

THE PROOF OF KAKEYA, FOLLOWING WANG–ZAH

ALEX COHEN

1. LECTURE 1: INTRODUCTION

These are lecture notes from a two week minicourse at MIT about Wang and Zahl’s [5] proof of the Kakeya conjecture. Some other useful resources are

- Wang and Zahl’s article [5],
- Guth’s introduction to the proof [2],
- Guth’s proof outline [1].

Before getting into the details, we establish some notation.

1.1. Notation and convention.

- \mathbb{T} is a set of $\delta \times \delta \times 1$ tube segments in $B(10) \subset \mathbb{R}^3$
- The tubes in \mathbb{T} are essentially distinct: For any $T_1, T_2 \in \mathbb{T}$,

$$\text{Vol}(T_1 \cap T_2) \leq \frac{1}{2} \text{Vol}(T_1).$$

- \mathbb{T}^ρ is the set of ρ -tubes involved in covering \mathbb{T} . For $E \subset \mathbb{R}^3$, E^ρ is the ρ -neighborhood of E .
- For a convex set U , $\mathbb{T}[U] = \{T \in \mathbb{T} : T \subset U\}$.
- Shadings: Each tube $T \in \mathbb{T}$ is equipped with a subset $Y(T) \subset T$ with

$$\text{Vol}(Y(T)) \geq \delta^\eta \text{Vol}(T),$$

where $\eta > 0$ is a small parameter. We will ignore the shading in our notation: when we write

$$\cup \mathbb{T} \quad \text{or} \bigcup_{T \in \mathbb{T}} T,$$

we really mean

$$\bigcup_{T \in \mathbb{T}} Y(T)$$

for some δ^η -dense shading $Y(T)$.

- $A \gtrsim B$ means $A \geq \frac{1}{C}B$ for some absolute constant C . $A \gg B$ means A is much greater than B . This is an informal statement, but generally one should think $A \geq \delta^{-\kappa}B$ for some fixed $\kappa > 0$.

- In the proofs, η is a small parameter controlling the shading density, Ahlfors–David regularity, and possibly other things. $A \gtrsim_{\eta} B$ means that for any $\varepsilon > 0$, $A \geq c_{\varepsilon} \delta^{\varepsilon + C\eta}$. Here C is a universal constant. We will sometimes drop the subscript η and just write $A \gtrsim B$.
- We make a standing assumption that quantities have been pigeonholed so that they are essentially constant. In particular, each ρ -tube $T^{\rho} \in \mathbb{T}^{\rho}$ contains roughly the same number of δ -tubes, and for any ρ -ball $B = B(x_0, \rho)$ centered at a point of $E = \cup \mathbb{T}$, the measure of $E \cap B$ is approximately uniform.

1.2. The Frostman Condition. The *Frostman–Wolff constant* $C_F(\mathbb{T})$ measures the extend to which \mathbb{T} concentrates in convex sets,

$$C_F(\mathbb{T}) = \sup_U \frac{\#\mathbb{T}[U]}{\text{Vol}(U)\#\mathbb{T}}.$$

Equivalently, it is the smallest constant such that

$$\#\mathbb{T}[U] \leq C_F(\mathbb{T}) \text{Vol}(U)\#\mathbb{T}$$

for all convex U . It suffices to consider rectangular prisms of size $a \times b \times 100$ with $\delta \leq a \leq b \leq 100$. We sometimes write $a \times b \times 1$ in place of $a \times b \times 100$.

Taking $U = \delta \times \delta \times 1$ gives $\#\mathbb{T} \geq \frac{1}{C_F(\mathbb{T})} \delta^{-2}$. More generally, the Frostman condition can be expressed in terms of covering numbers. For fixed $\delta \leq a \leq b \leq 1$, let \mathcal{U} be the smallest possible family of $a \times b \times 1$ prisms covering \mathbb{T} , i.e.

each $T \in \mathbb{T}$ is contained in some $U \in \mathcal{U}$.

Then

$$\#\mathbb{T} \leq \sum_{U \in \mathcal{U}} \#\mathbb{T}[U] \leq C_F(\mathbb{T}) \text{Vol}(U)\#\mathcal{U}\#\mathbb{T},$$

so

$$\#\mathcal{U} \geq \frac{1}{C_F(\mathbb{T})} \text{Vol}(U)^{-1}.$$

Thus, the Frostman condition implies that the number of ρ -tubes needed to cover \mathbb{T} is at least ρ^{-2} ; the number of $a \times 1 \times 1$ slabs is at least a^{-1} ; and the number of $a \times b \times 1$ prisms is at least $(ab)^{-1}$.

Under our pigeonholing assumptions, we can reverse this logic. Let $\#(a \times b \times 1)$ denote the minimal number of such prisms needed to cover \mathbb{T} . Then

$$(1.1) \text{ Assuming } \mathbb{T} \text{ is well pigeonholed, } \frac{1}{C_F(\mathbb{T})} = \inf_{\delta \leq a \leq b \leq 1} \#(a \times b \times 1) \text{Vol}(a \times b \times 1).$$

A technical note: In general, it is too much to ask for that every $a \times b \times 1$ prism involved in covering \mathbb{T} has the same number of tubes in it. But if $a \times b \times 1$ is extremal for the Frostman constant, this can be justified.

1.3. Introduction. The goal of these lectures is to prove the Kakeya theorem [5] using the Sticky Kakeya theorem [6] as an ingredient.

Theorem 1.1 (Kakeya). *Let \mathbb{T} be an essentially distinct set of $\delta \times \delta \times 1$ tubes with $C_F(\mathbb{T}) \lesssim 1$. For each $T \in \mathbb{T}$, let*

$$Y(T) \subset T$$

be a shading with $\text{Vol}(Y(T)) \geq \delta^\eta \text{Vol}(T)$. For any $\varepsilon > 0$,

$$\text{Vol}\left(\bigcup_{T \in \mathbb{T}} Y(T)\right) \gtrapprox_\eta 1.$$

Recall that by our notation, this means that for any $\varepsilon > 0$,

$$\text{Vol}\left(\bigcup_{T \in \mathbb{T}} Y(T)\right) \geq c_\varepsilon \delta^{\varepsilon + C\eta}.$$

Going forward, we will often suppress the shading $Y(T)$ and the subscript η in \gtrapprox_η .

The Sticky Kakeya theorem deals with the special case when the tubes are Ahlfors–David regular, or sticky.

Theorem 1.2 (Sticky Kakeya). *Let \mathbb{T} be an essentially distinct set of $\delta \times \delta \times 1$ tubes with $C_F(\mathbb{T}) \lesssim 1$ and*

$$(1.2) \quad \#\mathbb{T}^\rho \approx_\eta \rho^{-2} \quad \text{for } \rho \in [\delta, 1].$$

Then

$$\text{Vol}\left(\bigcup_{T \in \mathbb{T}} Y(T)\right) \gtrapprox 1.$$

Due to pigeonholing, the sticky hypothesis (1.2) is equivalent to

$$\#\mathbb{T}[T^\rho] \approx_\eta (\delta/\rho)^{-2} \quad \text{for all } \rho \in [\delta, 1] \text{ and } T^\rho \in \mathbb{T}^\rho.$$

Our goal is to prove Theorem 1.1 using Theorem 1.2.

1.4. The challenge of non-sticky. Let us make an example by placing down

$$(1.3) \quad \begin{aligned} & A(\delta^{1/2})^{-2} \text{ many } \delta^{1/2}\text{-tubes, and} \\ & \frac{1}{A}(\delta^{1/2})^{-2} \text{ many } \delta\text{-tubes inside each } \delta^{1/2}\text{-tube.} \end{aligned}$$

Here $A \in [1, (\delta^{1/2})^{-2}]$ is a parameter controlling the degree of stickiness at scale $\delta^{1/2}$. If $A = 1$ then \mathbb{T} is sticky at scale $\delta^{1/2}$, and if $A = (\delta^{1/2})^{-2}$ then \mathbb{T} is very far from sticky—there is just one δ -tube inside of each $\delta^{1/2}$ -tube.

It is natural to consider how the $\delta^{1/2}$ -tubes of $\mathbb{T}^{\delta^{1/2}}$ are arranged, and how the δ -tubes inside each $\delta^{1/2}$ -tube are arranged. The best we could hope for is that the union

of the $\delta^{1/2}$ -tubes cover the entire unit ball, and the δ -tubes inside each $\delta^{1/2}$ -tube are essentially disjoint:

$$(1.4) \quad \begin{aligned} \text{Vol}(\cup \mathbb{T}^{\delta^{1/2}}) &\approx 1, \quad \text{and} \\ \frac{\text{Vol}(\cup \mathbb{T}[T^{\delta^{1/2}}])}{\text{Vol}(T^{\delta^{1/2}})} &\approx \#(\delta\text{-tubes in each } \delta^{1/2}\text{-tube}) \frac{\text{Vol}(\delta\text{-tube})}{\text{Vol}(\delta^{1/2}\text{-tube})} = \frac{1}{A}. \end{aligned}$$

The *lossy multiscale inequality* relates these two volumes to the volume of the whole Kakeya set.

Proposition 1.3 (Lossy Multiscale Inequality). *For $\rho \in [\delta, 1]$,*

$$\text{Vol}(\cup \mathbb{T}) \gtrsim \text{Vol}(\cup \mathbb{T}^\rho) \frac{\text{Vol}(\cup \mathbb{T}[T^\rho])}{\text{Vol}(T^\rho)}.$$

If we apply this Proposition to our example at scale $\delta^{1/2}$, we find

$$\text{Vol}(\cup \mathbb{T}) \gtrsim \frac{1}{A},$$

which is not efficient if $A \gg 1$. That's why we call it lossy.

Why is this proposition so inefficient? Let us recall a proof. Let

$$E = \cup \mathbb{T},$$

and decompose E into a union of ρ -balls covering it. One of our pigeonholing hypotheses is that for any ρ -ball B involved in covering E , the volume of $E \cap B$ is roughly constant. Thus we can decompose the volume of E into a piece above scale ρ and a piece below scale ρ :

$$(1.5) \quad \begin{aligned} \text{Vol}(E^\rho) &= \text{Volume of the } \rho\text{-neighborhood of } E, \\ \frac{\text{Vol}(E \cap B)}{\text{Vol}(B)} &= \text{Density of } E \text{ inside a } \rho\text{-ball,} \\ \text{Vol}(E) &\approx \text{Vol}(E^\rho) \frac{\text{Vol}(E \cap B)}{\text{Vol}(B)}. \end{aligned}$$

The first term is equal to $\text{Vol}(\cup \mathbb{T}^\rho)$, which we have a good estimate for in (1.4). The second term is trickier. To prove Proposition 1.3, we only consider the contribution to $E \cap B$ from a single ρ -tube T^ρ entering B ,

$$\frac{\text{Vol}(E \cap B)}{\text{Vol}(B)} \geq \frac{\text{Vol}(\cup \mathbb{T}[T^\rho] \cap B)}{\text{Vol}(B)}.$$

The density of $\mathbb{T}[T^\rho]$ inside B is equal to the density inside T^ρ ,

$$\frac{\text{Vol}(\cup \mathbb{T}[T^\rho] \cap B)}{\text{Vol}(B)} = \frac{\text{Vol}(\cup \mathbb{T}[T^\rho])}{\text{Vol}(T^\rho)},$$

yielding Proposition 1.3.

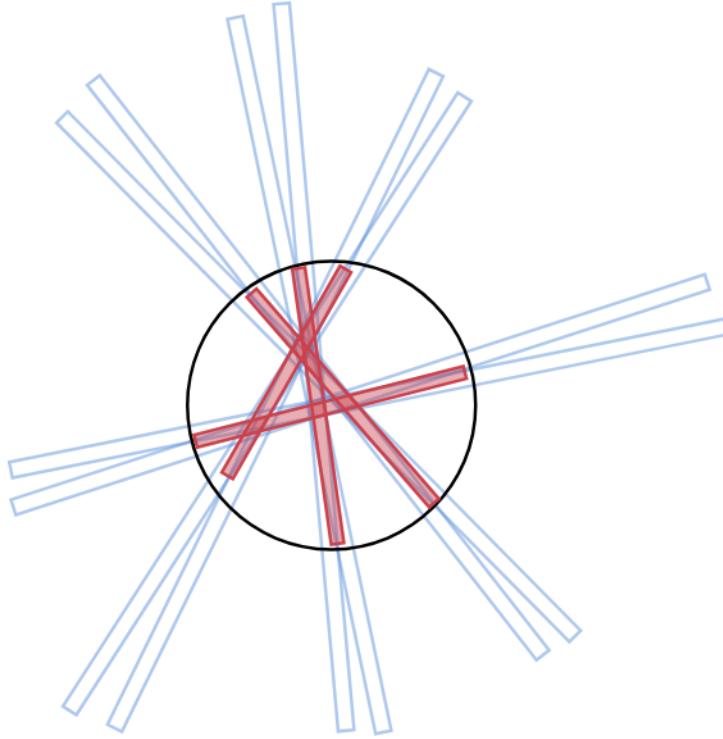


FIGURE 1. The tubelets \mathbb{T}_B inside a ρ -ball, figure from Guth [1, Figure 1].

When \mathbb{T} is sticky, it is okay to just consider the contribution to $E \cap B$ from a single ρ -tube, because we expect each ρ -ball to only have one ρ -tube through it. But when \mathbb{T} is not sticky, this is very lossy. Focus on a $\delta^{1/2}$ -ball B in our example. We expect A -many $\delta^{1/2}$ -tubes through it, each of which contributes a set of density $\frac{1}{A}$ to B . In [Proposition 1.3](#), we allow for the possibility that these A -many sets overlap each other perfectly, leading to a total density of $\frac{1}{A}$. In order to prove Kakeya, we need to prove the exact opposite: We need to prove these sets barely overlap at all, leading to a total density of 1.

To solve this problem, we can think about how tubes of \mathbb{T} intersect B . Let

$$\mathbb{T}_B = \{T \cap B : T \in \mathbb{T}\}$$

be the set of $(\delta \times \delta \times \delta^{1/2})$ -tubelets active inside of B . See Guth's figure [Figure 1](#).

We can write $E \cap B$ as a union of these tubelets,

$$E \cap B = \cup \mathbb{T}_B.$$

In general, it isn't clear how many tubelets there are in \mathbb{T}_B . But in our special example, we can estimate the number of these using [Assumption \(1.4\)](#): There are A -many $\delta^{1/2}$

tubes through B , each of which contributes $\frac{1}{A}(\delta^{1/2})^{-2}$ many tubelets, giving a total count of $(\delta^{1/2})^{-2}$ many tubelets. If the tubelets \mathbb{T}_B happen to be Frostman–Wolff, we are in luck: we have a new problem of the same type inside B , and we can use induction to show

$$\frac{\text{Vol}(\cup\mathbb{T}_B)}{\text{Vol}(B)} \gtrsim 1.$$

If the tubelets of \mathbb{T}_B are not Frostman–Wolff, it isn't clear what to do. To prove Kakeya, Wang and Zahl figured out what to do if \mathbb{T}_B is not Frostman–Wolff.

In order to deal with \mathbb{T}_B , Wang and Zahl prove a structural theorem describing the union of any set of tubes, Frostman or not. Let \mathbb{T} be an essentially distinct set of δ -tubes, and let U be the maximum density convex set in the definition of the Frostman constant, meaning the supremum in

$$C_F(\mathbb{T}) = \sup_{U'} \frac{\#\mathbb{T}[U']}{\text{Vol}(U')\#\mathbb{T}}$$

is achieved at U . After some pigeonholing, we can assume \mathbb{T} is covered by a collection of essentially disjoint translated and rotated copies of U , each of which have the same density of tubes—call this collection \mathcal{U} .

Wang and Zahl proved that $E = \cup\mathbb{T}$ fills out each $U \in \mathcal{U}$, and that the convex sets \mathcal{U} are essentially disjoint:

$$(1.6) \quad \begin{aligned} \text{Vol}(E \cap U) &\approx \text{Vol}(U) \quad \text{for each } U \in \mathcal{U}, \quad \text{and} \\ \text{Vol}(E) &\approx \#\mathcal{U} \text{ Vol}(U). \end{aligned}$$

This is a precise description of what $\cup\mathbb{T}$ looks like. In order to study \mathbb{T}_B , we apply the description in (1.6) and split into different cases depending on what U looks like.

1.5. A non-sticky example. I would like to describe a particular example that is helpful to keep in mind during the proof.

We choose $A = (\delta^{1/2})^{-1}$ in (1.3), meaning we place down

$$\begin{aligned} &(\delta^{1/2})^{-3} \text{ many } \delta^{1/2}\text{-tubes, and} \\ &(\delta^{1/2})^{-1} \text{ many } \delta\text{-tubes inside each } \delta^{1/2}\text{-tube.} \end{aligned}$$

Inside each $\delta^{1/2}$ -tube, the δ -tubes are arranged in a regulus.

To make a regulus, arrange the $\delta^{1/2}$ tube so it points vertically, and take a bottom slice and a top slice, each of which are $\delta^{1/2}$ discs. Place a parameterized line segment in each disk,

$$\begin{aligned} t \mapsto \gamma_1(t) &\in \text{Bottom Disk is a line segment,} \\ t \mapsto \gamma_2(t) &\in \text{Top Disk is a line segment.} \end{aligned}$$

For each t , we include the tube $T_{\gamma_1(t), \gamma_2(t)}$ connecting the bottom point to the top point. In total, our tube set is

$$\mathbb{T}[T^{\delta^{1/2}}] = \{T_{\gamma_1(t), \gamma_2(t)} : t = \{0, \delta, 2\delta, \dots, \delta^{1/2}\}\}.$$

The union of these tubes sweeps out a two dimensional surface inside of $T^{\delta^{1/2}}$ called a regulus. If we intersect this regulus with a $\delta^{1/2}$ -ball, we get a $\delta \times \delta^{1/2} \times \delta^{1/2}$ slab. As we move along the tube, these slabs rotate.

Inside of each $\delta^{1/2}$ -ball B there are $\delta^{-1/2}$ incoming tubes, each of which contribute a $\delta \times \delta^{1/2} \times \delta^{1/2}$ -slab. We want to show these slabs are essentially disjoint, so that E fills out B . But what is stopping several tubes from contributing the same slab?

Actually, Katz and Zahl [3] found an example of this form over the ring $\mathbb{F}_p[x]/x^2$ where there is just one slab inside B —total overlap—giving E a density of $\delta^{1/2}$. So there was good reason to be scared of this example.

I said before that the strategy is to study \mathbb{T}_B , but that seems useless in this example. In the worst-case scenario that there is one slab inside B , what is there to say? The description (1.6) tells us what we already know: $E \cap B$ looks like a single filled out slab.

The trick is to study \mathbb{T}_B where B has diameter ρ close to 1. This is not possible in Katz and Zahl's example, as the ring $\mathbb{F}_p[x]/x^2$ has only two scales. If B has diameter close to 1 and (1.6) tells us $E \cap B$ is a union of filled out slabs, we have made progress: we know the Kakeya set is close to a union of filled out slabs. The Frostman hypothesis directly tells us there are lots of these, and we can analyze the union of those slabs using L^2 arguments. There are several other cases depending on what U looks like. For this reason, I cannot describe exactly how Wang and Zahl deal with this example, because I don't know what \mathbb{T}_B looks like when ρ is close to 1. It depends on the details of how the reguli are laid out in each $\delta^{1/2}$ tube, and how the $\delta^{1/2}$ tubes are laid out.

1.6. Bird's eye view: the multiscale strategy. Let $\mathbf{A}(\sigma)$ denote the assertion

$$\mathbb{C}_F(\mathbb{T}) \lesssim 1 \implies \text{Vol}(\bigcup_{T \in \mathbb{T}} Y(T)) \gtrsim \delta^\sigma.$$

Our goal is to show $\mathbf{A}(0)$ holds. Let

$$(1.7) \quad \sigma = \inf\{\sigma' : \mathbf{A}(\sigma') \text{ holds}\},$$

and assume by way of contradiction that $\sigma > 0$.

A *multiscale decomposition* is a way of relating a Kakeya problem to several smaller Kakeya problems. The lossy decomposition (Proposition 1.3) is efficient if $\mathbb{T}[T^\rho]$ is Frostman, but not in general. In general, we analyze \mathbb{T}_B using the description (1.6) to break an arbitrary Kakeya problem into several smaller sub-problems. Here is a precise bird's eye view description of the proof strategy.

To prove [Theorem 1.1](#), take a Frostman set of tubes \mathbb{T} which is a worst scenario for $\mathbf{A}(\sigma)$:

$$(1.8) \quad \text{Vol}(\cup \mathbb{T}) \approx \delta^\sigma.$$

We will produce a finite list of related collections

$$\mathbb{T}_j \text{ is a collection of } w_j \text{ tubes for } j = 1 \dots j_0$$

such that

- $C_F(\mathbb{T}_j) \lesssim 1$,
- $w_1 \dots w_{j_0} = \delta$,
- $\text{Vol}(\cup \mathbb{T}) \gtrsim \prod_{j=1}^{j_0} \text{Vol}(\cup \mathbb{T}_j)$. This is the main point. By applying $\mathbf{A}(\sigma)$ to each term on the right hand side, we learn

$$(1.9) \quad \text{Vol}(\cup \mathbb{T}) \gtrsim \prod w_j^\sigma = \delta^\sigma,$$

which lets us recover $\mathbf{A}(\sigma)$ from itself.

- One of the sub-problems, say \mathbb{T}_j , is sticky. That means we can apply the Sticky Kakeya theorem rather than $\mathbf{A}(\sigma)$ to estimate $\text{Vol}(\cup \mathbb{T}_j)$, which improves [Equation \(1.9\)](#) to

$$\text{Vol}(\cup \mathbb{T}) \gtrsim \prod_{j' \neq j} w_{j'}^\sigma = \delta^\sigma w_j^{-\sigma}.$$

As long as w_j is sufficiently small, this represents an improvement over the $\mathbf{A}(\sigma)$ bound and contradicts [\(1.8\)](#).

We won't always explicitly write down these sub-problems. They appear implicitly in lemmas.

2. LECTURE 2: HIGH DENSITY LEMMA AND NOWHERE STICKY REDUCTION

The main goal of this lecture is to prove the following high density lemma, which improves on $\mathbf{A}(\sigma)$ when $\#\mathbb{T} \gg \delta^{-2}$.

Lemma 2.1 (High Density Lemma).

$$C_F(\mathbb{T}) \lesssim 1 \implies \text{Vol}(\cup \mathbb{T}) \gtrsim \delta^\sigma (\delta^2 \#\mathbb{T})^{\sigma/2}.$$

The proof of this lemma uses Sticky Kakeya and the Lossy Decomposition ([Proposition 1.3](#)). It is helpful to rethink when we can apply Sticky Kakeya. The sticky hypothesis [\(1.2\)](#) says

$$\#\mathbb{T}^\rho \approx \rho^{-2} \quad \text{for } \rho \in [\delta, 1].$$

This is a useful hypothesis because it guarantees that after rescaling, the δ -tubes inside each ρ -tube are themselves Convex Frostman. We can make this the hypothesis instead. Let T^ρ be a ρ -tube, and let $\psi^{T^\rho} : T^\rho \rightarrow [0, 1]^3$ be an affine rescaling map to the unit cube.

Proposition 2.2 (New Sticky Kakeya). *Assume that*

$$(2.1) \quad C_F(\psi^{T^\rho}(\mathbb{T}[T^\rho])) \lesssim \delta^{-\eta} \quad \text{for all } \rho \in [\delta, 1] \text{ and } T^\rho \in \mathbb{T}^\rho.$$

Then

$$\text{Vol}(\cup \mathbb{T}) \gtrsim_\eta 1.$$

If (2.1) holds, we say \mathbb{T} is η -sticky. If \mathbb{T} is η -sticky, one can show that it contains a subset \mathbb{T}' satisfying the hypotheses of [Theorem 1.2](#). So, we can prove [Proposition 2.2](#) from [Theorem 1.2](#).

Our strategy is to find a large number of scales for which (2.1) holds. Roughly speaking, we will use Sticky Kakeya near the scales where (2.1) holds, and use $\mathbf{A}(\sigma)$ elsewhere.

Equation (2.1) is hard to verify because we need to look at every convex set inside a ρ -tube. It would be easier if we just needed to worry about tubes, and could forget about other convex sets. To be precise, we would like the following.

Tube-y Assumption. If the number of w -tubes contained inside a ρ -tube of \mathbb{T}^ρ satisfies

$$\#(w\text{-tubes in a } \rho\text{-tube}) \gtrsim (w/\rho)^{-2} \quad \text{for all } w \in [\delta, 1],$$

then $\psi^{T^\rho}(\mathbb{T}[T^\rho])$ is Convex Frostman.

It turns out that the High Density Lemma can be reduced to this special case. Here is a very brief sketch. If the **Tube-y Assumption** fails, that implies that for some ρ -tube T^ρ , the convex set inside of T^ρ maximizing the Frostman density

$$\frac{\#\mathbb{T}[U]}{\#\mathbb{T}[T^\rho] \text{Vol}(U) / \text{Vol}(T^\rho)}$$

is some $a \times b \times 1$ prism that is not a tube. The fact that U is maximum density implies that $\mathbb{T}[U]$ is Frostman relative to U , in the following sense:

$$\text{For any } V \subset U, \#\mathbb{T}[V] \leq \#\mathbb{T}[U] \frac{\text{Vol}(V)}{\text{Vol}(U)}.$$

At this point it is natural to study two problems: The union of the tubes inside U , and the union of congruent copies of U covering \mathbb{T} . These are convex set variants of the original Kakeya problem. Wang and Zahl study these convex set variants. They prove a Kakeya type theorem for tubes inside an arbitrary convex set, and for unions of arbitrary convex sets. There is a high density lemma in this larger context, which is proved by induction. Within this larger context, the case that \mathbb{T} is Frostman inside U is good for induction. It remains to prove the high density lemma under the **Tube-y Assumption**.

From now on I will make the **Tube-y Assumption**. We want to understand the set of *good scales* ρ such that

$$\#(\text{w-tubes inside each ρ-tube}) \gtrsim (w/\rho)^{-2} \quad \text{for } w \in [\delta, \rho].$$

To do so, we make a log-log plot describing how tubes are distributed. Define the branching function $f : [0, 1] \rightarrow [0, 4]$ by

$$\delta^{-f(x)} := \#\mathbb{T}^{\delta^x}.$$

Analyzing branching functions is an important idea in fractal geometry—this idea was introduced by Keleti and Shmerkin [4]. Some examples:

- If \mathbb{T} is sticky, then $\#\mathbb{T}^\rho \approx \rho^{-2}$, and $f(x) = 2x$.
- If δ^{-2} tubes are placed down uniformly at random, then all $(\delta^{1/2})^{-4}$ many distinct $\delta^{1/2}$ tubes will be active, and each will have just one δ -tube inside of them. Thus

$$\#\mathbb{T}^\rho = \begin{cases} \rho^{-4} & \text{if } \rho \in [\delta^{1/2}, 1], \\ \delta^{-2} & \text{if } \rho \in [\delta, \delta^{1/2}] \end{cases}$$

and

$$f(x) = \begin{cases} 4x & \text{if } x \in [0, 1/2], \\ 2 & \text{if } x \in [1/2, 1]. \end{cases}$$

- If we place down $\delta^{-2-\zeta}$ tubes uniformly at random, what changes? The tubes are well spaced, meaning that for some scale ρ_0 , every ρ_0 tube is active and there is one δ -tube per ρ_0 tube. To calculate ρ_0 , we use the equation

$$\rho_0^{-4} = \delta^{-2-\zeta} \implies \rho_0 = \delta^{-1/2-\zeta/4}.$$

The part of the branching function with slope 4 gets expanded a bit, and the part of slope 0 gets contracted a bit. The new branching function is

$$f(x) = \begin{cases} 4x & \text{if } x \in [0, 1/2 + \zeta/4], \\ 2 + \zeta & \text{if } x \in [1/2 + \zeta/4, 1]. \end{cases}$$

We can find good scales using the branching function. The scale $\rho = \delta^x$ is good if and only if

$$f(x+a) \geq f(x) + 2a \quad \text{for } a \in [0, 1-x].$$

Geometrically, consider the graph of f , and make a line of slope 2 emanating from the point $(x, f(x))$. If this line lies below the graph of f , then δ^x is a good scale.

The higher density \mathbb{T} is, the more good scales there are. Let

$$\#\mathbb{T} = \delta^{-2-\zeta} \quad \text{for } \zeta > 0.$$

Let $y \in [0, \zeta]$, and consider the line

$$\{(t, 2t+y) : t \in [0, 1]\}.$$

The graph of f starts out below this line and ends up above it, so they have to cross at some point. Let $G(y)$ be the supremum x -value where f lies below this line,

$$G(y) = \sup \{x : f(x) \leq 2x + y\}.$$

Equality must hold at $G(y)$,

$$f(G(y)) = 2G(y) + y.$$

The supremum in the definition implies that $G(y)$ is a good point. For any $a \in [0, 1 - G(y)]$,

$$f(G(y) + a) \geq 2(G(y) + a) + y = f(G(y)) + 2a.$$

Next we show that $y \mapsto G(y)$ increases in a quantitative way. Since the branching function f is 4-Lipschitz and satisfies $f(G(y)) = 2G(y) + y$, for any $y_1 < y_2$ we have

$$|f(G(y_2)) - f(G(y_1))| = 2|G(y_2) - G(y_1)| + |y_2 - y_1|.$$

Applying the Lipschitz bound gives

$$2(G(y_2) - G(y_1)) + (y_2 - y_1) \leq 4(G(y_2) - G(y_1)).$$

Rearranging yields

$$|G(y_2) - G(y_1)| \geq \frac{1}{2}|y_2 - y_1|.$$

In particular, the set of good scales obtained from G ,

$$\mathcal{G} := G([0, \zeta]),$$

has Lebesgue measure at least $\zeta/2$.

Consider our third example above, where we placed down $\delta^{-2-\zeta}$ tubes randomly. One can check that $\mathcal{G} = [0, \zeta/2]$ in this example, matching our measure lower bound.

Suppose that \mathcal{G} is a union of a constant number of intervals,

$$\mathcal{G} = I_1 \sqcup \cdots \sqcup I_m.$$

The rest of $[0, 1]$ is also broken up into intervals,

$$[0, 1] \setminus \mathcal{G} = F_1 \cup \cdots \cup F_{m'}.$$

Each interval corresponds to some range of scales in $[\delta, 1]$. For instance, if $I_j = [a, b]$, this interval corresponds to the range of scales $[\delta^b, \delta^a]$, and we can look at the set of δ^b -tubes inside a δ^a -tube:

$$\mathbb{T}_{I_j} = \psi(\mathbb{T}^{\delta^b}[T^{\delta^a}]), \quad \psi \text{ is an affine rescaling map.}$$

The fact that all of I_j is good implies that \mathbb{T}_{I_j} is sticky in the sense of (2.1). With this notation, the Lossy Decomposition (Proposition 1.3) implies

$$\text{Vol}(\cup \mathbb{T}) \gtrsim \prod_{j=1}^m \text{Vol}(\cup \mathbb{T}_{I_j}) \prod_{j'=1}^{m'} \text{Vol}(\cup \mathbb{T}_{F'_j}).$$

We use Sticky Kakeya for the good I_j -intervals, and $\mathbf{A}(\sigma)$ for the remaining F_j intervals. Note that the left endpoint of each F_j interval lies in \mathcal{G} , so the tube sets \mathbb{T}_{F_j} are Frostman. These estimates imply

$$\text{Vol}(\cup \mathbb{T}) \gtrsim \delta^{\sigma \text{Leb}([0,1] \setminus \mathcal{G})} = \delta^\sigma \delta^{-\sigma \text{Leb}(\mathcal{G})} \geq \delta^\sigma \delta^{-\sigma \zeta/2} = \delta^\sigma (\delta^2 \# \mathbb{T})^{\sigma/2}$$

as desired.

With some more work, this argument can be generalized to work for all \mathcal{G} (not necessarily a finite union of intervals).

3. LECTURE 3: THE L^2 METHOD

3.1. Tubes. Let \mathbb{T} be a set of tubes in \mathbb{R}^2 , and let

$$E = \cup \mathbb{T}.$$

For $p \in E$, let $\mathbb{T}(p)$ be the tubes through p . By pigeonholing, we hypothesize that $\#\mathbb{T}(p) \sim \text{const.}$ as p varies over E .

The L^2 method involves computing $\int (\sum_{T \in \mathbb{T}} 1_T)^2 dx$ in two different ways. First we put the sum inside the integral,

$$(3.1) \quad \int_E \sum_{T_1, T_2 \in \mathbb{T}} 1_{T_1} 1_{T_2} dx = \int_E \#\mathbb{T}(p)^2 dx = \text{Vol}(E) \#\mathbb{T}(p)^2.$$

Next, we put the sum outside the integral,

$$(3.2) \quad \sum_{T_1, T_2 \in \mathbb{T}} \int_{[0,1]^2} 1_{T_1} 1_{T_2} dx = \sum_{T_1, T_2 \in \mathbb{T}} \text{Vol}(T_1 \cap T_2).$$

Comparing these two, we find

$$(3.3) \quad \text{Vol}(E) \#\mathbb{T}(p)^2 \lesssim \sum_{T_1, T_2 \in \mathbb{T}} \text{Vol}(T_1 \cap T_2).$$

On the other hand, $\text{Vol}(E) = \frac{\#\mathbb{T} \text{Vol}(T)}{\#\mathbb{T}(p)}$. Comparing these two expressions gives

$$(3.4) \quad \text{Vol}(E) \gtrsim \frac{(\#\mathbb{T} \text{Vol}(T))^2}{\sum_{T_1, T_2 \in \mathbb{T}} \text{Vol}(T_1 \cap T_2)}.$$

The denominator has several contributions, depending on the angle between T_1 and T_2 . In order to make the denominator simpler, it is helpful to assume $\mathbb{T}(p)$ is *broad*, meaning a large portion of pairs of tubes in $\mathbb{T}(p)$ are 1-separated in angle,

$$\#\{T_1, T_2 \in \mathbb{T}(p) : \theta(T_1, T_2) \sim 1\} \approx \#\mathbb{T}(p)^2.$$

Due to the broadness hypotheses, (3.1) becomes

$$\begin{aligned} \int_E \sum_{T_1, T_2 \in \mathbb{T}} 1_{T_1} 1_{T_2} dx &\approx \int_E \sum_{T_1, T_2 \in \mathbb{T}, \theta(T_1, T_2) \sim 1} 1_{T_1} 1_{T_2} dx \\ &= \sum_{T_1, T_2 \in \mathbb{T}, \theta(T_1, T_2) \sim 1} \text{Vol}(T_1 \cap T_2) \\ &\lesssim \#\mathbb{T}^2 \text{Vol}(T)^2. \end{aligned}$$

In (3.4), $\sum_{T_1, T_2 \in \mathbb{T}} \text{Vol}(T_1 \cap T_2)$ gets replaced with $\#\mathbb{T}^2 \text{Vol}(T)^2$, giving the estimate

$$\text{Vol}(E) \gtrsim 1.$$

This is a funny result. We didn't assume anything about the tube set \mathbb{T} , just that $\mathbb{T}(p)$ is broad. The number of tubes appeared in our equations, but canceled out so that the final result, $\text{Vol}(E) \gtrsim 1$, did not depend on the total number of tubes.

An arbitrary set of tubes may not be broad, but we can still use the L^2 method to understand their union. After a bunch of pigeonholing, we find that there is a scale $w \in [\delta, 1]$ such that for each $p \in E$

- $\mathbb{T}(p)$ is *w-narrow*, meaning all the tubes of $\mathbb{T}(p)$ are contained in one $w \times 1$ rectangle, and
- $\mathbb{T}(p)$ is *w-broad*, meaning a large portion of pairs of tubes in $\mathbb{T}(p)$ are *w*-separated in angle,

$$\#\{T_1, T_2 \in \mathbb{T}(p) : \theta(T_1, T_2) \sim w\} \approx \#\mathbb{T}(p)^2.$$

The broadness hypothesis is a robust way of saying that the tubes $\mathbb{T}(p)$ are not concentrating at a smaller scale than w .

Let \mathbb{T}^w be the set of w -tubes active in covering \mathbb{T} . For $T^w \in \mathbb{T}^w$, let

$$E_{T^w} = \bigcup \mathbb{T}[T^w]$$

be the union of δ -tubes inside of there. By the *w*-narrow hypothesis, each $p \in E$ belongs to just one of the sets E_{T^w} . We may write

$$E = \bigsqcup_{T^w \in \mathbb{T}^w} E_{T^w}.$$

Now apply a rescaling to map $T^w \rightarrow$ Unit Cube. Due to the *w*-broadness hypothesis, this rescaling maps $\mathbb{T}[T^w]$ to a broad tube set. By the L^2 method,

$$\text{Vol}(E_{T^w}) \gtrsim \text{Vol}(T^w).$$

In other words, E fills out every w -tube active in covering \mathbb{T} . Overall,

$$(3.5) \quad \text{Vol}(E) \gtrsim \#\mathbb{T}^w \text{Vol}(T^w).$$

We may write this equation as the approximate equality of sets

$$E \approx \sqcup \mathbb{T}^w.$$

Notice that if we assume \mathbb{T} is Frostman, then the right hand side is $\gtrsim 1$ for any $w \in [\delta, 1]$, implying $\text{Vol}(E) \gtrsim 1$.

3.2. Slabs. Something similar works with a set of slabs instead of a set of tubes. Let \mathcal{S} be a set of $\delta \times 1 \times 1$ slabs, and let

$$E = \cup \mathcal{S}.$$

For $p \in E$, let $\mathcal{S}(p)$ be the set of slabs through p . For a slab S , $\theta(S) \in S^2$ denotes the normal vector of S .

Suppose that a typical $p \in E$ is *broad*, meaning

$$\#\{S_1, S_2 \in \mathcal{S}(p) : |\theta(S_1) - \theta(S_2)| \sim 1\} \approx \#\S(p)^2.$$

If a typical $p \in E$ is broad, then

$$\text{Vol}(E) \#\mathcal{S}(p)^2 \lesssim \#\mathcal{S}^2 \text{ Vol}(S_1 \cap S_2) = (\#\mathcal{S} \text{ Vol}(S))^2.$$

On the other hand,

$$\text{Vol}(E) = \frac{\#\mathcal{S} \text{ Vol}(S)}{\#\mathcal{S}(p)} \lesssim \text{Vol}(E)^{1/2}$$

implying

$$\text{Vol}(E) \gtrsim 1.$$

We can define w -broadness and w -narrowness in a similar way. If every $\mathcal{S}(p)$ is w -broad, then every $w \times 1 \times 1$ slab involved in covering \mathcal{S} is totally filled out. If $\mathcal{S}(p)$ is w -narrow, then these $w \times 1 \times 1$ are essentially disjoint. Thus if a typical p is w -broad and w -narrow,

$$E \approx \sqcup \mathcal{S}^w$$

where \mathcal{S}^w is the set of $w \times 1 \times 1$ slabs involved in covering \mathcal{S} .

4. LECTURE 4: UNION OF PLANKS

In the introduction section, in (1.6), we described the structure of an arbitrary union of tubes. To recap, let U be the maximum density convex set for \mathbb{T} , and let \mathcal{U} be a minimal number of congruent copies of U to cover \mathbb{T} . Wang–Zahl proved

$$\text{Vol}(E \cap U) \approx \text{Vol}(U) \quad \text{for each } U \in \mathcal{U}, \quad \text{and}$$

$$\text{Vol}(E) \approx \#\mathcal{U} \text{ Vol}(U).$$

By the covering number description of the Frostman constant (1.1), $\#\mathcal{U}\text{Vol}(U) = \frac{1}{C_F(\mathbb{T})}$. So, it follows from Wang and Zahls's description that

$$\text{Vol}(E) \gtrsim \frac{1}{C_F(\mathbb{T})}.$$

Actually, there is an easy argument to prove this directly from [Theorem 1.1](#), which is robust enough to apply to $\mathbf{A}(\sigma)$.

Lemma 4.1. *Suppose $\mathbf{A}(\sigma)$ holds. Then for any set of tubes \mathbb{T} ,*

$$\text{Vol}(\cup\mathbb{T}) \gtrsim \frac{1}{C_F(\mathbb{T})} \delta^\sigma.$$

Proof. Let

\mathbb{T}' = A union of $C_F(\mathbb{T})$ -many randomly translated and rotated copies of \mathbb{T} .

Because the copies are all thrown down randomly,

$$\#(a \times b \times 1 \text{ in } \mathbb{T}') \gtrsim C_F(\mathbb{T}) \#(a \times b \times 1 \text{ in } \mathbb{T}).$$

Thus

$$\frac{1}{C_F(\mathbb{T}')} = \inf_{a \times b \times 1} \#(a \times b \times 1 \text{ in } \mathbb{T}') \text{Vol}(a \times b \times 1) \gtrsim C_F(\mathbb{T}) \#(a \times b \times 1 \text{ in } \mathbb{T}) \text{Vol}(a \times b \times 1) \gtrsim 1.$$

By $\mathbf{A}(\sigma)$,

$$\text{Vol}(\cup\mathbb{T}') \gtrsim \delta^\sigma.$$

On the other hand,

$$\text{Vol}(\cup\mathbb{T}') \lesssim C_F(\mathbb{T}) \text{Vol}(\mathbb{T}),$$

so we find

$$\text{Vol}(\mathbb{T}) \gtrsim \frac{1}{C_F(\mathbb{T})} \delta^\sigma.$$

□

Let \mathbb{P} be an arrangement of $\delta \times b \times 1$ planks. The Frostman constant is defined by

$$C_F(\mathbb{P}) = \sup_{U \supset \delta \times b \times 1} \frac{\#\mathbb{P}[U]}{\#\mathbb{P} \text{Vol}(U)},$$

which is equivalent by pigeonholing hypotheses to

$$\frac{1}{C_F(\mathbb{P})} = \inf_{U \supset \delta \times b \times 1} \#\mathcal{U} \text{Vol}(U).$$

Lemma 4.2 (Union of Planks). *Assume $\mathbf{A}(\sigma)$. Let \mathbb{P} be an arrangement of $\delta \times b \times 1$ planks with $C_F(\mathbb{P}) \lesssim 1$. Then*

$$\text{Vol}(\cup\mathbb{P}) \gtrsim b^\sigma.$$

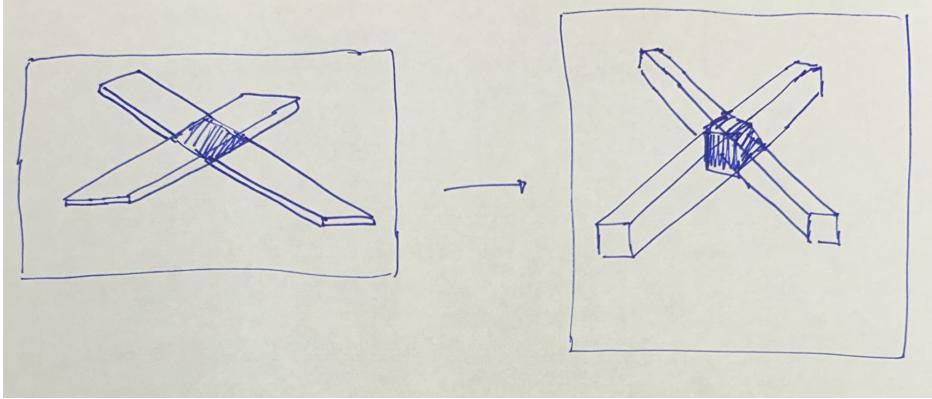


FIGURE 2. Planks intersecting tangentially in a slab are anisotropically rescaled to tubes intersecting in a ball

If $b = \delta$, then \mathbb{P} is an arrangement of tubes, and this Lemma restates $\mathbf{A}(\sigma)$. If $b = 1$, then \mathbb{P} is a Frostman arrangement of slabs. In this case, we can use the L^2 method. Let \mathcal{S} be the arrangement of slabs, and assume $\mathcal{S}(p)$ is w -broad and w -narrow. By the L^2 method,

$$\cup \mathcal{S} \approx \sqcup \mathcal{S}^w$$

where \mathcal{S}^w is the set of $w \times 1 \times 1$ slabs active in covering \mathcal{S} . In particular,

$$\text{Vol}(\cup \mathcal{S}) \approx \#\mathcal{S}^w \text{Vol}(\mathcal{S}^w).$$

By the Frostman hypothesis on \mathcal{S} , the right hand side is $\gtrsim 1$.

When $b \in [\delta, 1]$ is arbitrary, we can find a slabby sub-problem by zooming into a b -ball B . Each incoming plank intersects B in a $\delta \times b \times b$ slab. Let $w \in [\delta, b]$ be smallest such that all the $\delta \times b \times b$ slabs through a point are contained in a $w \times b \times b$ slab. We are assuming that the $\delta \times b \times b$ slabs through a point are w -broad and w -narrow.

By the L^2 method, every $w \times b \times b$ slab active in covering E is completely filled out. By w -narrowness, the $w \times b \times b$ slabs are disjoint. Thus

$$\text{Vol}(E) \gtrsim \#(w \times b \times b) \text{Vol}(w \times b \times b).$$

First suppose $w = b$. In this case, the right hand side above is the union of b -tubes containing each plank, and

$$\text{Vol}(E) \approx \text{Vol}(\cup \mathbb{T}^b) \gtrapprox b^\sigma$$

By $\mathbf{A}(\sigma)$.

Next suppose $w = \delta$. If you look at all the $\delta \times b \times 1$ planks through a point, they all contain one fixed $\delta \times b \times b$ slab. In this case, we say $\delta \times b \times 1$ planks intersect *tangentially*, like in Figure 2. In the tangential case, we can zoom into a $\frac{\delta}{b} \times 1 \times 1$ slab

and consider all the $\delta \times b \times 1$ planks inside of it. After anisotropically rescaling,

$$\begin{aligned}\frac{\delta}{b} \times 1 \times 1\text{-slabs} &\mapsto \text{Unit cube,} \\ \delta \times b \times 1\text{-planks} &\mapsto b\text{-tubes,} \\ \delta \times b \times b\text{-slabs} &\mapsto b\text{-balls,}\end{aligned}$$

By $\mathbf{A}(\sigma)$,

$$(4.1) \quad \#(\delta \times b \times b \text{ inside each } \frac{\delta}{b} \times 1 \times 1) \frac{\text{Vol}(\delta \times b \times b)}{\text{Vol}(\frac{\delta}{b} \times 1 \times 1)} \gtrsim b^\sigma \frac{1}{C_F(\delta \times b \times 1\text{-planks inside } \frac{\delta}{b} \times 1 \times 1)}.$$

We can estimate the Frostman constant on the right hand side in terms of the Frostman constant of \mathbb{T} . We have

$$(4.2) \quad \begin{aligned}\frac{1}{C_F(\delta \times b \times 1\text{-planks inside } \frac{\delta}{b} \times 1 \times 1)} &= \inf_{U \subset \frac{\delta}{b} \times 1 \times 1} \frac{\#(\mathcal{U} \text{ to cover } \mathbb{T}) \text{Vol}(U)}{\#(\frac{\delta}{b} \times 1 \times 1) \text{Vol}(\frac{\delta}{b} \times 1 \times 1)} \\ &\gtrsim \frac{1}{C_F(\mathbb{T})} \frac{1}{\#(\frac{\delta}{b} \times 1 \times 1) \text{Vol}(\frac{\delta}{b} \times 1 \times 1)}.\end{aligned}$$

The more $\frac{\delta}{b} \times 1 \times 1$ slabs there are, the smaller the loss factor is in (4.1). On the other hand, when we compute the total number of $\delta \times b \times b$ slabs active in all of E , we have to sum over all the big $\frac{\delta}{b} \times 1 \times 1$ slabs. These two factors perfectly cancel,

$$\text{Vol}(E) \gtrsim \#(\delta \times b \times b) \text{Vol}(\delta \times b \times b) \gtrsim b^\sigma \frac{1}{C_F(\mathbb{T})}$$

as desired.

If $w \in (\delta, b)$, we can do something similar. By the L^2 method, we know every w -ball of E is filled out. Thus we can consider $w \times b \times 1$ planks instead of $\delta \times b \times 1$ planks. To estimate the number of $w \times b \times b$ slabs, we zoom into $\frac{w}{b} \times 1 \times 1$ slabs and repeat the argument above.

[Lemma 4.2](#) lets us give the following improvement over [Lemma 4.1](#).

Lemma 4.3 (Improvement in plank-y case). *Assume $\mathbf{A}(\sigma)$. Let \mathbb{T} be a set of tubes whose maximum density convex set is an $a \times b \times 1$ prism. Then*

$$\text{Vol}(\cup \mathbb{T}) \gtrsim \frac{1}{C_F(\mathbb{T})} \left(\delta \frac{b}{a}\right)^\sigma.$$

Proof of Lemma 4.3. Consider a fixed $a \times b \times 1$ plank. Anisotropically rescale so it becomes the unit cube. Tubes are mapped to $\frac{\delta}{b} \times \frac{\delta}{a} \times 1$ planks which are arranged in a Frostman way. By [Lemma 4.2](#),

$$\frac{\text{Vol}(E \cap a \times b \times 1)}{\text{Vol}(a \times b \times 1)} \gtrsim (\delta/a)^\sigma.$$

The density inside of a a -ball is at least as large,

$$\frac{\text{Vol}(E \cap B(x_0, a))}{\text{Vol}(B(x_0, a))} \gtrsim (\delta/a)^\sigma.$$

Now consider the set of a -tubes \mathbb{T}^a . By maximum density, the a -tubes inside an $a \times b \times 1$ plank are arranged in a Frostman way. By the L^2 method for tubes in \mathbb{R}^2 , they fill out the $a \times b \times 1$ planks, implying

$$\text{Vol}(E^a \cap a \times b \times 1) \gtrsim \text{Vol}(a \times b \times 1).$$

Let \mathbb{P} denote the collection of $a \times b \times 1$ planks. We would like to apply [Lemma 4.2](#) to \mathbb{P} . We use the same trick as [Lemma 4.1](#) and take $C_F(\mathbb{T})$ random copies to find

$$\text{Vol}(\cup \mathbb{P}) \gtrsim \#\mathbb{P} \text{Vol}(P) b^\sigma = \frac{1}{C_F(\mathbb{T})} b^\sigma.$$

Combining these two densities,

$$\text{Vol}(E) \gtrsim \frac{1}{C_F(\mathbb{T})} \left(\delta \frac{b}{a}\right)^\sigma$$

as desired. \square

5. LECTURE 5: THE LOSSLESS DECOMPOSITION AND PROOF OF KAKEYA

We are ready to finish the proof of Kakeya. This section is a bit different from [\[5\]](#), although the ingredients are mostly the same.

Let

$$\sigma = \inf\{\sigma' : \mathbf{A}(\sigma') \text{ holds}\}.$$

Assume by way of contradiction that $\sigma > 0$. Here are our ingredients.

- If \mathbb{T} is a set of δ -tubes, the *maximum density convex set* is the $U = a \times b \times 1$ maximizing the density

$$\frac{\#\mathbb{T}[U]}{\#\mathbb{T} \text{Vol}(U)}.$$

Equivalently, letting \mathcal{U} be the minimal collection of congruent copies to cover \mathbb{T} , U minimizes

$$\#\mathcal{U} \text{Vol}(U).$$

The Frostman constant is

$$C_F(\mathbb{T}) = \frac{\#\mathbb{T}[U]}{\#\mathbb{T} \text{Vol}(U)} \quad \text{and} \quad \frac{1}{C_F(\mathbb{T})} = \#\mathcal{U} \text{Vol}(U).$$

- The high density lemma says that if $\#\mathbb{T} \gg \delta^{-2}$, there is a gain over $\mathbf{A}(\sigma)$. The proof uses the lossy decomposition along with Sticky Kakeya. We need a slightly refined version that allows for an arbitrary set of tubes rather than a Frostman set of tubes.

Lemma 5.1 (Refined high density). *Assume $\mathbf{A}(\sigma)$. For any set \mathbb{T} of δ -tubes,*

$$\text{Vol}(\cup\mathbb{T}) \gtrsim \frac{1}{C_F(\mathbb{T})} \delta^\sigma (\delta^2 C_F(\mathbb{T}) \# \mathbb{T})^{\sigma/2}.$$

As a consequence, if we know $\frac{1}{C_F(\mathbb{T})} \geq \lambda$, then

$$\text{Vol}(\cup\mathbb{T}) \gtrsim \lambda \delta^\sigma \left(\frac{\delta^2 \# \mathbb{T}}{\lambda} \right)^{\min\{\sigma/2, 1\}}.$$

Proof. Make a new tube set \mathbb{T}' by taking $C_F(\mathbb{T})$ -many random translations and rotations of \mathbb{T} . As discussed in [Lemma 4.1](#), $C_F(\mathbb{T}') \lesssim 1$. By the high density lemma [Lemma 2.1](#),

$$\text{Vol}(\cup\mathbb{T}') \gtrsim \delta^\sigma (\delta^2 \# \mathbb{T}')^\sigma = \delta^\sigma (\delta^2 C_F(\mathbb{T}) \# \mathbb{T})^{\sigma/2}.$$

On the other hand, $\text{Vol}(\cup\mathbb{T}') \lesssim C_F(\mathbb{T}) \text{Vol}(\cup\mathbb{T})$. Thus

$$\text{Vol}(\cup\mathbb{T}) \gtrsim \frac{1}{C_F(\mathbb{T})} \delta^\sigma (\delta^2 C_F(\mathbb{T}) \# \mathbb{T})^{\sigma/2}.$$

Now, let $\frac{1}{C_F(\mathbb{T})} = A\lambda$ with $A \geq 1$. Then

$$\text{Vol}(\cup\mathbb{T}) \gtrsim \lambda \delta^\sigma \left(\frac{\delta^2 \# \mathbb{T}}{\lambda} \right)^{\sigma/2} A^{1-\sigma/2} \gtrsim \lambda \delta^\sigma \left(\frac{\delta^2 \# \mathbb{T}}{\lambda} \right)^{\min\{\sigma/2, 1\}}.$$

□

- The low density lemma is a variant of the high density lemma. The proof is analogous—we won’t discuss it.

Lemma 5.2 (Low Density Lemma). *Assume $\mathbf{A}(\sigma)$. Let \mathbb{T} be a set of δ -tubes whose maximum density convex set is a δ -tube. This is equivalent to saying $\# \mathbb{T}[U] \lesssim \frac{\text{Vol}(U)}{\text{Vol}(T)}$. Then*

$$\text{Vol}(\cup\mathbb{T}) \gtrsim \# \mathbb{T} \text{Vol}(T) (\delta^2 \# \mathbb{T})^{-\sigma/2}.$$

The factor $\# \mathbb{T} \text{Vol}(T)$ is equal to $\frac{1}{C_F(\mathbb{T})}$. The assumption implies $\# \mathbb{T} \lesssim \delta^{-2}$, so the improvement factor $(\delta^2 \# \mathbb{T})^{-\sigma/2}$ is always $\gtrsim 1$, and it is $\gg 1$ if $\# \mathbb{T} \ll \delta^{-2}$.

- The next lemma, the nowhere sticky reduction, will help us apply the high density lemma inside the proof.

Lemma 5.3 (Nowhere Sticky Reduction). *There exists a worst-case-scenario set of tubes \mathbb{T} , meaning $C_F(\mathbb{T}) \sim 1$ and*

$$\text{Vol}(\cup\mathbb{T}) \approx \delta^\sigma,$$

such that

$$\# \mathbb{T}^\rho \gg \rho^{-2} \quad \text{for all } \rho \in (\delta, 1) \text{ strictly.}$$

The proof uses the lossy decomposition. If there was a scale ρ where $\#\mathbb{T}^\rho \sim \rho^{-2}$, we could apply the Lossy Decomposition (Proposition 1.3) to split into two sub-problems. Both those sub-problems have to also be worst-case-scenario. If one of them is nowhere sticky, we are done. Otherwise, we can keep splitting into sub-problems. Eventually, we have to either find a nowhere sticky subproblem, or find so many sticky scales that we can apply Sticky Kakeya to get a gain.

- The plank-y improvement (Lemma 4.3) says that if the maximum density convex set is $a \times b \times 1$, then

$$\text{Vol}(\cup\mathbb{T}) \gtrsim \frac{1}{C_F(\mathbb{T})} \left(\delta \frac{b}{a}\right)^\sigma.$$

- In the proof we will need to study δ -tubes inside of a w -tube. Let $\psi : T^w \rightarrow [0, 1]^3$ be a rescaling map, and consider the rescaled set $\psi(\mathbb{T}[T^w])$. The inverse Frostman constant is estimated by

$$\begin{aligned} \frac{1}{C_F(\psi(\mathbb{T}[T^w]))} &= \inf_{U \subset T^w} \#(U \text{ to cover } \mathbb{T}[T^w]) \frac{\text{Vol}(U)}{\text{Vol}(T^w)} \\ &= \inf_{U \subset T^w} \frac{\#(U \text{ to cover all of } \mathbb{T}) \text{Vol}(U)}{\#\mathbb{T}^w \text{Vol}(T^w)} \\ (5.1) \quad &\geq \frac{1}{C_F(\mathbb{T})} \frac{1}{\#\mathbb{T}^w \text{Vol}(T^w)}. \end{aligned}$$

Suppose \mathbb{T} is Frostman. Then $\frac{1}{C_F(\mathbb{T})} \approx 1$, and $\frac{1}{\#\mathbb{T}^w \text{Vol}(T^w)} \lesssim 1$. If the number of w -tubes is the minimal amount, w^{-2} , then the right hand side is ~ 1 . In other words, $\psi(\mathbb{T}[T^w])$ is itself Frostman. The more w -tubes there are, the farther $\mathbb{T}[T^w]$ is from Frostman.

We are ready to start the proof. Let \mathbb{T} be a nowhere sticky, worst-case scenario set of tubes, so

$$\text{Vol}(\cup\mathbb{T}) \approx \delta^\sigma.$$

We would like to find a contradiction.

Pick a scale $\rho \in [\delta, 1]$. At the end of the proof we will talk about how to choose ρ .

Let \mathbb{B} denote the collection of ρ -balls active in covering E . For $B \in \mathbb{B}$, let

$$\mathbb{T}_B = \{T \cap B : T \in \mathbb{T}\}$$

be the set of $\delta \times \delta \times \rho$ tubelets active inside of B , as in Figure 1. A priori, we don't know much about \mathbb{T}_B . We don't even know how many tubelets there are in \mathbb{T}_B . As a first step, let $U = a \times b \times \rho$ be the extremizing convex set for \mathbb{T}_B .

If U is $\rho \times \rho \times \rho$, i.e. \mathbb{T}_B is Frostman, we could finish the proof right now. We split into a problem above scale ρ and a problem below scale ρ ,

$$\text{Vol}(E) \gtrsim \#\mathbb{B} \text{Vol}(B) \frac{\text{Vol}(\cup \mathbb{T}_B)}{\text{Vol}(B)}.$$

To estimate $\text{Vol}(\cup \mathbb{T}_B)$, use $\mathbf{A}(\sigma)$. To estimate $\#\mathbb{B} \text{Vol}(B) = \text{Vol}(\cup \mathbb{T}^\rho)$, use the nowhere sticky reduction and the high density lemma. Altogether,

$$\text{Vol}(E) \gtrsim \delta^\sigma (\#\mathbb{T}^\rho \rho^2)^{\sigma/2} \gg \delta^\sigma,$$

contradicting our assumption that \mathbb{T} is worst-case-scenario. To deal with the general case, when U is not necessarily $\rho \times \rho \times \rho$, we need to use our plank-y improvement ([Lemma 4.3](#)).

Towards estimating the Frostman constant of \mathbb{T}_B , define

$$\begin{aligned} \#(a \times b \times \rho) &= \text{The total number of } a \times b \times \rho \text{ convex sets active in covering } E \\ &= \#\mathbb{B} \#(a \times b \times \rho \text{ needed to cover each } \mathbb{T}_B). \end{aligned}$$

The inverse Frostman constant of \mathbb{T}_B is given by

$$\frac{1}{C_F(\mathbb{T}_B)} = \frac{\#(a \times b \times \rho) \text{Vol}(a \times b \times \rho)}{\#\mathbb{B} \text{Vol}(B)}.$$

By the plank-y improvement ([Lemma 4.3](#)) applied to \mathbb{T}_B ,

$$\frac{\text{Vol}(\cup \mathbb{T}_B)}{\text{Vol}(B)} \gtrsim \frac{\#(a \times b \times \rho) \text{Vol}(a \times b \times \rho)}{\#\mathbb{B} \text{Vol}(B)} \left(\frac{\delta b}{\rho a}\right)^\sigma.$$

Summing over all $B \in \mathbb{B}$ gives an estimate for $\text{Vol}(E)$,

$$(5.2) \quad \text{Vol}(E) = \#\mathbb{B} \text{Vol}(B) \frac{\text{Vol}(\cup \mathbb{T}_B)}{\text{Vol}(B)} \gtrsim \#(a \times b \times \rho) \text{Vol}(a \times b \times \rho) \left(\frac{\delta b}{\rho a}\right)^\sigma.$$

We've turned the problem of estimating $\text{Vol}(E)$ into the problem of estimating $\#(a \times b \times \rho)$.

Suppose, as an example, $U = \delta \times \delta \times \rho$. We need to estimate the total number of tubelets. If we're lucky and every $\delta \times \delta \times \rho$ tubelet has just one δ -tube through it, then

$$\#(\delta \times \delta \times \rho) = \#(\delta\text{-tubes}) \rho^{-1} = \delta^{-2} \rho^{-1},$$

giving the favorable bound $\#(\delta \times \delta \times \rho) \text{Vol}(\delta \times \delta \times \rho) \gtrsim 1$.

What if there are several δ -tubes through each $\delta \times \delta \times \rho$ tubelet? All these δ -tubes have to lie in the $\frac{\delta}{\rho}$ -tube we get by scaling up our original tubelet, and they all have ρ^{-1} many tubelets along them. If we take a new δ -tube through one of these other

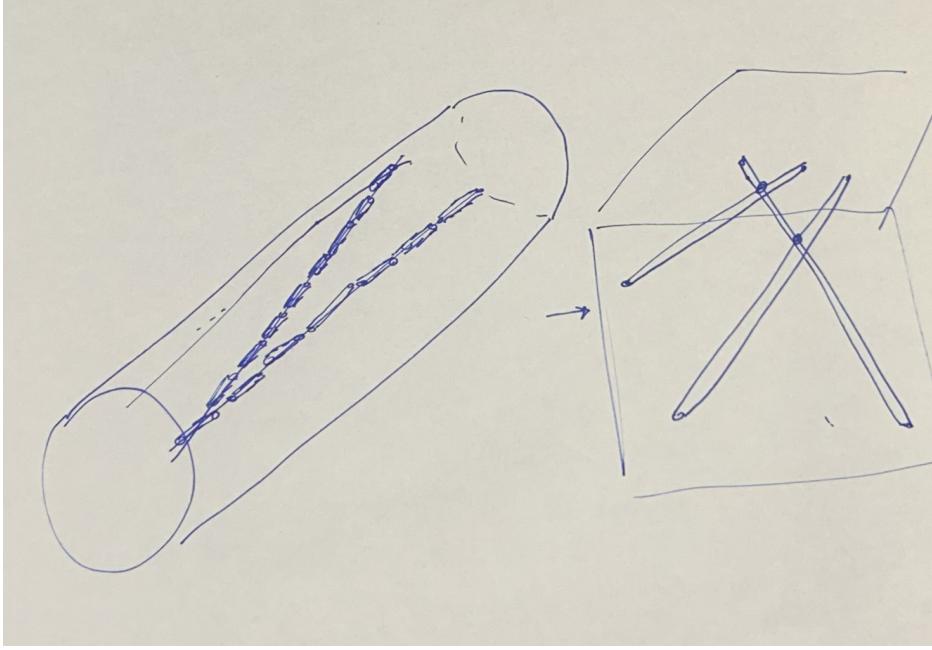


FIGURE 3. To estimate the total number of $\delta \times \delta \times \rho$ tubelets active in covering E , rescale δ/ρ tubes.

tubelets, it still lies in the same $\frac{\delta}{\rho}$ -tube. What we are seeing is another Kakeya type problem. If we rescale this $\frac{\delta}{\rho}$ -tube to the unit cube,

$$\begin{aligned} \frac{\delta}{\rho}\text{-tube} &\mapsto \text{Unit cube,} \\ \delta\text{-tube} &\mapsto \rho\text{-tube,} \\ \delta \times \delta \times \rho\text{-tubelet} &\mapsto \rho\text{-ball.} \end{aligned}$$

To count the total number of $\delta \times \delta \times \rho$ -tubelets, we can apply $\mathbf{A}(\sigma)$ inside of each δ/ρ -tube, and multiply by the number of $\frac{\delta}{\rho}$ tubes. See Figure 3.

A similar idea works if U is $a \times b \times \rho$. The best thing to do is zoom into b/ρ tubes and count copies of U in each of these. Inside each b/ρ -tube, the count of $a \times b \times \rho$ convex sets is related to the volume of the union of a -tubes via

$$\#(a \times b \times \rho \text{ inside } T^{b/\rho}) \frac{\text{Vol}(a \times b \times \rho)}{\text{Vol}(T^{b/\rho})} \gtrsim \frac{\text{Vol}(\bigcup \mathbb{T}^a[T^{b/\rho}])}{\text{Vol}(T^{b/\rho})}.$$

We apply $\mathbf{A}(\sigma)$ to estimate the volume of the union of a -tubes and get

$$\frac{\text{Vol}(\bigcup \mathbb{T}^a[T^{b/\rho}])}{\text{Vol}(T^{b/\rho})} \gtrsim (a \frac{\rho}{b})^\sigma \frac{1}{C_F(a\text{-tubes inside } b/\rho\text{-tube})}.$$

To estimate the Frostman constant, we use (5.1),

$$\frac{1}{C_F(a\text{-tubes inside } b/\rho\text{-tube})} \gtrsim (a\frac{\rho}{b})^\sigma \frac{1}{\#(\mathbb{T}^{b/\rho}) \text{Vol}(T^{b/\rho})}.$$

When we combine these estimates to count the total number of $a \times b \times \rho$, the factor $\#(\mathbb{T}^{b/\rho}) \text{Vol}(T^{b/\rho})$ cancels and we are left with

$$\#(a \times b \times \rho) \text{Vol}(a \times b \times \rho) \gtrsim (a\frac{\rho}{b})^\sigma.$$

Plugging this estimate into (5.2) gives

$$\text{Vol}(E) \gtrsim \delta^\sigma.$$

We have recovered $\mathbf{A}(\sigma)$ from itself by splitting into various sub-problems. This is the *lossless decomposition*.

- The first sub-problem was applying [Lemma 4.3](#) to \mathbb{T}_B . Under the hood, $\mathbf{A}(\sigma)$ is applied to various collections of tubes related to \mathbb{T}_B .
- The second sub-problem was applying $\mathbf{A}(\sigma)$ —more precisely, the general version [Lemma 4.1](#)—to the collection of a -tubes inside a b/ρ -tube.

We hope to get an improvement on the second sub-problem, to contradict the hypothesis that \mathbb{T} is worst-case-scenario. If $a \gg \delta$, then by the nowhere sticky reduction, the number of a -tubes inside a b/ρ -tube is greater than the easy lower bound

$$\frac{a^{-2}}{\#\mathbb{T}^{b/\rho}},$$

so by the refined high density lemma ([Lemma 5.1](#)) provides an improvement.

If $a = \delta$ and $b \ll \rho$, then the low density lemma [Lemma 5.2](#) provides an improvement. There's one remaining case we haven't dealt with: If

$$U = \delta \times \rho \times \rho,$$

then the second sub-problem is the same one we started with, so the high density lemma does not give an improvement.

To deal with this last case, we will choose ρ very close to 1, in a way that depends on σ . If $U = \delta \times \rho \times \rho$, the L^2 method implies

$$\text{Vol}(E) \gtrsim \#(\delta \times \rho \times \rho) \text{Vol}(\delta \times \rho \times \rho),$$

and the Convex Frostman hypothesis implies

$$\#(\delta \times \rho \times \rho) \text{Vol}(\delta \times \rho \times \rho) \gtrsim \rho^{10}.$$

We choose $\rho = \delta^{\sigma/100}$, so that these estimates give a gain over $\mathbf{A}(\sigma)$. Remember that the gain from the high density lemma requires ρ to be strictly in the range $(\delta, 1)$, which is why we can't choose $\rho = 1$.

REFERENCES

- [1] Larry Guth, *Outline of the Wang–Zahl proof of the Kakeya conjecture in \mathbb{R}^3* , arXiv preprint arXiv:2508.05475 (2025). <https://arxiv.org/abs/2508.05475>.
- [2] ———, *Introduction to the proof of the Kakeya conjecture*, arXiv preprint arXiv:2505.07695 (2025). <https://arxiv.org/abs/2505.07695>.
- [3] Nets Katz and Joshua Zahl, *An improved bound on the Hausdorff dimension of Besicovitch sets in \mathbb{R}^3* , J. Amer. Math. Soc. **32** (2019), no. 1, 195–259, DOI 10.1090/jams/907.
- [4] Tamás Keleti and Pablo Shmerkin, *New bounds on the dimensions of planar distance sets*, Geom. Funct. Anal. **29** (2019), 1886–1948, DOI 10.1007/s00039-019-00500-9.
- [5] Hong Wang and Joshua Zahl, *Volume estimates for unions of convex sets, and the Kakeya set conjecture in three dimensions*, arXiv preprint arXiv:2502.17655 (2025). <https://arxiv.org/abs/2502.17655>.
- [6] ———, *Sticky Kakeya sets and the sticky Kakeya conjecture*, arXiv preprint arXiv:2210.09581 (2022). <https://arxiv.org/abs/2210.09581>.