

χ

Q∑
i=1

(
|∂rfi|2 − η2

|fi|2

|x|2

)
e−2τϕ(log(|x|))

≤ C

ˆ
B1

|Dχ|
Q∑
i=1

(
|x||Dfi|2 +

|fi|2

|x|

)
e−2τϕ(log(|x|))

+ C∥1− ϕ′∥∞
ˆ
B1

χ

Q∑
i=1

(
|Dfi|2 +

|fi|2

|x|2

)
e−2τϕ(log(|x|)) .
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Performing the same integration by parts in the proof of Theorem 1.1 in Eq. (2.6) we see
that:

ˆ
B1

χ

Q∑
i=1

∣∣∣∣∂rfi − fi
|x|

∣∣∣∣2 e−2τϕ(log(|x|))

≤ C

ˆ
B1

|Dχ|
Q∑
i=1

(
|x||Dfi|2 +

|fi|2

|x|

)
e−2τϕ(log(|x|))

+C
(
∥1− ϕ′∥∞ + ∥ϕ′′∥∞

) ˆ
B1

χ

Q∑
i=1

(
|Dfi|2 +

|fi|2

|x|2

)
e−2τϕ(log(|x|)) .

(3.9)

Now we use the contradiction assumption (Eq. (3.6)). The idea is to bend slightly the graph
of ϕ(t) with a convexity of size ε0 > 0. With that we gain a three-sphere inequality with
ε0 > 0 more weight for the left hand side. Using this we gain a contradiction with the fact
that the vanishing order is a limit in Lemma 3.4. Now for any two radii r1 ≪ r2 ≤ r0(x)
we introduce ϕδ as follows:

ϕδ(t) ≥ (1− δ)t for log(r1) ≤ t ≤ log(2r1) or log(r2) ≤ t ≤ log(2r2) ,

ϕδ(t) ≤ (1 + 2δ)t for log(
√
r1r2) ≤ t ≤ log(2

√
r1r2) ,

|ϕ′|+ |ϕ′′| ≤ Cδ .

Moreover we put:

τ =
2κx + n− 2

2
⇒ η =

2τ − n+ 2

2
= κx

Now using Eq. (3.9) and Eq. (3.6) and the Cacciopoli inequality on dyadic annuli between
r1 and r2 we see that:ˆ

B1

χ
|f |2

|x|2
e−2τϕδ(log(|x|)) ≤ C

ε0 − Cδ

ˆ
B1

(|Dχ|+ |D2χ|) |f |
2

|x|2
e−2τϕδ(log(|x|))

Now take χ to be the smooth cut-off such that χ = 1 on Br2 \ B2r1(x) and it linearly
decreases to 0 on Br1(x) and (B2r2(x))

c. Then we can see that for δ = cε0 for small enough
c > 0, there exists a constant C(ε0, x) such that:´

B2
√
r1r2

\B√
r1r2

(x) |f |
2

√
r1r2

2κx+2cε0+n ≤ C(ε0, x)

[´
B2r1\Br1 (x)

|f |2

r2κx−cε0+n
1

+

´
B2r2\Br2 (x)

|f |2

r2κx−cε0+n
2

]
.

By the definition of vanishing order κx, for any η > 0 there exists r0(η, x) such that for all
radii r ≤ r0(η, x) we have:

rκx+η ≤

( 
B2r\Br(x)

|f |2
) 1

2

≤ rκx−η .

Combining the last two displays, we arrive at:

√
r1r2

2η−2cε0 ≤ C(ε0)
(
rcε0−2η
1 + rcε0−2η

2

)
.

We can take η small enough so that 2η − 2cε0 < 0 and cε0 − 2η > 0, hence the right
hand side becomes bounded by C(ε0). Then taking r1 ≪ r2 small enough we reach a
contradiction and conclude. □

Remark 3.8. The previous proof actually implies that for every sequence of radii rj → 0
there exists a subsequence rjk → 0 and a sequence of constants εjk → 0 for which (3.5)
holds.
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4. Proof of the dimensional bound: Theorem 1.3

The dimensional bound in Theorem 1.3 follows as in [5, Proof of Theorem 0.11] from
the following Lemma.

Lemma 4.1. Let Ω be connected and f ∈ W 1,2(Ω,AQ(Rm)) be Dir-minimizing. Then,
either f = Q JξK with ξ : Ω → Rn harmonic in Ω, or the set

ΣQ,f := {x ∈ Ω : f(x) = Q JyK , y ∈ Rn}
(which is relatively closed in Ω since f is continuous) has Hausdorff dimension at most
n− 2 and it is locally finite for n = 2.

First we notice that we can assume ξ, y ≡ 0 in Lemma 4.1, since we can subtract the
average of f by [5, Lemma 3.23]. Next we define the blow-up sequence

fy,ρ(x) :=
ρ

n
2 f(y + ρx)√´

Bρ(y)
|f |2

The proof of Lemma 4.1 will then follow as in the proof of [5, Proposition 3.22] replacing
Theorem 3.19 therein with the following

Lemma 4.2. Let f ∈ W 1,2(B1,AQ(Rm)) be Dir-minimizing. Assume f(0) = Q J0K and
∥f∥L2(Bρ)) > 0 for every ρ ≤ 1. Then, for any sequence (fρk)k, with ρk ↓ 0, a subsequence,

not relabeled, converges locally uniformly to a function g : Rn → AQ(Rm) with the following
properties:

(1) ∥g∥L2(B1) = 1 and g|Ω is Dir-minimizing for any bounded Ω;

(2) g(x) = |x|αg
(

x
|x|

)
, where α = k0,f > 0 is the vanishing order of f at 0.

Before we prove Lemma 4.2, we need the following doubling estimate to guarantee that
the sequence fρ is uniformly bounded.

Proposition 4.3 (Doubling estimate). Let f ∈W 1,2(Bn
1 ,AQ) be a Dir-stationary multi-

function. Then for any point x ∈ B1 there exists a radius rx > 0 and a constant Cx such
that for all radii r ≤ rx we have:ˆ

B2r(x)
|f |2 ≤ Cx

ˆ
Br(x)

|f |2 .

Proof. It is enough to prove that:ˆ
B2r\Br(x)

|f |2 ≤ Cx

ˆ
Br(x)

|f |2 .

The strategy is to use the three sphere inequality for the three radii ε ≤ 2ε≪ r3 for r3 > 0
to be chosen later:

C

´
B2ε\Bε(x)

|f |2

(2ε)2τ
≤

´
Bε\Bε/2(x)

|f |2

ε2τ
+

´
B2r3\Br3 (x)

|f |2

r2τ3

Multiplying and rearranging we see that:ˆ
B2ε\Bε(x)

|f |2 ≤ C22τ
ˆ
Bε\Bε/2(x)

|f |2 + C

(
ε

r3

)2τ ˆ
B2r3\Br3 (x)

|f |2 . (4.1)

Now by Lemma 3.4, we know that for any η > 0 there exists a radius r0(η, x) small enough
such that for all radii r ≤ r0(η, x) we have that:

r2κx+n+η ≤
ˆ
B2r\Br(x)

|f |2 ≤ r2κx+n−η .
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We take r3 ≤ r0(η, x), and we see that:

C

(
ε

r3

)2τ ˆ
B2r3\Br3 (x)

|f |2 ≤
(
ε

r3

)2τ

r2κx+n−η
3

Take τ = 2κx+n+4η
2 and we see that the above display reads:

C

(
ε

r3

)2τ ˆ
B2r3\Br3 (x)

|f |2 ≤ ε2κx+n+3η ≤ ε2η
ˆ
B2ε\Bε(x)

|f |2 .

Taking ε > 0 small enough we see that we can we can reabsorb the second term on the
right hand side of Eq. (4.1) and end up with the desired estimate:ˆ

B2ε\Bε(x)
|f |2 ≤ C(x, n)

ˆ
Bε(x)

|f |2 .

□

Proof of Lemma 4.2. We consider any ball BN of radius N centered at 0. It follows from
Proposition 4.3 and the Caccioppoli inequality Eq. (2.9) that ∥fρ∥W 1,2(BN ) is uniformly
bounded in ρ. Hence, the functions fρ are all Dir-minimizing and [5, Theorem 3.9] implies
that they are locally equi-Hölder continuous. Since f(0) = Q J0K, the fρ’s are also locally
uniformly bounded and the Ascoli–Arzelá theorem yields a subsequence (not relabeled)
converging uniformly on compact subsets of Rn to a continuous Q-valued function g. This
implies easily the weak convergence (see [5, Definition 2.9]), so we can apply [5, Proposition
3.20] and conclude (1) (note that ∥fρ∥L2(B1) = 1 for every ρ).

Next notice that up to choosing a further subsequence g is k0,f (0)-homogeneous by
Lemma 4.2. Finally, assume by contradiction that k0,f (0) = 0. Then, by what shown so
far, the blowups converge to a continuous 0-homogeneous function g, with g(0) = Q J0K.
This implies that g ≡ Q J0K, a contradiction to ∥g∥L2(B1) = 1. □

5. The 2-dimensional case

For the reader’s convenience we give a proof of the 2-dimensional case combining the
monotonicity of the Weiss energy with the reasoning above on the vanishing order of a
Dir-minimizing multivalued map. We start with the following:

Proposition 5.1 (Weiss’ monotonicity formula). If f ∈W 1,2(Ω,AQ(Rm)) and Br(x) ⊂ Ω,
then we define the Weiss Boundary adjusted energy by

Wx,f (r) =W (fx,r) :=
1

rm+2κx,f−2

ˆ
Br(x)

|Df |2 −
κx,f

rm+2κx,f−1

ˆ
∂Br(x)

|f |2 .

Then the map r 7→Wx,f (r) is absolutely continuous and

d

dr
Wx,f (r) =

m+ 2κx,f − 2

r
(W (f

κx,f
x,r )−W (fx,r))+

1

r

ˆ
∂B1

Q∑
i=1

|(Dfx,r)i · x− κx,f (fx,r)i|2 ,

(5.1)
where fκx,r(y) := |y|κ fx,r(x/|x|) is the κ-homogeneous extension of the trace of fx,r in B1.
In particular if f is Dir-minimizing in Ω then

(1) d
drWx,f (r) ≥ 0 and so there exists Wx,f (r) ≥Wx,f (0) = limr↓0Wx,f (r) = 0;

(2) d
drWx,f (r) ≡ 0 if and only if fx,r is κx,f -homogeneous.

Proof. The proof of the above is standard and can be found for instance in [19, Section 9]
(adjusting the constants therein to account for κ). In particular notice Wx,f (0) = 0 follows
from Lemma 4.2 since Wx,f (0) =W0,g(1), where g is a κx,f homogeneous function and so
W0,g(1) = 0. □
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Next we have the following standard epiperimetric inequality.

Lemma 5.2 (Epiperimetric Inequality). There is a positive constant δ, depending only
on Q, with the following property. Assume f ∈ W 1,2(B1,AQ(Rm)), B1 ⊂ R2, is Dir-
minimizing. Then, for fκ, the κ homogeneous extension of f , we haveˆ

B1

(
|Dfκ|2 − |Df |2

)
≥ δW0,f (1) . (5.2)

Proof. In short, we construct competitors by unwinding the boundary conditions, extending
harmonically inside and rewinding again. We use the same notation as in [5, Proposition

5.2]; precisely, fix a radius r and let f(reiθ) = g(θ) =
∑J

j=1Jgj(θ)K be an irreducible

decomposition as in [5, Proposition 1.5]. Then for each gj we can find γj : S
1 → Rn such

that:

gj(θ) =

Qj∑
i=1

s
γi

(
θ + 2πi

Qj

){
.

Now take the Fourier decomposition of γj :

γj(θ) =
aj,0
2

+

∞∑
ℓ=1

[aj,ℓ sin(ℓθ) + bj,ℓ cos(ℓθ)] ,

and its harmonic extension:

ζj(ρ, θ) =
aj,0
2

+

∞∑
ℓ=1

ρℓ [aj,ℓ sin(ℓθ) + bj,ℓ cos(ℓθ)] .

Calculating the Dirichlet energy as in [5, EQ (5.18)], we obtain:ˆ
Br

|Df |2 ≤
∑
j

Dir(ζj , Br) = π
∑
j

∑
ℓ

ℓr2ℓ
(
|aj,ℓ|2 + |bj,ℓ|2

)
.

We also calculate the Dirichlet energy for the κ-homogeneous extension:ˆ
Br

|Dfκ|2 =
∑
j

Dir(γκj , Br) = πr2κ
∑
j

∑
ℓ

[
κ

2
+
ℓ2

2κ

] (
|aj,ℓ|2 + |bj,ℓ|2

)
.

Hence we can estimate for r = 1:ˆ
B1

|Dfκ|2 − |Df |2 ≥ π
∑
j

∑
ℓ

[
κ

2
+
ℓ2

2κ
− ℓ

] (
|aj,ℓ|2 + |bj,ℓ|2

)
. (5.3)

Now we calculate the Weiss energy using competitors:

W (fx,1) ≤
∑
j

Dir(ζj , B1)− κ

ˆ
∂B1

|f |2 ≤ π
∑
j

∑
ℓ

[ℓ− κQj ]
(
|aj,ℓ|2 + |bj,ℓ|2

)
. (5.4)

Since Qj ≥ 1, it is enough to show that there exists some δ such that:

ℓ2

2κ
+
κ

2
− ℓ ≥ δ(ℓ− κ) . (5.5)

It is easy to verify that the following choice for δ satisfies Eq. (5.5)

δ =
⌊κ⌋+ 1− κ

2κ

Putting together Eqs. (5.3) and (5.4), we conclude that:ˆ
B1

|Dfκ|2 − |Df |2 ≥ δW0,f (1) .

□
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Combining the two propositions above we have the following

Lemma 5.3 (Uniqueness of tangent map). Let f ∈W 1,2(B1,AQ(Rm)) be a Dir-minimizing
Q-valued functions, with Dir(f,B1) > 0 and f(0) = Q J0K. Then, the maps fx,r converge
locally uniformly to a unique tangent mat g.

Proof. The proof follows from a standard reasoning, see for instance [19, Lemma 12.14 &
Proposition 2.14]. □

The proof of the 2-dimensional case of Theorem 1.3 then follows in the same way as in
[5, Subsection 5.3], replacing Theorem 5.3 therein with Lemma 5.3.
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