
COUNTEREXAMPLE TO THE TWO-ENDS FURSTENBERG CONJECTURE IN

R3

ALEX COHEN

Wang and Wu [1] made significant progress on the restriction conjecture by combining refined de-

coupling estimates with incidence estimates for tubes. They also introduced the two-ends Furstenberg

conjecture in incidence geometry and showed that it would imply the restriction conjecture. They

proved this conjecture in R2. In this note, we provide a counterexample to the two-ends Furstenberg

conjecture in R3.

1. Two-Ends Furstenberg Conjecture

Let T denote a collection of δ × δ × 1 tube segments contained inside the ball B(10) ⊂ R3. We

assume T is essentially distinct, meaning

Vol(T1 ∩ T2) ≤
1

2
Vol(T1) for T1 ̸= T2 ∈ T.

We define the direction of a tube, θ(T ) ∈ S2, to be the direction of the core line. When we say

δ-tubes, we really mean δ × δ × 1 tube segments.

For each T ∈ T, we associate a shading Y (T ) ⊂ T . We say Y (T ) is (ε1, ε2, C)-two-ends if for all

δ × δ × δε1 tube segments J ⊂ T ,

Vol(Y (T ) ∩ J) ≤ Cδε2 Vol(Y (T )).

Conjecture 1.1 (Two-Ends Furstenberg Conjecture in R3 [1, Conjecture 0.9]). Let T be a collection

of δ-tube segments, the directions of which are δ-separated. For each T ∈ T, let Y (T ) be an (ε1, ε2)-

two-ends shading, with Vol(Y (T )) constant over T ∈ T. Then for all ε > 0,

Vol
( ⋃
T∈T

Y (T )
)
≳ε δ

εδCε1 #TVol(T )
(Vol(Y (T ))

Vol(T )

)2
.

Implicitly, the constants in this theorem depend on the constant in the (ε1, ε2)-two-ends shading.

Wang and Zahl [2] recently proved the Kakaya conjecture. They showed that if T is a collection of

δ-tubes the directions of which are δ-separated, and Y (T ) is a shading of constant density, then

(1.1) Vol
( ⋃
T∈T

Y (T )
)
≳ε δ

ε#TVol(T )
(Vol(Y (T ))

Vol(T )

)C
.

for some large fixed power C.

Actually, Wang and Zahl proved (1.1) under the superficially weaker hypothesis that the tubes are

Katz–Tao Convex–Wolff. The Katz–Tao Convex–Wolff constant of T is defined as

CKT−CW (T) = sup
U a convex set

#{T ∈ T : T ⊂ U}
Vol(U)/Vol(T )

, where Vol(T ) = δ2.

If the tubes of T have δ-separated directions, CKT−CW (T) ≲ 1.
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Zakharov [3] used Wang–Zahl’s theorem to show that, if CKT−CW (T) ≲ 1, then after a random

projective transformation, T becomes directionally separated. Thus in Conjecture 1.1, it is equivalent

to make the hypothesis CKT−CW (T) ≲ 1 instead of the hypothesis that T is directionally separated.

Here is his argument. Suppose CKT−CW (T) ≲ 1. After a rotation and discarding a constant-sized

subfamily, we may assume that all tubes lie within 1/10 radians of the vertical axis. By Wang–Zahl’s

theorem,

Vol(∪T) ≳ δε#TVol(T ).

By disintegration,

δε ≲ Vol(∪T) =
ˆ 10

z0=−10

Area(∪T ∩ {z = z0}) dz0.

Hence there exists z0 ∈ [−10, 10] such that, letting H := {z = z0},

Area(∪T ∩H) ≳ δε#TVol(T ).

Each tube intersects H in an ellipse comparable to a δ-ball. Let ℓT be the core line of T , and define

E0 := {ℓT ∩H : T ∈ T}.

Let |E0|δ denote the δ-covering number. Since Vol(∪T ∩H) ≈ |E0|δ, we get

|E0|δ ≳ δε#T.

Thus we may choose a δ-separated subset of E0 of size ≳ δε#T. Let T′ ⊂ T be the corresponding

family of tubes.

Choose a ball B of radius 1/100, whose distance to H is at least 1/10, and define

T′′ := {T ∈ T′ : Vol(Y (T ) ∩B) ≳ Vol(Y (T ))}.

We may choose such a B for which

#T′′ ≳ #T′ ≳ δε#T.

Let ψ : RP3 → RP3 be a projective transformation with

ψ(H) = the plane at infinity, ψ(B) = the unit ball.

Since B is separated from H, ψ distorts distances in B by a bounded factor. For each T ∈ T′′:

• ψ(T ∩B) is contained in a Cδ × Cδ × 2 tube segment, and

• Vol(ψ(Y (T ) ∩B)) ≈ Vol(Y (T ) ∩B).

Let T̃ be a Cδ × Cδ × 2 tube containing ψ(T ∩B), and set

Ỹ (T̃ ) := ψ(Y (T ) ∩B).

After discarding constant-sized subsets, we may ensure:

(1) Vol(Ỹ (T̃ )) is constant over T̃ ∈ T̃, and
(2) the tubes in T̃ are essentially distinct.

Moreover,

Vol
( ⋃

T∈T
Y (T )

)
≳ Vol

( ⋃
T̃∈T̃

Ỹ (T̃ )
)
.

The direction of ψ(ℓT ) corresponds to the intersection of ψ(ℓT ) with the plane at infinity. Distances

in the space of directions are distorted only by a constant factor relative to distances in H ∩ B(10).

Thus for any two distinct T1, T2 ∈ T′,

|θ(T̃1)− θ(T̃2)| ≳ |(ℓT1
∩H)− (ℓT2

∩H)| ≳ δ.
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Passing to a further constant-sized subset ensures the right-hand side is ≥ δ. Hence the tubes of T̃
are δ-directionally separated.

Applying Conjecture 1.1 to T̃ gives

Vol
( ⋃

T∈T
Y (T )

)
≳ Vol

( ⋃
T̃∈T̃

Ỹ (T̃ )
)
≳ δε#T̃Vol(T̃ )

(Vol(Ỹ (T̃ ))

Vol(T̃ )

)2
≳ δεδCε1#TVol(T )

(Vol(Y (T ))

Vol(T )

)2
.

We will present an example of consisting of δ−2 tubes, estimate Vol(∪Y (T )), and show the tubes

are Katz–Tao. The upshot of the above discussion is that these tubes give a counterexample to Con-

jecture 1.1.

2. The Example

We identify lines in R3 with R4 as follows:

(a, b, c, d) 7→ {(a, b, 0) + t(c, d, 1) : t ∈ R}.

Our set of tubes is given by the following subset of R4,

X =
{
δ1/4


n1
n2
n3
n4

+ δ1/2


δαa0
δαa1
δαa2
0

+ δ1/2s


b0
b1
b2
1

}
,

where

nj , aj ∈ Z,
bj are some arbitrary fixed integers

δ1/4nj ∈ [0, 1],(2.1)

δαaj ∈ [0, 1], α =
1

6
(2.2)

s ∈ [0, 1].

We identify X ⊂ R4 with a set of tubes T in R3 by considering the z-axis range z ∈ [0, 1]. Each of

these tubes point approximately vertically. We take a shading that is a constant subset of the z-axis.

Y (T ) = {(x, y, z) ∈ T : z ∈ ZLowHeight + [0, δ1/2]}

ZLowHeight =
1

K
Z ∩ [0, 1],

where K is an integer. Think of 1
K = δε1 in the definition of (ε1, ε2)-two-ends. This shading consists

of just a few δ1/2–segments, but is full inside of each δ1/2-segment. We will verify in Section 4 that

this set of tubes is Katz–Tao. We will need b1b2 ̸= b0.

This example has structure at two scales. The set X ⊂ R4 is contained in a collection of δ−1-many

balls of radius δ1/2 that are arranged in a well-spaced way. By well-spaced, I mean the minimum

distance between two δ−1/2-balls is close to the maximum possible (for that number of balls). In

R3, that T is covered by a collection of δ−1-many δ1/2-tubes that are arranged in a well-spaced way.

We let Tδ1/2 denote this collection of δ1/2 tubes. For each T δ1/2 ∈ Tδ1/2 , we let T[T δ1/2 ] denote the

δ-tubes inside of it.

In R4, each δ1/2-ball contains a collection of line segments with fixed angle
(
b0 b1 b2 1

)
. There

are δ−3α = δ−1/2 of these line segments. If we slice a δ1/2-ball in R4 with a 3-plane, the line segments

intersect that 3-plane in an integer grid with δ−3α many points.
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Figure 1. The first picture depicts X ⊂ R4. It is contained in a collection of δ1/2

balls, and inside each δ1/2 ball, it is a union of parallel line segments. The second

picture depicts T ⊂ R3. It is contained in a collection of δ1/2 tubes, and inside each

δ1/2 tubes, it is a union of reguli which rotate at the same rate. The δ-tubes in a

δ1/2 tube contribute a family of parallel grains to each δ1/2-ball. There are several

families of parallel grains in each ball, with different normal vectors.

In tube space, each of these line segments determines a regulus inside of a δ1/2-tube. For example,

consider the line segment in R4, 0+ s(1, 0, 0, 1) for s ∈ [−δ1/2, δ1/2]. This determines the tube set

{(s, 0, 0) + R(0, s, 1) : s ∈ [−δ1/2, δ1/2]}.

This is a 1-parameter family of tubes connecting the line segment {(s, 0, 0)} on the {z = 0} slice with

the line segment {(0, s, 1)} on the {z = 1} slice. The union of these tubes sweeps out the regulus

∪{(s, 0, 0) + R(0, s, 1) : s ∈ [−δ1/2, δ1/2]} = {(x, zx, z) : x ∈ [−δ1/2, δ1/2], z ∈ [0, 1]}.

When you take a vertical slice of a regulus, you get a line. As you move up along the tube, these lines

rotate. The slope of our line segments in R4 determines how quickly the regulus rotates.

To see this behavior, let t ∈ [0, 1], and let

πt(a, b, c, d) = (a+ ct, b+ dt)

be the projection from R4 → R2 that corresponds to slicing the tube set with the plane {z = t}.
Applying this projection to a line segment in R4 gives a line segment in R2, which is why the slice of

a regulus is a line. Applying this projection to two parallel line segments in R4 gives two parallel line

segments in R2.

Thus if we take a vertical slice of T[T δ1/2 ], we get a collection of parallel line segments. Because

the reguli are arranged in a nice arithmetic way, there will be many reguli through each of these line

segments.

Consider taking a δ1/2-ball B inside of a δ1/2 tube T δ1/2 . If we take a regulus inside of T δ1/2 and

intersect it with B, we get a δ × δ1/2 × δ1/2 grain. These grains rotate as we move along T . Because

the reguli are arranged in an arithmetic way, there are only ∼ (δ1/2)−1/3 many grains per ball.

Let

E =
⋃
T∈T

Y (T ).
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Each δ1/2-ball B active in covering E has several δ1/2-tubes through it, and each of these contribute

∼ (δ1/2)−1/3 many parallel grains. What is the total number of grains in B?

It turns out that lots of δ1/2 tubes through B contribute the same grains. There are (δ1/2)−1 many

δ1/2 tubes through B, and these are split into (δ1/2)−1/2 many groups of size (δ1/2)−1/2 depending

on the angle they make to B. All the δ1/2-tubes within each group contribute the same set of parallel

grains, and the different groups contribute different grains. So, the total number of δ1/2-grains per

ball B is

(δ1/2)−
1
3 (δ1/2)−1/2 = (δ1/2)−5/6.

By comparison, two-ends Furstenberg predicts the union of these grains to fill outB. There≪ (δ1/2)−1

grains, so this does not happen. See Figure 1.

We note that if you take a typical point p ∈ E and look at the tubes T(p) through it, these are all

contained in a δ1/2 × 1× 1 slab. The tubes span that slab.

3. Analyzing the example

We could analyze the example by following the intuitive description above. We could compute the

normal vectors of all the grains inside a δ1/2 ball, and find that these normal vectors have low height

coordinates, so they overlap a lot.

Instead we will be a bit more rote and compute
⋃

T∈T Y (T ) by taking a vertical slice with the

plane {z = z0}, where z0 ∈ Y (T ). Let t = t0 + δ1/2t1 where t0 ∈ ZLowHeight and t1 ∈ [0, 1]. We

denote by πt(T) the slice of T with a plane at height t. This corresponds to the projection R4 → R2

by (a, b, c, d) 7→ (a+ tc, b+ td).

We have

πt(T) =
{(a

b

)
+ t

(
c

d

)
: (a, b, c, d) ∈ T

}
⊂ R2

= δ1/4
(
n1 + tn3
n2 + tn4

)
+ δ1/2

(
δαa0 + tδαa2

δαa1

)
+ δ1/2s

(
δαb0 + δαtb1
δαb2 + t

)
= δ1/4

(
n1 + t0n3
n2 + t0n4

)
+ δ1/2

(
δαa0 + t0δ

αa2
δαa1

)
+ δ1/2t1

(
δ1/4n3
δ1/4n4

)
+ δ1/2s

(
b0 + t0b2
b1 + t0

)
.

We are interested in the δ-covering number of this subset of R2.

In the last section, we claimed E = ∪Y (T ) consists of a collection of δ1/2-balls, each of which has

a collection of δ × δ1/2 × δ1/2 grains inside of it. After slicing, we see a collection of δ1/2-disks, each

of which has a collection of δ × δ1/2 line segments in it. In the analysis, we will count how many

δ1/2-balls we see, and how many line segments we see per δ1/2-ball.

First, n1 + t0n3 and n2 + t0n4 both lie in 1
KZ. Thus πt(T) is contained inside the following union

of δ−1/2K2-many δ1/2-balls,

πt(T) ⊂
⋃

m1,m2∈ δ1/4

K Z∩[0,1]

B
(
δ1/4

(
m1

m2

)
, 10δ1/2

)
,

where B(x0, r) is the ball of radius r around x0.

If we look at a δ1/2 disk in one vertical slice and rescale, the lines in that slice are defined by(
δαa0 + t0δ

αa2
δαa1

)
+ t1

(
δ1/4n3
δ1/4n4

)
+ s

(
b0 + t0b2
b1 + t0

)
, s ∈ [0, 1].

These lines all have a common slope, which is a rational number of height ≲ K.
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In order to determine the number of these lines, we take an inner product with the orthogonal

vector to the slope,

(
−b1 − t0
b0 + t0b2

)
=:

(
q1
q2

)
, where q1, q2 ∈ 1

CKZ ∩ [−C,C]. We have

〈(δαa0 + t0δ
αa2

δαa1

)
+t1

(
δ1/4n3
δ1/4n4

)
+s

(
b0 + t0b2
b1 + t0

)
,

(
q1
q2

)〉
= δα(q1a0+q1t0a2+q2a1)+t1δ

1/4(q1n3+q2n4).

In order to count the total number of lines, we have to count the number of values the right hand

side may take as a0, a1, a2, n3, n4 vary. As each aj is an integer and qj ∈ 1
CKZ,

q1a0 + q1t0a2 + q2a1 ∈ 1

CK
Z,

and due to (2.2),

δα(q1a0 + q1t0a2 + q2a1) ∈ [−C,C].

Thus the first term, δα(q1a0 + q1t0a2 + q2a1), takes ≲ CKδ−α many values.

As for the second term,

q1n3 + q2n4 ∈ 1

CK
Z

and

δ1/4(q1n3 + q2n4) ∈ [−C,C],

so the second term, t1δ
1/4(q1n3+q2n4), takes≲ CKδ−1/4 many values. Thus there are≲ CK2δ−1/4−α

many lines inside of our δ1/2 ball.

Because there are δ−1/2K2 many δ1/2-balls, the total covering number of πt(T) is estimated up to

constants by

|πt(T)|δ ∼ |πt(T)|δ1/2(#δ × δ1/2 line segments per δ1/2-ball) (#δ-balls per δ × δ1/2 line segment)

∼ (δ−1/2K2)(CK2δ−1/4−α) δ−1/2

∼ K4δ−
5
4−α

∼ K4δ−
17
12 .

Summing over all t ∈ Y (T ), we find∣∣ ⋃
T∈T

Y (T )
∣∣
δ
∼ |Y (T )|δ |πt(T)|δ ∼ Kδ−1/2K4δ−

17
12 = K5δ−

23
12 .

On the other hand, the two-ends Furstenberg conjecture (Conjecture 1.1) predicts∣∣ ⋃
T∈T

Y (T )
∣∣
δ
≳ε δ

εδCε1δ−1|Y (T )|2δ = δεKCδ−2.

As 23
12 < 2, if K = δ−ε1 is chosen sufficiently small, the conjecture does not hold in this example.

4. Verifying that the tube set is Frostman

Our tube set is a union of δ−1 many δ1/2-tubes, with δ−1 many tubes inside of each δ1/2 tube. We

chose α = 1
6 so that there are δ−1 many tubes per δ1/2 tube. Wang–Zahl showed [2, Lemma 4.12]

CKT−CW (T) ≲
(

sup
T δ1/2∈Tδ1/2

CKT−CW (T[T δ1/2 ]
)
CKT−CW (Tδ1/2).
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Since we have written our tube set in terms of R4, it is helpful to describe the Katz–Tao condition

in terms of R4. Let U be an a× b× 10 convex set pointing roughly vertical. Let T be a δ× δ× 1 tube

segment in B(10), with

T = {(a, b) + t(c, d) : t ∈ [t0, t1]}+B(δ)

and |(c, d)| ≲ 1. When is T ⊂ U?

We need

(a, b) + t0(c, d) ∈ U ∩ {z = t0}+B(δ)

and

(a, b) + t1(c, d) ∈ U ∩ {z = t1}+B(δ).

The convex sets on the right hand side are two translates of a fixed convex set of dimensions close to

a× b. The upshot is that for any such U , we can find some convex sets U0 ⊂ U1 ⊂ R2 where

U0 has dimensions
a

1000
× b

1000
,

U1 has dimensions 1000a× 1000b,

and translates v0,v1 ∈ B(10) ⊂ R4 such that, for xT ∈ R4 the point corresponding to the core line

of T ,

T ⊂ U =⇒ xT ∈ (U0 + v1)× (U0 + v2)

and

xT ∈ (U0 + v1)× (U1 + v2) =⇒ T ⊂ U.

Our task is to prove the following. Let U ⊂ R2 be a convex set with dimensions a× b. Then for any

translates v1,v2,

(4.1) |X ∩ (U + v1)× (U + v2)|δ ≲
ab

δ2
.

4.1. Tδ1/2 is Katz–Tao Convex–Wolff. The tube collection Tδ1/2 corresponds to

Xδ1/2 :=
{
δ1/4


n1
n2
n3
n4

 : nj ∈ Z, δ1/4nj ∈ [0, 1]
}
.

As each δ1/4-ball only contains one point of Xδ1/2 , for any convex set W ,

|X ∩W | ≤ |W |δ1/4 .

If W has dimensions a× b× a× b, then

|W |δ1/4 ∼ max{aδ−1/4, 1}2 max{bδ−1/4, 1} ≤ abδ−2

as needed.
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4.2. T[T δ1/2 ] is Katz–Tao Convex–Wolff. Let us describe the line arrangement inside a δ1/2 tube.

Let δ′ = δ1/2, and

Y =
{

(δ′)αa0
(δ′)αa1
(δ′)αa2

0

 : aj ∈ Z, (δ′)αaj ∈ [0, 1]
}

where α =
1

3
.

For each y ∈ Y , let

τy =
{
y + s


b0
b1
b2
1

 : s ∈ [0, 1]
}
.

Then

X ′ =
⋃
y∈Y

τy

describes T[T δ1/2 ].

Let W = (U + v1)× (U + v2) where U is an a× b convex set with δ ≤ a ≤ b ≤ 1.

Because we assume b0b2 ̸= b1, the two vectors

(
b0
b1

)
and

(
b2
1

)
are not parallel. This forces each

line segment τy to be transverse to W . To be more specific, let τ1y and τ2y be the projection onto

the first two coordinates of R4 and onto the second two coordinates of R4, respectively. Then τ1y has

slope

(
b0
b1

)
and τ2y has slope

(
b2
1

)
. One of these two slopes is transverse to U . Thus

|τy ∩W |δ ≲ min
{
|τ1y ∩ (U + v1)|δ, |τ2y ∩ (U + v2)|δ

}
≲
a

δ

where the constant depends on |b0b2 − b1|.
Let B be the smallest b-ball containing W . The number of y ∈ Y for which τy intersects B is

estimated by

|Y ∩B(x0, b)| ≲ max{b3δ−1, 1} ≲ b/δ.

Thus

|W ∩X ′|δ ≲ (b/δ)(a/δ)

as desired.
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