KAKEYA MINICOURSE PART PROBLEM SET

ALEX COHEN

1. THE L? METHOD

The goal of this problem is to explore the L? method and pigeonholing. First recall
some definitions.

e T is a collection of essentially distinct § x 1 tube segments in B(10) C R
meaning

1
Vol(T; N'Ty) < 3 Vol(T7y) for all distinct 77,75 € T.
e For any convex set U,
TU]={TeT:TcCU}.

e The Frostman constant is defined by

#T[U]
T = T o~ w7 1 v
CF( ) U is ascljrllz/ex set #T VOI(U)

Start by proving the following Lemma using the L? method.

Lemma 1.1. We have

Vol(UT) > (logd~')~* Cr(T)’

Hint: Estimate f(ZTeT 1T)2dx using the Frostman constant. Then apply Cauchy—

Schwarz,
/ S 1rde < ( / (> 17)%dz) " (Vol(uT)) V2.

TeT TeT

Next, use maximum density sets and pigeonholing to prove the following conse-
quence.

Theorem 1.2. Let T be a collection of essentially distinct § X 1 tube segments contained
in B(10) C R%. Then there exists

o A subcollection T" C T with #T” 2 (log 6~ 1) 1O4T,
o A scale w € [0,1], and
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e a collection TV of essentially distinct w x 10 tubes such that every T € T” is
contained in some T € T,

for which

(1.1) Vol(UT”[T™]) = (log ')~ Vol(T™) for each T" € T",
and

(1.2) Vol(UT?) = (log 6~ 1) #T" Vol(T™).

Here is a suggested proof outline.

(a) Decomposition into maximal-density sets.. Start with T; = T. Let 71
be a wy; x 10 tube maximizing the density
# T, 1]
#T, Vol(Tw)’
Then set Ty = Ty \ T[T™'], and continue in this way until #T,, < $#T. Set

m—1
T = | | T,(7"].
j=1

(b) Dyadic pigeonholing. Use dyadic pigeonholing to find a scale w € [4, 1],
a number r € [1,#T], and an index set J C {1,...,m — 1} satisfying the
following. For each j € 7,

wj € [w/2,w] and  #T;[T"7] € [r/2,r].
Moreover, letting
T = | | T[],
JjeET
#T"” > (log 6~ 1) 7194T. In the theorem statement, set
T* = {A w-tube containing T/ for each j € J}.

(c) Application of the L? bound. Apply Lemma 1.1 to each T”[T™] to de-
duce (1.1), and to T" to deduce (1.2).

2. PROBLEM 2

This is an exploratory problem that should be graded for completion, not correctness.

Consider applying the lossless decomposition. Suppose

e We choose a scale p € [9, 1].

e The tubelet set T inside a p-ball has § x b x p planks for the maximum density
convex set, where b € (0, p).

e These 6 x b x p planks intersect tangentially (c.f. Lec 4).
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Describe the Kakeya sub-problems that come up when we apply the lossless decompo-
sition. Don’t worry about getting a gain over A (o) using high density or low density
lemma. And don’t worry about being rigorous—just explore how we make new tube
sets from these configurations of tubes and planks.
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