
KAKEYA MINICOURSE PART PROBLEM SET

ALEX COHEN

1. The L2 method

The goal of this problem is to explore the L2 method and pigeonholing. First recall

some definitions.

• T is a collection of essentially distinct δ × 1 tube segments in B(10) ⊂ R2,

meaning

Vol(T1 ∩ T2) ≤
1

2
Vol(T1) for all distinct T1, T2 ∈ T.

• For any convex set U ,

T[U ] = {T ∈ T : T ⊂ U}.

• The Frostman constant is defined by

CF (T) = sup
U is a convex set

#T[U ]

#TVol(U)
.

Start by proving the following Lemma using the L2 method.

Lemma 1.1. We have

Vol(∪T) ≳ (log δ−1)−1 1

CF (T)
.

Hint: Estimate
´ (∑

T∈T 1T
)2
dx using the Frostman constant. Then apply Cauchy–

Schwarz, ˆ ∑
T∈T

1T dx ≤
(ˆ (∑

T∈T

1T
)2
dx

)1/2
(Vol(∪T))1/2.

Next, use maximum density sets and pigeonholing to prove the following conse-

quence.

Theorem 1.2. Let T be a collection of essentially distinct δ×1 tube segments contained

in B(10) ⊂ R2. Then there exists

• A subcollection T′′ ⊂ T with #T′′ ≳ (log δ−1)−10#T,
• A scale w ∈ [δ, 1], and
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• a collection Tw of essentially distinct w × 10 tubes such that every T ∈ T′′ is

contained in some Tw ∈ Tw,

for which

(1.1) Vol(∪T′′[Tw]) ≳ (log δ−1)−1Vol(Tw) for each Tw ∈ Tw,

and

(1.2) Vol(∪Tw) ≳ (log δ−1)−1#Tw Vol(Tw).

Here is a suggested proof outline.

(a) Decomposition into maximal-density sets.. Start with T1 = T. Let Tw1

be a w1 × 10 tube maximizing the density

#T1[T
w1 ]

#T1Vol(Tw1)
.

Then set T2 = T1 \ T[Tw1 ], and continue in this way until #Tm ≤ 1
2
#T. Set

T′ =
m−1⊔
j=1

Tj[T
wj ].

(b) Dyadic pigeonholing. Use dyadic pigeonholing to find a scale w ∈ [δ, 1],

a number r ∈ [1,#T], and an index set J ⊂ {1, . . . ,m − 1} satisfying the

following. For each j ∈ J ,

wj ∈ [w/2, w] and #Tj[T
wj ] ∈ [r/2, r].

Moreover, letting

T′′ =
⊔
j∈J

Tj[T
wj ],

#T′′ ≳ (log δ−1)−10#T. In the theorem statement, set

Tw = {A w-tube containing Twj for each j ∈ J }.

(c) Application of the L2 bound. Apply Lemma 1.1 to each T′′[Tw] to de-

duce (1.1), and to Tw to deduce (1.2).

2. Problem 2

This is an exploratory problem that should be graded for completion, not correctness.

Consider applying the lossless decomposition. Suppose

• We choose a scale ρ ∈ [δ, 1].

• The tubelet set TB inside a ρ-ball has δ×b×ρ planks for the maximum density

convex set, where b ∈ (δ, ρ).

• These δ × b× ρ planks intersect tangentially (c.f. Lec 4).
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Describe the Kakeya sub-problems that come up when we apply the lossless decompo-

sition. Don’t worry about getting a gain over A(σ) using high density or low density

lemma. And don’t worry about being rigorous—just explore how we make new tube

sets from these configurations of tubes and planks.
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