COUNTEREXAMPLE TO THE TWO-ENDS FURSTENBERG CONJECTURE IN
R?)

ALEX COHEN

Wang and Wu [1] made significant progress on the restriction conjecture by combining refined de-
coupling estimates with incidence estimates for tubes. They also introduced the two-ends Furstenberg
congecture in incidence geometry and showed that it would imply the restriction conjecture. They
proved this conjecture in R2. In this note, we provide a counterexample to the two-ends Furstenberg
conjecture in R3.

1. Two-ENDS FURSTENBERG CONJECTURE

Let T denote a collection of § x § x 1 tube segments contained inside the ball B(10) C R3. We
assume T is essentially distinct, meaning

1
VOI(Tl n TQ) S 5 VOl(Tl) for Tl 7£ T2 eT.

We define the direction of a tube, §(T) € S2, to be the direction of the core line. When we say
d-tubes, we really mean ¢ x § x 1 tube segments.

For each T' € T, we associate a shading Y (T)) C T. We say Y (T) is (e1,¢€2, C)-two-ends if for all
0 X § X 0% tube segments J C T,

Vol(Y (T) N J) < C6° Vol(Y (T))).

Conjecture 1.1 (Two-Ends Furstenberg Conjecture in R? [1, Conjecture 0.9]). Let T be a collection
of 0-tube segments, the directions of which are §-separated. For each T € T, let Y(T') be an (e1,e2)-
two-ends shading, with Vol(Y (T)) constant over T € T. Then for all € > 0,

Vol(Y(T))

Vol (| Y(T)) 2 6765 #T Vol(T) ( Vol )%

TET
Implicitly, the constants in this theorem depend on the constant in the (g1, €2)-two-ends shading.
Wang and Zahl [2] recently proved the Kakaya conjecture. They showed that if T is a collection of
d-tubes the directions of which are d-separated, and Y (T) is a shading of constant density, then
Vol(Y(T))

(L.1) Vol (| Y(T)) 2= 6°#T Vol(T) ( VoI )<

TeT

for some large fixed power C.

Actually, Wang and Zahl proved (1.1) under the superficially weaker hypothesis that the tubes are
Katz—Tao Convex—Wolff. The Katz—Tao Convex—Wolff constant of T is defined as

#TeT:TcU)
_ T) =
CKT CW( ) U a cillg)ex set VO](U)/ VOI(T) ’

If the tubes of T have d-separated directions, Cxr_cw (T) < 1.

where Vol(T) = 62
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Zakharov [3] used Wang—Zahl’s theorem to show that, if Cxr_cw (T) < 1, then after a random
projective transformation, T becomes directionally separated. Thus in Conjecture 1.1, it is equivalent
to make the hypothesis Cxr—_cw (T) < 1 instead of the hypothesis that T is directionally separated.

Here is his argument. Suppose Cxr—_cw (T) < 1. After a rotation and discarding a constant-sized
subfamily, we may assume that all tubes lie within 1/10 radians of the vertical axis. By Wang—Zahl’s
theorem,

Vol(UT) = §°#T Vol(T).
By disintegration,
10
0% < Vol(uT) = / Area(UT N {z = z}) dzo.
20:710
Hence there exists zg € [—10, 10] such that, letting H := {z = 2o},

Area(UT N H) Z 6°#T Vol(T).
Each tube intersects H in an ellipse comparable to a §-ball. Let {1 be the core line of T, and define
Ey:={{rNH:TeT}.
Let |Ep|s denote the d-covering number. Since Vol(UT N H) = |Ey|s, we get
|Eols 2 0°#T.

Thus we may choose a d-separated subset of FEy of size 2 6#T. Let T/ C T be the corresponding
family of tubes.

Choose a ball B of radius 1/100, whose distance to H is at least 1/10, and define
T :={T €T : Vol(Y(T) N B) 2 Vol(Y(T))}.
We may choose such a B for which
#T" 2 #T' 2 0°#T.
Let ¢ : RP® — RP? be a projective transformation with
(H) = the plane at infinity, 1(B) = the unit ball.
Since B is separated from H, 1) distorts distances in B by a bounded factor. For each T € T":

e (T N B) is contained in a C§ x Cd x 2 tube segment, and
o Vol(v(Y(T)N B)) = Vol(Y(T) N B).

Let T be a C§ x C§ x 2 tube containing (T N B), and set
Y(T) := ¢(Y(T) N B).
After discarding constant-sized subsets, we may ensure:

(1) Vol(Y(T)) is constant over T € T, and
(2) the tubes in T are essentially distinct.

vOl( U Y(T)) > Vol ( U ?(T)).

TeT TeT

Moreover,

The direction of ¥ (1) corresponds to the intersection of ¥(¢7) with the plane at infinity. Distances
in the space of directions are distorted only by a constant factor relative to distances in H N B(10).
Thus for any two distinct 17,75 € T’,

0(Ty) = 6(T5)| 2 (¢, N H) = (br, N H)| 2 6.
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Passing to a further constant-sized subset ensures the right-hand side is > §. Hence the tubes of T
are d-directionally separated.

Applying Conjecture 1.1 to T gives

Vol <TLEJ'JTY(T)) > Vol ( ~U~17(T)) > 6 #T Vol(T)(

TeT

Vol(Y (T))
Vol(T)

Vol(Y (T'))

)% 2 655951 4T Vol(T) Vol )%

We will present an example of consisting of §=2 tubes, estimate Vol(UY (T)), and show the tubes
are Katz—Tao. The upshot of the above discussion is that these tubes give a counterexample to Con-
jecture 1.1.

2. THE EXAMPLE

We identify lines in R? with R* as follows:
(a,b,c,d) — {(a,b,0) +t(c,d,1) : t € R}.

Our set of tubes is given by the following subset of R*,

ny §%ay bo
X = {51/4 ) N KR N I }
ns 0%aq ba 7
U 0 1
where
ng,a; € 7,
b; are some arbitrary fixed integers
(2.1) 54, € [0,1],
1
2.2 0%a; €10,1], a==
J

s € [0,1].

We identify X C R?* with a set of tubes T in R3 by considering the z-axis range z € [0,1]. Each of
these tubes point approximately vertically. We take a shading that is a constant subset of the z-axis.

Y(T) = {(957%2) €T :z¢€ ZLowHeight + [0761/2]}

1
ZLowHeight = EZ N [07 1]a

where K is an integer. Think of % = §°! in the definition of (e1, £2)-two-ends. This shading consists
of just a few §'/2-segments, but is full inside of each §'/?-segment. We will verify in Section 4 that
this set of tubes is Katz—Tao. We will need b1by # by.

This example has structure at two scales. The set X C R* is contained in a collection of 6 ~'-many
balls of radius 6'/2 that are arranged in a well-spaced way. By well-spaced, I mean the minimum
distance between two §~/2-balls is close to the maximum possible (for that number of balls). In
R?, that T is covered by a collection of 6~!-many §'/2-tubes that are arranged in a well-spaced way.
We let T°""* denote this collection of §'/2 tubes. For each 79" € ']I“Sl/g7 we let T[T51/2] denote the
d-tubes inside of it.

In R*, each 6'/2-ball contains a collection of line segments with fixed angle (bo b1 by 1). There
are 03 = §~1/2 of these line segments. If we slice a §'/2-ball in R* with a 3-plane, the line segments
intersect that 3-plane in an integer grid with 6 3% many points.
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FIGURE 1. The first picture depicts X € R*. It is contained in a collection of §'/2
balls, and inside each 6'/2 ball, it is a union of parallel line segments. The second
picture depicts T C R3. It is contained in a collection of 6'/2 tubes, and inside each
81/2 tubes, it is a union of reguli which rotate at the same rate. The d-tubes in a
6'/2 tube contribute a family of parallel grains to each §'/2-ball. There are several
families of parallel grains in each ball, with different normal vectors.

In tube space, each of these line segments determines a regulus inside of a §'/2-tube. For example,
consider the line segment in R, 0 + s5(1,0,0,1) for s € [-6'/2,§'/2]. This determines the tube set

{(5,0,0) + R(0,5,1) : s € [-01/2 61/2]}.

This is a 1-parameter family of tubes connecting the line segment {(s,0,0)} on the {z = 0} slice with
the line segment {(0,s,1)} on the {z = 1} slice. The union of these tubes sweeps out the regulus

U{(5,0,0) + R(0,s5,1) : s € [-6Y2,62]} = {(z, 2, 2) : = € [-0V/%,6'2],2 € [0,1]}.
When you take a vertical slice of a regulus, you get a line. As you move up along the tube, these lines

rotate. The slope of our line segments in R* determines how quickly the regulus rotates.
To see this behavior, let ¢ € [0,1], and let

me(a, b, c,d) = (a + ct, b+ dt)

be the projection from R* — R? that corresponds to slicing the tube set with the plane {z = t}.
Applying this projection to a line segment in R* gives a line segment in R?, which is why the slice of
a regulus is a line. Applying this projection to two parallel line segments in R* gives two parallel line
segments in R2.

Thus if we take a vertical slice of T[T‘;l/z], we get a collection of parallel line segments. Because
the reguli are arranged in a nice arithmetic way, there will be many reguli through each of these line
segments.

Consider taking a 6'/2-ball B inside of a §'/2 tube T3 If we take a regulus inside of T and

intersect it with B, we get a § x §'/2 x §'/2 grain. These grains rotate as we move along 7. Because
the reguli are arranged in an arithmetic way, there are only ~ (61/ 2)_1/ 3 many grains per ball.

Let

§1/2

E=JY(®.

TeT
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Each 6'/2-ball B active in covering E has several 6'/2-tubes through it, and each of these contribute
~ (61/2)=1/3 many parallel grains. What is the total number of grains in B?

It turns out that lots of §'/2 tubes through B contribute the same grains. There are (§'/2)~! many
§'/2 tubes through B, and these are split into (6'/2)~'/2 many groups of size (6*/2)~'/2 depending
on the angle they make to B. All the §'/2-tubes within each group contribute the same set of parallel
grains, and the different groups contribute different grains. So, the total number of §*/2-grains per
ball B is

(61/2)7%(51/2)71/2 _ (51/2)75/6.
By comparison, two-ends Furstenberg predicts the union of these grains to fill out B. There < (§1/2)~1
grains, so this does not happen. See Figure 1.

We note that if you take a typical point p € E and look at the tubes T(p) through it, these are all
contained in a 6'/2 x 1 x 1 slab. The tubes span that slab.

3. ANALYZING THE EXAMPLE

We could analyze the example by following the intuitive description above. We could compute the
normal vectors of all the grains inside a §'/2 ball, and find that these normal vectors have low height
coordinates, so they overlap a lot.

Instead we will be a bit more rote and compute (J,.¢ Y (T) by taking a vertical slice with the
plane {z = 2}, where 2z € Y(T). Let t = to + 0'/?t; where tg € Zpowheignt and t; € [0,1]. We
denote by 7;(T) the slice of T with a plane at height ¢. This corresponds to the projection R* — R?
by (a,b,c,d) — (a +tc,b+td).

We have

7o(T) = {<Z> +t (2) : (a,b,¢,d) € 'Jr} C R

_ 61/4 (nl +tn3> +51/2 ((5“@0 +t(5°‘a2) + 61/25 <5Olb0 +6atb1>

No + tngy 0%aq 0%o +t
—+ ton 5aa —+ t 5aa2 51/4n3 bo —+ tobg
— sl/4 niy ons3 51/2 0 0 51/2¢ 51/2 )
no + tona + 0%ay + ! 51/47L4 + y b1 + to

We are interested in the d-covering number of this subset of R2.

In the last section, we claimed E = UY (T consists of a collection of §'/2-balls, each of which has
a collection of & x 6'/2 x §'/2 grains inside of it. After slicing, we see a collection of §'/2-disks, each
of which has a collection of § x §'/2 line segments in it. In the analysis, we will count how many
§1/2-balls we see, and how many line segments we see per §'/2-ball.

First, nq + tong and no + tong both lie in %Z. Thus 7(T) is contained inside the following union
of =12 K?-many 6'/2-balls,

7e(T) C U 3(51/4 <Zl> ’1051/2)’

2

ma,ma€ 2 70[0,1]
where B(xzg, r) is the ball of radius r around xy.

If we look at a §'/2 disk in one vertical slice and rescale, the lines in that slice are defined by

0%ag + tgd%as (51/4’1’1,3 by + tobs
t 0,1].
( 5aa1 >+ 1((51/47’1,4 +s b1+t0 ’ SG[ ) ]

These lines all have a common slope, which is a rational number of height < K.
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In order to determine the number of these lines, we take an inner product with the orthogonal

vector to the slope, <_b1 n to) =: (QI), where q1,q2 € C#KZ N[-C, C]. We have

bo + tob2 72
6%ag + tod%a 514, bo + tob N
<< 05“@? 2) h (61/4ni e 21 +202 ’ Z; >: 5*(qrao+qitoaz+q2a1)+t16"/* (q1ns+gana).

In order to count the total number of lines, we have to count the number of values the right hand
side may take as ag, a1, az,n3,n4 vary. As each a; is an integer and ¢; € CLKZ,

q1ao + qitoaz + qeai € CLKZ’
and due to (2.2),
0%(qra0 + q1toas + gza1) € [-C, C].
Thus the first term, 6*(g1a¢ + q1toas + gea1), takes < C K~ many values.

As for the second term,

qins gong € —7
ns + qan
! CK

and
54 (qing + gana) € [-C, C),

so the second term, t1(51/4(q1n3+q2n4), takes < CK§~'/* many values. Thus there are < CK2§~1/4-2
many lines inside of our /2 ball.

Because there are 6~ 1/2K?2 many §'/2-balls, the total covering number of m¢(T) is estimated up to
constants by

|me(T) |5 ~ |me(T)|51/2 (#6 x 62 line segments per §*/2-ball) (#4-balls per § x 6'/2 line segment)
~ (672K (CK26 14y 5172
o Khg—i-a
~ KA
Summing over all t € Y(T), we find

2

= K512,

17
12

3

[

| U Y(T)|5 ~ Y (T)|5 |m(T)|5 ~ K62 K4S
TeT

On the other hand, the two-ends Furstenberg conjecture (Conjecture 1.1) predicts
| Y(D)|; 2 65695671 Y(T)|5 = 6° K962
TET

As % < 2,if K = §7¢ is chosen sufficiently small, the conjecture does not hold in this example.

4. VERIFYING THAT THE TUBE SET IS FROSTMAN

Our tube set is a union of 6~ many 6/2-tubes, with 6~ many tubes inside of each §'/2 tube. We

chose o = % so that there are 6! many tubes per 6*/? tube. Wang-Zahl showed [2, Lemma 4.12]

1/2 1/2
Crxr—cw(T) S ( sup  Cxr—ew(T[T° 7)) Crr—cw (T 7).
sl/2 et /2
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Since we have written our tube set in terms of R*, it is helpful to describe the Katz-Tao condition
in terms of R*. Let U be an a x b x 10 convex set pointing roughly vertical. Let 7 be a § x § x 1 tube
segment in B(10), with

T = {(a,b) + t(c,d) : t € [to, t1]} + B(5)
and |(c,d)| < 1. When is T C U?
We need
(a,b) + to(c, d) € U N {z = to} + B(6)
and
(a,b) + ti(c,d) € U N {z = t1} + B(6).

The convex sets on the right hand side are two translates of a fixed convex set of dimensions close to
a x b. The upshot is that for any such U, we can find some convex sets Uy C U; C R? where

a y b
1000 ~ 1000’
U1 has dimensions 1000a x 10000,

Up has dimensions

and translates vo, v, € B(10) C R* such that, for xp € R* the point corresponding to the core line
of T,

TCU:>XT€(U0+V1)X (U0+V2)
and
XTE(U0+V1)X (U1 +V2):>TCU.

Our task is to prove the following. Let U C R? be a convex set with dimensions a x b. Then for any
translates vy, v,

ab
(4.1) XN (U +v1) x (U+va)ls < 52

4.1. T%""” is Katz—Tao Convex—Wolff. The tube collection T® corresponds to

ni

X7 .= {61/4 "2 n; € Z, §"*n; € 0, 1]}

ns

Ty
As each 6'/4-ball only contains one point of X 51/2, for any convex set W,

I X NW| < |W|s1/a.

If W has dimensions a X b X a X b, then

[W|s1/4 ~ max{ad /% 1}2 max{bd /% 1} < abd—2

as needed.
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4.2. T[T‘Sl/z] is Katz—Tao Convex—Wolff. Let us describe the line arrangement inside a §'/2 tube.
Let §' = 6'/2, and

(6")ao
(6")%ar 1
Y = { (6")as caj €Z,(8') %y € [0,1]} where o = 3
0
For eachy €Y, let
bo
T, :{Y+s b :s€e|0 1]}
y by 7
1
Then
x' =
yeY

describes ’]I‘[T51/2].
Let W = (U + v1) x (U + va) where U is an a X b convex set with 6§ <a <b < 1.

b b
Because we assume bgby # by, the two vectors (bo) and (12) are not parallel. This forces each
1

line segment 7, to be transverse to W. To be more specific, let T; and T}% be the projection onto
the first two coordinates of R* and onto the second two coordinates of R?, respectively. Then T)% has

slope (Z()) and 73 has slope (612> One of these two slopes is transverse to U. Thus
1

|y "W s < min{|7')1, N (U +v1)ls, |T3 N U +V2)|5} <

SRS

where the constant depends on |bobs — by].
Let B be the smallest b-ball containing W. The number of y € Y for which 7y intersects B is
estimated by
Y N B(xo,b)| < max{b5 1,1} < b/6.
Thus
WNnX'ls S (b/0)(a/d)

as desired.
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