
THE PROOF OF KAKEYA, FOLLOWING WANG–ZAHL

ALEX COHEN

1. Lecture 1: Introduction

These are lecture notes from a two week minicourse at MIT about Wang and

Zahl’s [5] proof of the Kakeya conjecture. Some other useful resources are

• Wang and Zahl’s article [5],

• Guth’s introduction to the proof [2],

• Guth’s proof outline [1].

Before getting into the details, we establish some notation.

1.1. Notation and convention.

• T is a set of δ × δ × 1 tube segments in B(10) ⊂ R3

• The tubes in T are essentially distinct: For any T1, T2 ∈ T,

Vol(T1 ∩ T2) ≤
1

2
Vol(T1).

• Tρ is the set of ρ-tubes involved in covering T. For E ⊂ R3, Eρ is the ρ-

neighborhood of E.

• For a convex set U , T[U ] = {T ∈ T : T ⊂ U}.
• Shadings: Each tube T ∈ T is equipped with a subset Y (T ) ⊂ T with

Vol(Y (T )) ≥ δη Vol(T ),

where η > 0 is a small parameter. We will ignore the shading in our notation:

when we write

∪T or
⋃
T∈T

T,

we really mean ⋃
T∈T

Y (T )

for some δη-dense shading Y (T ).

• A ≳ B means A ≥ 1
C
B for some absolute constant C. A≫ B means A is much

greater than B. This is an informal statement, but generally one should think

A ≥ δ−κB for some fixed κ > 0.
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• In the proofs, η is a small parameter controlling the shading density, Ahlfors–

David regularity, and possibly other things. A ⪆η B means that for any ε > 0,

A ≥ cεδ
ε+Cη. Here C is a universal constant. We will sometimes drop the

subscript η and just write A ⪆ B.

• We make a standing assumption that quantities have been pigeonholed so that

they are essentially constant. In particular, each ρ-tube T ρ ∈ Tρ contains

roughly the same number of δ-tubes, and for any ρ-ball B = B(x0, ρ) centered

at a point of E = ∪T, the measure of E ∩B is approximately uniform.

1.2. The Frostman Condition. The Frostman–Wolff constant CF (T) measures the

extend to which T concentrates in convex sets,

CF (T) = sup
U

#T[U ]
Vol(U)#T

.

Equivalently, it is the smallest constant such that

#T[U ] ≤ CF (T) Vol(U)#T

for all convex U . It suffices to consider rectangular prisms of size a × b × 100 with

δ ≤ a ≤ b ≤ 100. We sometimes write a× b× 1 in place of a× b× 100.

Taking U = δ× δ× 1 gives #T ≥ 1
CF (T)δ

−2. More generally, the Frostman condition

can be expressed in terms of covering numbers. For fixed δ ≤ a ≤ b ≤ 1, let U be the

smallest possible family of a× b× 1 prisms covering T, i.e.

each T ∈ T is contained in some U ∈ U .

Then

#T ≤
∑
U∈U

#T[U ] ≤ CF (T)Vol(U)#U #T,

so

#U ≥ 1

CF (T)
Vol(U)−1.

Thus, the Frostman condition implies that the number of ρ-tubes needed to cover T is

at least ρ−2; the number of a× 1× 1 slabs is at least a−1; and the number of a× b× 1

prisms is at least (ab)−1.

Under our pigeonholing assumptions, we can reverse this logic. Let #(a × b × 1)

denote the minimal number of such prisms needed to cover T. Then

(1.1) Assuming T is well pigeonholed,
1

CF (T)
= inf

δ≤a≤b≤1
#(a×b×1)Vol(a×b×1).

A technical note: In general, it is too much to ask for that every a × b × 1 prism

involved in covering T has the same number of tubes in it. But if a× b× 1 is extremal

for the Frostman constant, this can be justified.
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1.3. Introduction. The goal of these lectures is to prove the Kakeya theorem [5] using

the Sticky Kakeya theorem [6] as an ingredient.

Theorem 1.1 (Kakeya). Let T be an essentially distinct set of δ × δ × 1 tubes with

CF (T) ≲ 1. For each T ∈ T, let
Y (T ) ⊂ T

be a shading with Vol(Y (T )) ≥ δη Vol(T ). For any ε > 0,

Vol
(⋃
T∈T

Y (T )
)
⪆η 1.

Recall that by our notation, this means that for any ε > 0,

Vol
(⋃
T∈T

Y (T )
)
≥ cεδ

ε+Cη.

Going forward, we will often suppress the shading Y (T ) and the subscript η in ⪆η.

The Sticky Kakeya theorem deals with the special case when the tubes are Ahlfors–

David regular, or sticky.

Theorem 1.2 (Sticky Kakeya). Let T be an essentially distinct set of δ × δ × 1 tubes

with CF (T) ≲ 1 and

(1.2) #Tρ ≈η ρ
−2 for ρ ∈ [δ, 1].

Then

Vol
(⋃
T∈T

Y (T )
)
⪆ 1.

Due to pigeonholing, the sticky hypothesis (1.2) is equivalent to

#T[T ρ] ≈η (δ/ρ)
−2 for all ρ ∈ [δ, 1] and T ρ ∈ Tρ.

Our goal is to prove Theorem 1.1 using Theorem 1.2.

1.4. The challenge of non-sticky. Let us make an example by placing down

A(δ1/2)−2 many δ1/2-tubes, and

1

A
(δ1/2)−2 many δ-tubes inside each δ1/2-tube.

(1.3)

Here A ∈ [1, (δ1/2)−2] is a parameter controlling the degree of stickiness at scale δ1/2.

If A = 1 then T is sticky at scale δ1/2, and if A = (δ1/2)−2 then T is very far from

sticky—there is just one δ-tube inside of each δ1/2-tube.

It is natural to consider how the δ1/2-tubes of Tδ1/2 are arranged, and how the δ-

tubes inside each δ1/2-tube are arranged. The best we could hope for is that the union
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of the δ1/2-tubes cover the entire unit ball, and the δ-tubes inside each δ1/2-tube are

essentially disjoint:

Vol(∪Tδ1/2) ≈ 1, and

Vol(∪T[T δ1/2 ])

Vol(T δ1/2)
≈ #(δ-tubes in each δ1/2-tube)

Vol(δ-tube)

Vol(δ1/2-tube)
=

1

A
.

(1.4)

The lossy multiscale inequality relates these two volumes to the volume of the whole

Kakeya set.

Proposition 1.3 (Lossy Multiscale Inequality). For ρ ∈ [δ, 1],

Vol(∪T) ≳ Vol(∪Tρ)
Vol(∪T[T ρ])

Vol(T ρ)
.

If we apply this Proposition to our example at scale δ1/2, we find

Vol(∪T) ≳ 1

A
,

which is not efficient if A≫ 1. That’s why we call it lossy.

Why is this proposition so inefficient? Let us recall a proof. Let

E = ∪T,

and decompose E into a union of ρ-balls covering it. One of our pigeonholing hypothe-

ses is that for any ρ-ball B involved in covering E, the volume of E ∩ B is roughly

constant. Thus we can decompose the volume of E into a piece above scale ρ and a

piece below scale ρ:

Vol(Eρ) = Volume of the ρ-neighborhood of E,

Vol(E ∩B)

Vol(B)
= Density of E inside a ρ-ball,

Vol(E) ≈ Vol(Eρ)
Vol(E ∩B)

Vol(B)
.(1.5)

The first term is equal to Vol(∪Tρ), which we have a good estimate for in (1.4). The

second term is trickier. To prove Proposition 1.3, we only consider the contribution to

E ∩B from a single ρ-tube T ρ entering B,

Vol(E ∩B)

Vol(B)
≥ Vol(∪T[T ρ] ∩B)

Vol(B)
.

The density of T[T ρ] inside B is equal to the density inside T ρ,

Vol(∪T[T ρ] ∩B)

Vol(B)
=

Vol(∪T[T ρ])

Vol(T ρ)
,

yielding Proposition 1.3.
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Figure 1. The tubelets TB inside a ρ-ball, figure from Guth [1, Figure 1].

When T is sticky, it is okay to just consider the contribution to E ∩B from a single

ρ-tube, because we expect each ρ-ball to only have one ρ-tube through it. But when

T is not sticky, this is very lossy. Focus on a δ1/2-ball B in our example. We expect

A-many δ1/2-tubes through it, each of which contributes a set of density 1
A
to B. In

Proposition 1.3, we allow for the possibility that these A-many sets overlap each other

perfectly, leading to a total density of 1
A
. In order to prove Kakeya, we need to prove

the exact opposite: We need to prove these sets barely overlap at all, leading to a total

density of 1.

To solve this problem, we can think about how tubes of T intersect B. Let

TB = {T ∩B : T ∈ T}

be the set of (δ × δ × δ1/2)-tubelets active inside of B. See Guth’s figure Figure 1.

We can write E ∩B as a union of these tubelets,

E ∩B = ∪TB.

In general, it isn’t clear how many tubelets there are in TB. But in our special example,

we can estimate the number of these using Assumption (1.4): There are A-many δ1/2
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tubes through B, each of which contributes 1
A
(δ1/2)−2 many tubelets, giving a total

count of (δ1/2)−2 many tubelets. If the tubelets TB happen to be Frostman–Wolff,

we are in luck: we have a new problem of the same type inside B, and we can use

induction to show
Vol(∪TB)

Vol(B)
≳ 1.

If the tubelets of TB are not Frostman–Wolff, it isn’t clear what to do. To prove

Kakeya, Wang and Zahl figured out what to do if TB is not Frostman–Wolff.

In order to deal with TB, Wang and Zahl prove a structural theorem describing the

union of any set of tubes, Frostman or not. Let T be an essentially distinct set of δ-

tubes, and let U be the maximum density convex set in the definition of the Frostman

constant, meaning the supremum in

CF (T) = sup
U ′

#T[U ′]

Vol(U ′)#T

is achieved at U . After some pigeonholing, we can assuming T is covered by a collection

of essentially disjoint translated and rotated copies of U , each of which have the same

density of tubes—call this collection U .
Wang and Zahl proved that E = ∪T fills out each U ∈ U , and that the convex sets

U are essentially disjoint:

Vol(E ∩ U) ≈ Vol(U) for each U ∈ U , and

Vol(E) ≈ #U Vol(U).
(1.6)

This is a precise description of what ∪T looks like. In order to study TB, we apply the

description in (1.6) and split into different cases depending on what U looks like.

1.5. A non-sticky example. I would like to describe a particular example that is

helpful to keep in mind during the proof.

We choose A = (δ1/2)−1 in (1.3), meaning we place down

(δ1/2)−3 many δ1/2-tubes, and

(δ1/2)−1 many δ-tubes inside each δ1/2-tube.

Inside each δ1/2-tube, the δ-tubes are arranged in a regulus.

To make a regulus, arrange the δ1/2 tube so it points vertically, and take a bottom

slice and a top slice, each of which are δ1/2 discs. Place a parameterized line segment

in each disk,

t 7→ γ1(t) ∈ Bottom Disk is a line segment,

t 7→ γ2(t) ∈ Top Disk is a line segment.
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For each t, we include the tube Tγ1(t),γ2(t) connecting the bottom point to the top point.

In total, our tube set is

T[T δ1/2 ] = {Tγ1(t),γ2(t) : t = {0, δ, 2δ, . . . , δ1/2}.

The union of these tubes sweeps out a two dimensional surface inside of T δ1/2 called a

regulus. If we intersect this regulus with a δ1/2-ball, we get a δ × δ1/2 × δ1/2 slab. As

we move along the tube, these slabs rotate.

Inside of each δ1/2-ball B there are δ−1/2 incoming tubes, each of which contribute

a δ × δ1/2 × δ1/2-slab. We want to show these slabs are essentially disjoint, so that E

fills out B. But what is stopping several tubes from contributing the same slab?

Actually, Katz and Zahl [3] found an example of this form over the ring Fp[x]/x
2

where there is just one slab inside B—total overlap—giving E a density of δ1/2. So

there was good reason to be scared of this example.

I said before that the strategy is to study TB, but that seems useless in this example.

In the worst-case scenario that there is one slab inside B, what is there to say? The

description (1.6) tells us what we already know: E ∩ B looks like a single filled out

slab.

The trick is to study TB where B has diameter ρ close to 1. This is not possible in

Katz and Zahl’s example, as the ring Fp[x]/x
2 has only two scales. If B has diameter

close to 1 and (1.6) tells us E ∩B is a union of filled out slabs, we have made progress:

we know the Kakeya set is close to a union of filled out slabs. The Frostman hypothesis

directly tells us there are lots of these, and we can analyze the union of those slabs

using L2 arguments. There are several other cases depending on what U looks like.

For this reason, I cannot describe exactly how Wang and Zahl deal with this example,

because I don’t know what TB looks like when ρ is close to 1. It depends on the details

of how the reguli are laid out in each δ1/2 tube, and how the δ1/2 tubes are laid out.

1.6. Bird’s eye view: the multiscale strategy. Let A(σ) denote the assertion

CF (T) ≲ 1 =⇒ Vol(
⋃
T∈T

Y (T )) ⪆ δσ.

Our goal is to show A(0) holds. Let

σ = inf{σ′ : A(σ′) holds},(1.7)

and assume by way of contradiction that σ > 0.

A multiscale decomposition is a way of relating a Kakeya problem to several smaller

Kakeya problems. The lossy decomposition (Proposition 1.3) is efficient if T[T ρ] is

Frostman, but not in general. In general, we analyze TB using the description (1.6)

to break an arbitrary Kakeya problem into several smaller sub-problems. Here is a

precise bird’s eye view description of the proof strategy.
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To prove Theorem 1.1, take a Frostman set of tubes T which is a worst scenario for

A(σ):

Vol(∪T) ≈ δσ.(1.8)

We will produce a finite list of related collections

Tj is a collection of wj tubes for j = 1 . . . j0

such that

• CF (Tj) ≲ 1,

• w1 . . . wj0 = δ,

• Vol(∪T) ⪆
∏j0

j=1Vol(∪Tj). This is the main point. By applying A(σ) to each

term on the right hand side, we learn

Vol(∪T) ⪆
∏

wσ
j = δσ,(1.9)

which lets us recover A(σ) from itself.

• One of the sub-problems, say Tj, is sticky. That means we can apply the

Sticky Kakeya theorem rather than A(σ) to estimate Vol(∪Tj), which improves

Equation (1.9) to

Vol(∪T) ⪆
∏
j′ ̸=j

wσ
j′ = δσw−σ

j .

As long as wj is sufficiently small, this represents an improvement over the

A(σ) bound and contradicts (1.8).

We won’t always explicitly write down these sub-problems. They appear implicitly

in lemmas.

2. Lecture 2: High density lemma and nowhere sticky reduction

The main goal of this lecture is to prove the following high density lemma, which

improves on A(σ) when #T ≫ δ−2.

Lemma 2.1 (High Density Lemma).

CF (T) ≲ 1 =⇒ Vol(∪T) ⪆ δσ(δ2#T)σ/2.

The proof of this lemma uses Sticky Kakeya and the Lossy Decomposition (Propo-

sition 1.3). It is helpful to rethink when we can apply Sticky Kakeya. The sticky

hypothesis (1.2) says

#Tρ ≈ ρ−2 for ρ ∈ [δ, 1].

This is a useful hypothesis because it guarantees that after rescaling, the δ-tubes

inside each ρ-tube are themselves Convex Frostman. We can make this the hypothesis

instead. Let T ρ be a ρ-tube, and let ψT ρ
: T ρ → [0, 1]3 be an affine rescaling map to

the unit cube.
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Proposition 2.2 (New Sticky Kakeya). Assume that

CF (ψ
T ρ

(T[T ρ])) ≲ δ−η for all ρ ∈ [δ, 1] and T ρ ∈ Tρ.(2.1)

Then

Vol(∪T) ⪆η 1.

If (2.1) holds, we say T is η-sticky. If T is η-sticky, one can show that it contains a

subset T′ satisfying the hypotheses of Theorem 1.2. So, we can prove Proposition 2.2

from Theorem 1.2.

Our strategy is to find a large number of scales for which (2.1) holds. Roughly

speaking, we will use Sticky Kakeya near the scales where (2.1) holds, and use A(σ)

elsewhere.

Equation (2.1) is hard to verify because we need to look at every convex set inside

a ρ-tube. It would be easier if we just needed to worry about tubes, and could forget

about other convex sets. To be precise, we would like the following.

Tube-y Assumption. If the number of w-tubes contained inside a ρ-tube of Tρ

satisfies

#(w-tubes in a ρ-tube) ≳ (w/ρ)−2 for all w ∈ [δ, 1],

then ψT ρ
(T[T ρ]) is Convex Frostman.

It turns out that the High Density Lemma can be reduced to this special case. Here

is a very brief sketch. If the Tube-y Assumption fails, that implies that for some

ρ-tube T ρ, the convex set inside of T ρ maximizing the Frostman density

#T[U ]
#T[T ρ] Vol(U)/Vol(T ρ)

is some a×b×1 prism that is not a tube. The fact that U is maximum density implies

that T[U ] is Frostman relative to U , in the following sense:

For any V ⊂ U , #T[V ] ≤ #T[U ]
Vol(V )

Vol(U)
.

At this point it is natural to study two problems: The union of the tubes inside U ,

and the union of congruent copies of U covering T. These are convex set variants of

the original Kakeya problem. Wang and Zahl study these convex set variants. They

prove a Kakeya type theorem for tubes inside an arbitrary convex set, and for unions

of arbitrary convex sets. There is a high density lemma in this larger context, which is

proved by induction. Within this larger context, the case that T is Frostman inside U

is good for induction. It remains to prove the high density lemma under the Tube-y

Assumption.
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From now on I will make the Tube-y Assumption. We want to understand the

set of good scales ρ such that

#(w-tubes inside each ρ-tube) ≳ (w/ρ)−2 for w ∈ [δ, ρ].

To do so, we make a log-log plot describing how tubes are distributed. Define the

branching function f : [0, 1] → [0, 4] by

δ−f(x) := #Tδx .

Analyzing branching functions is an important idea in fractal geometry—this idea was

introduced by Keleti and Shmerkin [4]. Some examples:

• If T is sticky, then #Tρ ≈ ρ−2, and f(x) = 2x.

• If δ−2 tubes are placed down uniformly at random, then all (δ1/2)−4 many

distinct δ1/2 tubes will be active, and each will have just one δ-tube inside of

them. Thus

#Tρ =

{
ρ−4 if ρ ∈ [δ1/2, 1],

δ−2 if ρ ∈ [δ, δ1/2]

and

f(x) =

{
4x if x ∈ [0, 1/2],

2 if x ∈ [1/2, 1].

• If we place down δ−2−ζ tubes uniformly at random, what changes? The tubes

are well spaced, meaning that for some scale ρ0, every ρ0 tube is active and

there is one δ-tube per ρ0 tube. To calculate ρ0, we use the equation

ρ−4
0 = δ−2−ζ =⇒ ρ0 = δ−1/2−ζ/4.

The part of the branching function with slope 4 gets expanded a bit, and the

part of slope 0 gets contracted a bit. The new branching function is

f(x) =

{
4x if x ∈ [0, 1/2 + ζ/4],

2 + ζ if x ∈ [1/2 + ζ/4, 1].

We can find good scales using the branching function. The scale ρ = δx is good if and

only if

f(x+ a) ≥ f(x) + 2a for a ∈ [0, 1− x].

Geometrically, consider the graph of f , and make a line of slope 2 eminating from the

point (x, f(x)). If this line lies below the graph of f , then δx is a good scale.

The higher density T is, the more good scales there are. Let

#T = δ−2−ζ for ζ > 0.

Let y ∈ [0, ζ], and consider the line

{(t, 2t+ y) : t ∈ [0, 1]}.



THE PROOF OF KAKEYA, FOLLOWING WANG–ZAHL 11

The graph of f starts out below this line and ends up above it, so they have to cross

at some point. Let G(y) be the supremum x-value where f lies below this line,

G(y) = sup {x : f(x) ≤ 2x+ y}.

Equality must hold at G(y),

f(G(y)) = 2G(y) + y.

The supremum in the definition implies that G(y) is a good point. For any a ∈
[0, 1−G(y)],

f(G(y) + a) ≥ 2(G(y) + a) + y = f(G(y)) + 2a.

Next we show that y 7→ G(y) increases in a quantitative way. Since the branching

function f is 4-Lipschitz and satisfies f(G(y)) = 2G(y) + y, for any y1 < y2 we have

|f(G(y2))− f(G(y1))| = 2|G(y2)−G(y1)|+ |y2 − y1|.

Applying the Lipschitz bound gives

2(G(y2)−G(y1)) + (y2 − y1) ≤ 4(G(y2)−G(y1)).

Rearranging yields

|G(y2)−G(y1)| ≥ 1
2
|y2 − y1|.

In particular, the set of good scales obtained from G,

G := G([0, ζ]),

has Lebesgue measure at least ζ/2.

Consider our third example above, where we placed down δ−2−ζ tubes randomly.

One can check that G = [0, ζ/2] in this example, matching our measure lower bound.

Suppose that G is a union of a constant number of intervals,

G = I1 ⊔ · · · ⊔ Im.

The rest of [0, 1] is also broken up into intervals,

[0, 1] \ G = F1 ∪ · · · ∪ Fm′ .

Each interval corresponds to some range of scales in [δ, 1]. For instance, if Ij = [a, b],

this interval corresponds to the range of scales [δb, δa], and we can look at the set of

δb-tubes inside a δa-tube:

TIj = ψ(Tδb [T δa ]), ψ is an affine rescaling map.

The fact that all of Ij is good implies that TIj is sticky in the sense of (2.1). With this

notation, the Lossy Decomposition (Proposition 1.3) implies

Vol(∪T) ⪆
m∏
j=1

Vol(∪TIj)
m′∏
j′=1

Vol(∪TF ′
j
).



12 ALEX COHEN

We use Sticky Kakeya for the good Ij-intervals, andA(σ) for the remaining Fj intervals.

Note that the left endpoint of each Fj interval lies in G, so the tube sets TFj
are

Frostman. These estimates imply

Vol(∪T) ≳ δσLeb([0,1]\G) = δσδ−σLeb(G) ≥ δσδ−σζ/2 = δσ(δ2#T)σ/2

as desired.

With some more work, this argument can be generalized to work for all G (not

necessarily a finite union of intervals).

3. Lecture 3: The L2 method

3.1. Tubes. Let T be a set of tubes in R2, and let

E = ∪T.

For p ∈ E, let T(p) be the tubes through p. By pigeonholing, we hypothesize that

#T(p) ∼ const. as p varies over E.

The L2 method involves computing
´ (∑

T∈T 1T
)2
dx in two different ways. First we

put the sum inside the integral,

(3.1)

ˆ
E

∑
T1,T2∈T

1T11T2 dx =

ˆ
E

#T(p)2 dx = Vol(E)#T(p)2.

Next, we put the sum outside the integral,

(3.2)
∑

T1,T2∈T

ˆ
[0,1]2

1T11T2 dx =
∑

T1,T2∈T

Vol(T1 ∩ T2).

Comparing these two, we find

Vol(E)#T(p)2 ≲
∑

T1,T2∈T

Vol(T1 ∩ T2).(3.3)

On the other hand, Vol(E) = #TVol(T )
#T(p) . Comparing these two expressions gives

(3.4) Vol(E) ≳
(#TVol(T ))2∑

T1,T2∈TVol(T1 ∩ T2)
.

The denominator has several contributions, depending on the angle between T1 and

T2. In order to make the denominator simpler, it is helpful to assume T(p) is broad,

meaning a large portion of pairs of tubes in T(p) are 1-separated in angle,

#{T1, T2 ∈ T(p) : θ(T1, T2) ∼ 1} ≈ #T(p)2.
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Due to the broadness hypotheses, (3.1) becomesˆ
E

∑
T1,T2∈T

1T11T2 dx ≈
ˆ
E

∑
T1,T2∈T,θ(T1,T2)∼1

1T11T2 dx

=
∑

T1,T2∈T,θ(T1,T2)∼1

Vol(T1 ∩ T2)

≲ #T2Vol(T )2.

In (3.4),
∑

T1,T2∈T Vol(T1 ∩ T2) gets replaced with #T2Vol(T )2, giving the estimate

Vol(E) ≳ 1.

This is a funny result. We didn’t assume anything about the tube set T, just that T(p)
is broad. The number of tubes appeared in our equations, but canceled out so that

the final result, Vol(E) ≳ 1, did not depend on the total number of tubes.

An arbitrary set of tubes may not be broad, but we can still use the L2 method to

understand their union. After a bunch of pigeonholing, we find that there is a scale

w ∈ [δ, 1] such that for each p ∈ E

• T(p) is w-narrow, meaning all the tubes of T(p) are contained in one w × 1

rectangle, and

• T(p) is w-broad, meaning a large portion of pairs of tubes in T(p) are w-

separated in angle,

#{T1, T2 ∈ T(p) : θ(T1, T2) ∼ w} ≈ #T(p)2.

The broadness hypothesis is a robust way of saying that the tubes T(p) are not con-

centrating at a smaller scale than w.

Let Tw be the set of w-tubes active in covering T. For Tw ∈ Tw, let

ETw = ∪T[Tw]

be the union of δ-tubes inside of there. By the w-narrow hypothesis, each p ∈ E

belongs to just one of the sets ETw . We may write

E =
⊔

Tw∈Tw

ETw .

Now apply a rescaling to map Tw → Unit Cube. Due to the w-broadness hypothesis,

this rescaling maps T[Tw] to a broad tube set. By the L2 method,

Vol(ETw) ≳ Vol(Tw).

In other words, E fills out every w-tube active in covering T. Overall,

(3.5) Vol(E) ≳ #Tw Vol(Tw).
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We may write this equation as the approximate equality of sets

E ≈ ⊔Tw.

Notice that if we assume T is Frostman, then the right hand side is ≳ 1 for any

w ∈ [δ, 1], implying Vol(E) ≳ 1.

3.2. Slabs. Something similar works with a set of slabs instead of a set of tubes. Let

S be a set of δ × 1× 1 slabs, and let

E = ∪S.

For p ∈ E, let S(p) be the set of slabs throgh p. For a slab S, θ(S) ∈ S2 denotes the

normal vector of S.

Suppose that a typical p ∈ E is broad, meaning

#{S1, S2 ∈ S(p) : |θ(S1)− θ(S2)| ∼ 1} ≈ #§(p)2.

If a typical p ∈ E is broad, then

Vol(E)#S(p)2 ≲ #S2 Vol(S1 ∩ S2) = (#S Vol(S))2.

On the other hand,

Vol(E) =
#S Vol(S)

#S(p)
≲ Vol(E)1/2

implying

Vol(E) ≳ 1.

We can define w-broadness and w-narrowness in a similar way. If every S(p) is w-
broad, then every w × 1× 1 slab involved in covering S is totally filled out. If S(p) is
w-narrow, then these w × 1× 1 are essentially disjoint. Thus if a typical p is w-broad

and w-narrow,

E ≈ ⊔Sw

where Sw is the set of w × 1× 1 slabs involved in covering S.

4. Lecture 4: Union of Planks

In the introduction section, in (1.6), we described the structure of an arbitrary union

of tubes. To recap, let U be the maximum density convex set for T, and let U be a

minimal number of congruent copies of U to cover T. Wang–Zahl proved

Vol(E ∩ U) ≈ Vol(U) for each U ∈ U , and

Vol(E) ≈ #U Vol(U).
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By the covering number description of the Frostman constant (1.1), #U Vol(U) =
1

CF (T) . So, it follows from Wang and Zahls’s description that

Vol(E) ⪆
1

CF (T)
.

Actually, there is an easy argument to prove this directly from Theorem 1.1, which is

robust enough to apply to A(σ).

Lemma 4.1. Suppose A(σ) holds. Then for any set of tubes T,

Vol(∪T) ⪆ 1

CF (T)
δσ.

Proof. Let

T′ = A union of CF (T)-many randomly translated and rotated copies of T.

Because the copies are all thrown down randomly,

#(a× b× 1 in T′) ≳ CF (T)#(a× b× 1 in T).

Thus

1

CF (T′)
= inf

a×b×1
#(a×b×1 in T′)Vol(a×b×1) ≳ CF (T)#(a×b×1 in T)Vol(a×b×1) ≳ 1.

By A(σ),

Vol(∪T′) ≳ δσ.

On the other hand,

Vol(∪T′) ≲ CF (T)Vol(T),
so we find

Vol(T) ≳
1

CF (T)
δσ.

□

Let P be an arrangement of δ × b× 1 planks. The Frostman constant is defined by

CF (P) = sup
U⊃δ×b×1

#P[U ]
#PVol(U)

,

which is equivalent by pigeonholing hypotheses to

1

CF (P)
= inf

U⊃δ×b×1
#U Vol(U).

Lemma 4.2 (Union of Planks). Assume A(σ). Let P be an arrangement of δ × b× 1

planks with CF (P) ≲ 1. Then

Vol(∪P) ⪆ bσ.
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Figure 2. Planks intersecting tangentially in a slab are anisotropically

rescaled to tubes intersecting in a ball

If b = δ, then P is an arrangement of tubes, and this Lemma restates A(σ). If b = 1,

then P is a Frostman arrangement of slabs. In this case, we can use the L2 method.

Let S be the arrangement of slabs, and assume S(p) is w-broad and w-narrow. By the

L2 method,

∪S ≈ ⊔Sw

where Sw is the set of w × 1× 1 slabs active in covering S. In particular,

Vol(∪S) ≈ #Sw Vol(Sw).

By the Frostman hypothesis on S, the right hand side is ≳ 1.

When b ∈ [δ, 1] is arbitrary, we can find a slabby sub-problem by zooming into a

b-ball B. Each incoming plank intersects B in a δ×b×b slab. Let w ∈ [δ, b] be smallest

such that all the δ× b× b slabs through a point are contained in a w× b× b slab. We

are assuming that the δ × b× b slabs through a point are w-broad and w-narrow.

By the L2 method, every w× b× b slab active in covering E is completely filled out.

By w-narrowness, the w × b× b slabs are disjoint. Thus

Vol(E) ≳ #(w × b× b)Vol(w × b× b).

First suppose w = b. In this case, the right hand side above is the union of b-tubes

containing each plank, and

Vol(E) ≈ Vol(∪Tb) ⪆ bσ

By A(σ).

Next suppose w = δ. If you look at all the δ × b × 1 planks through a point, they

all contain one fixed δ × b × b slab. In this case, we say δ × b × 1 planks intersect

tangentially, like in Figure 2. In the tangential case, we can zoom into a δ
b
× 1× 1 slab
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and consider all the δ × b× 1 planks inside of it. After anisotropically rescaling,

δ
b
× 1× 1-slabs 7→ Unit cube,

δ × b× 1-planks 7→ b-tubes,

δ × b× b-slabs 7→ b-balls,

By A(σ),

(4.1)

#(δ×b×b inside each
δ

b
×1×1)

Vol(δ × b× b)

Vol( δ
b
× 1× 1)

⪆ bσ
1

CF (δ × b× 1-planks inside δ
b
× 1× 1)

.

We can estimate the Frostman constant on the right hand side in terms of the Frostman

constant of T. We have

1

CF (δ × b× 1-planks inside δ
b
× 1× 1)

= inf
U⊂ δ

b
×1×1

#(U to cover T)Vol(U)
#( δ

b
× 1× 1)Vol( δ

b
× 1× 1)

≳
1

CF (T)
1

#( δ
b
× 1× 1)Vol( δ

b
× 1× 1)

.

(4.2)

The more δ
b
× 1× 1 slabs there are, the smaller the loss factor is in (4.1). On the other

hand, when we compute the total number of δ× b× b slabs active in all of E, we have

to sum over all the big δ
b
× 1× 1 slabs. These two factors perfectly cancel,

Vol(E) ≳ #(δ × b× b)Vol(δ × b× b) ⪆ bσ
1

CF (T)

as desired.

If w ∈ (δ, b), we can do something similar. By the L2 method, we know every w-ball

of E is filled out. Thus we can consider w × b× 1 planks instead of δ × b× 1 planks.

To estimate the number of w × b × b slabs, we zoom into w
b
× 1 × 1 slabs and repeat

the argument above.

Lemma 4.2 lets us give the following improvement over Lemma 4.1.

Lemma 4.3 (Improvement in plank-y case). Assume A(σ). Let T be a set of tubes

whose maximum density convex set is an a× b× 1 prism. Then

Vol(∪T) ⪆ 1

CF (T)
(δ
b

a
)σ.

Proof of Lemma 4.3. Consider a fixed a × b × 1 plank. Anisotropically rescale so it

becomes the unit cube. Tubes are mapped to δ
b
× δ

a
× 1 planks which are arranged in

a Frostman way. By Lemma 4.2,

Vol(E ∩ a× b× 1)

Vol(a× b× 1)
⪆ (δ/a)σ.
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The density inside of a a-ball is at least as large,

Vol(E ∩B(x0, a)

Vol(B(x0, a))
⪆ (δ/a)σ.

Now consider the set of a-tubes Ta. By maximum density, the a-tubes inside an a×b×1

plank are arranged in a Frostman way. By the L2 method for tubes in R2, they fill out

the a× b× 1 planks, implying

Vol(Ea ∩ a× b× 1) ≳ Vol(a× b× 1).

Let P denote the collection of a× b× 1 planks. We would like to apply Lemma 4.2 to

P. We use the same trick as Lemma 4.1 and take CF (T) random copies to find

Vol(∪P) ⪆ #PVol(P )bσ =
1

CF (T)
bσ.

Combining these two densities,

Vol(E) ⪆
1

CF (T)
(
δ b
a

)σ
as desired. □

5. Lecture 5: The lossless decomposition and proof of Kakeya

We are ready to finish the proof of Kakeya. This section is a bit different from [5],

although the ingredients are mostly the same.

Let

σ = inf{σ′ : A(σ′) holds}.
Assume by way of contradiction that σ > 0. Here are our ingredients.

• If T is a set of δ-tubes, the maximum density convex set is the U = a × b × 1

maximizing the density
#T[U ]

#TVol(U)
.

Equivalently, letting U be the minimal collection of congruent copies to cover

T, U minimizes

#U Vol(U).

The Frostman constant is

CF (T) =
#T[U ]

#TVol(U)
and

1

CF (T)
= #U Vol(U).

• The high density lemma says that if #T ≫ δ−2, there is a gain over A(σ).

The proof uses the lossy decomposition along with Sticky Kakeya. We need a

slightly refined version that allows for an arbitrary set of tubes rather than a

Frostman set of tubes.
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Lemma 5.1 (Refined high density). Assume A(σ). For any set T of δ-tubes,

Vol(∪T) ⪆ 1

CF (T)
δσ(δ2CF (T)#T)σ/2.

As a consequence, if we know 1
CF (T) ≥ λ, then

Vol(∪T) ⪆ λδσ
(δ2#T

λ

)min{σ/2,1}
.

Proof. Make a new tube set T′ by taking CF (T)-many random translations and

rotations of T. As discussed in Lemma 4.1, CF (T′) ≲ 1. By the high density

lemma Lemma 2.1,

Vol(∪T′) ⪆ δσ(δ2#T′)σ = δσ(δ2CF (T)#T)σ/2.

On the other hand, Vol(∪T′) ≲ CF (T)Vol(∪T). Thus

Vol(∪T) ⪆ 1

CF (T)
δσ(δ2CF (T)#T)σ/2.

Now, let 1
CF (T) = Aλ with A ≥ 1. Then

Vol(∪T) ⪆ λδσ
(δ2#T

λ

)σ/2
A1−σ/2 ⪆ λδσ

(δ2#T
λ

)min{σ/2,1}
.

□

• The low density lemma is a variant of the high density lemma. The proof is

analagous—we won’t discuss it.

Lemma 5.2 (Low Density Lemma). Assume A(σ). Let T be a set of δ-tubes

whose maximum density convex set is a δ-tube. This is equivalent to saying

#T[U ] ≲ Vol(U)
Vol(T )

. Then

Vol(∪T) ⪆ #TVol(T ) (δ2#T)−σ/2.

The factor #TVol(T ) is equal to 1
CF (T) . The assumption implies #T ≲ δ−2,

so the improvement factor (δ2#T)−σ/2 is always ≳ 1, and it is≫ 1 if #T ≪ δ−2.

• The next lemma, the nowhere sticky reduction, will help us apply the high

density lemma inside the proof.

Lemma 5.3 (Nowhere Sticky Reduction). There exists a worst-case-scenario

set of tubes T, meaning CF (T) ∼ 1 and

Vol(∪T) ≈ δσ,

such that

#Tρ ≫ ρ−2 for all ρ ∈ (δ, 1) strictly.
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The proof uses the lossy decomposition. If there was a scale ρ where #Tρ ∼
ρ−2, we could apply the Lossy Decomposition (Proposition 1.3) to split into two

sub-problems. Both those sub-problems have to also be worst-case-scenario. If

one if them is nowhere sticky, we are done. Otherwise, we can keep splitting

into sub-problems. Eventually, we have to either find a nowhere sticky sub-

problem, or find so many sticky scales that we can apply Sticky Kakeya to get

a gain.

• The plank-y improvement (Lemma 4.3) says that if the maximum density con-

vex set is a× b× 1, then

Vol(∪T) ⪆ 1

CF (T)
(δ
b

a
)σ.

• In the proof we will need to study δ-tubes inside of a w-tube. Let ψ : Tw →
[0, 1]3 be a rescaling map, and consider the rescaled set ψ(T[Tw]). The inverse

Frostman constant is estimated by

1

CF (ψ(T[Tw]))
= inf

U⊂Tw
#(U to cover T[Tw])

Vol(U)

Vol(Tw)

= inf
U⊂Tw

#(U to cover all of T)Vol(U)
#Tw Vol(Tw)

≥ 1

CF (T)
1

#Tw Vol(Tw)
.(5.1)

Suppose T is Frostman. Then 1
CF (T) ≈ 1, and 1

#Tw Vol(Tw)
≲ 1. If the number of

w-tubes is the minimal amount, w−2, then the right hand side is ∼ 1. In other

words, ψ(T[Tw]) is itself Frostman. The more w-tubes there are, the farther

T[Tw] is from Frostman.

We are ready to start the proof. Let T be a nowhere sticky, worst-case scenario set

of tubes, so

Vol(∪T) ≈ δσ.

We would like to find a contradiction.

Pick a scale ρ ∈ [δ, 1]. At the end of the proof we will talk about how to choose ρ.

Let B denote the collection of ρ-balls active in covering E. For B ∈ B, let

TB = {T ∩B : T ∈ T}

be the set of δ × δ × ρ tubelets active inside of B, as in Figure 1. A priori, we don’t

know much about TB. We don’t even know how many tubelets there are in TB. As a

first step, let U = a× b× ρ be the extremizing convex set for TB.
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If U is ρ× ρ× ρ, i.e. TB is Frostman, we could finish the proof right now. We split

into a problem above scale ρ and a problem below scale ρ,

Vol(E) ⪆ #BVol(B)
Vol(∪TB)

Vol(B)
.

To estimate Vol(∪TB), useA(σ). To estimate #BVol(B) = Vol(∪Tρ), use the nowhere

sticky reduction and the high density lemma. Altogether,

Vol(E) ⪆ δσ(#Tρρ2)σ/2 ≫ δσ,

contradicting our assumption that T is worst-case-scenario. To deal with the gen-

eral case, when U is not necessarily ρ × ρ × ρ, we need to use our plank-y improve-

ment (Lemma 4.3).

Towards estimating the Frostman constant of TB, define

#(a× b× ρ) = The total number of a× b× ρ convex sets active in covering E

= #B#(a× b× ρ needed to cover each TB).

The inverse Frostman constant of TB is given by

1

CF (TB)
=

#(a× b× ρ)Vol(a× b× ρ)

#BVol(B)
.

By the plank-y improvement (Lemma 4.3) applied to TB,

Vol(∪TB)

Vol(B)
⪆

#(a× b× ρ)Vol(a× b× ρ)

#BVol(B)

(δ
ρ

b

a

)σ
.

Summing over all B ∈ B gives an estimate for Vol(E),

(5.2) Vol(E) = #BVol(B)
Vol(∪TB)

Vol(B)
⪆ #(a× b× ρ)Vol(a× b× ρ)

(δ
ρ

b

a

)σ
.

We’ve turned the problem of estimating Vol(E) into the problem of estimating #(a×
b× ρ).

Suppose, as an example, U = δ × δ × ρ. We need to estimate the total number of

tubelets. If we’re lucky and every δ×δ×ρ tubelet has just one δ-tube through it, then

#(δ × δ × ρ) = #(δ-tubes)ρ−1 = δ−2ρ−1,

giving the favorable bound #(δ × δ × ρ)Vol(δ × δ × ρ) ≳ 1.

What if there are several δ-tubes through each δ × δ × ρ tubelet? All these δ-tubes

have to lie in the δ
ρ
-tube we get by scaling up our original tubelet, and they all have

ρ−1 many tubelets along them. If we take a new δ-tube through one of these other
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Figure 3. To estimate the total number of δ × δ × ρ tubelets active in

covering E, rescale δ/ρ tubes.

tubelets, it still lies in the same δ
ρ
-tube. What we are seeing is another Kakeya type

problem. If we rescale this δ
ρ
-tube to the unit cube,

δ

ρ
-tube 7→ Unit cube,

δ-tube 7→ ρ-tube,

δ × δ × ρ-tubelet 7→ ρ-ball.

To count the total number of δ × δ × ρ-tubelets, we can apply A(σ) inside of each

δ/ρ-tube, and multiply by the number of δ
ρ
tubes. See Figure 3.

A similar idea works if U is a× b× ρ. The best thing to do is zoom into b/ρ tubes

and count copies of U in each of these. Inside each b/ρ-tube, the count of a × b × ρ

convex sets is related to the volume of the union of a-tubes via

#(a× b× ρ inside T b/ρ))
Vol(a× b× ρ)

Vol(T b/ρ)
≳

Vol(∪Ta[T b/ρ])

Vol(T b/ρ)
.

We apply A(σ) to estimate the volume of the union of a-tubes and get

Vol(∪Ta[T b/ρ])

Vol(T b/ρ)
⪆ (a

ρ

b
)σ

1

CF (a-tubes inside b/ρ-tube)
.
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To estimate the Frostman constant, we use (5.1),

1

CF (a-tubes inside b/ρ-tube)
⪆ (a

ρ

b
)σ

1

#(Tb/ρ)Vol(T b/ρ)
.

When we combine these estimates to count the total number of a × b × ρ, the factor

#(Tb/ρ)Vol(T b/ρ) cancels and we are left with

#(a× b× ρ)Vol(a× b× ρ) ⪆ (a
ρ

b
)σ.

Plugging this estimate into (5.2) gives

Vol(E) ⪆ δσ.

We have recovered A(σ) from itself by splitting into various sub-problems. This is the

lossless decomposition.

• The first sub-problem was applying Lemma 4.3 to TB. Under the hood, A(σ)

is applied to various collections of tubes related to TB.

• The second sub-problem was applying A(σ)—more precisely, the general ver-

sion Lemma 4.1—to the collection of a-tubes inside a b/ρ-tube.

We hope to get an improvement on the second sub-problem, to contradict the hypoth-

esis that T is worst-case-scenario. If a≫ δ, then by the nowhere sticky reduction, the

number of a-tubes inside a b/ρ-tube is greater than the easy lower bound

a−2

#Tb/ρ
,

so by the refined high density lemma (Lemma 5.1) provides an improvement.

If a = δ and b≪ ρ, then the low density lemma Lemma 5.2 provides an improvement.

There’s one remaining case we haven’t dealt with: If

U = δ × ρ× ρ,

then the second sub-problem is the same one we started with, so the high density

lemma does not give an improvement.

To deal with this last case, we will choose ρ very close to 1, in a way that depends

on σ. If U = δ × ρ× ρ, the L2 method implies

Vol(E) ≳ #(δ × ρ× ρ)Vol(δ × ρ× ρ),

and the Convex Frostman hypothesis implies

#(δ × ρ× ρ)Vol(δ × ρ× ρ) ≳ ρ10.

We choose ρ = δσ/100, so that these estimates give a gain over A(σ). Remember that

the gain from the high density lemma requires ρ to be strictly in the range (δ, 1), which

is why we can’t choose ρ = 1.
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