THE PROOF OF KAKEYA, FOLLOWING WANG-ZAHL

ALEX COHEN

1. LECTURE 1: INTRODUCTION

These are lecture notes from a two week minicourse at MIT about Wang and
Zahl’s [5] proof of the Kakeya conjecture. Some other useful resources are

e Wang and Zahl’s article [5],
e Guth’s introduction to the proof [2],
e Guth’s proof outline [1].

Before getting into the details, we establish some notation.

1.1. Notation and convention.

e T is aset of § x § x 1 tube segments in B(10) C R3
e The tubes in T are essentially distinct: For any T},7T, € T,

1
VOl(Tl N Tz) S 5 VOl(Tl)

e T” is the set of p-tubes involved in covering T. For E C R3 E” is the p-
neighborhood of F.

e For a convex set U, T[U]| ={T €T : T CU}.

e Shadings: Each tube T' € T is equipped with a subset Y(T') C T with

Vol(Y (T')) > 6" Vol(T),

where n > 0 is a small parameter. We will ignore the shading in our notation:
when we write
UT or U T,

TeT

Uvm

TeT
for some §"-dense shading Y (7).
e A > Bmeans A > %B for some absolute constant C. A > B means A is much
greater than B. This is an informal statement, but generally one should think
A > 6 "B for some fixed x > 0.

we really mean
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e In the proofs, 7 is a small parameter controlling the shading density, Ahlfors—
David regularity, and possibly other things. A £, B means that for any € > 0,
A > .67 Here C is a universal constant. We will sometimes drop the
subscript n and just write A £ B.

e We make a standing assumption that quantities have been pigeonholed so that
they are essentially constant. In particular, each p-tube T” € T contains
roughly the same number of d-tubes, and for any p-ball B = B(xg, p) centered
at a point of £ = UT, the measure of £ N B is approximately uniform.

1.2. The Frostman Condition. The Frostman-Wolff constant Cp(T) measures the
extend to which T concentrates in convex sets,

_ #T[U]
Cr(T) = sgp Vol £T

Equivalently, it is the smallest constant such that
#T[U] < Cr(T) Vol(U)#T

for all convex U. It suffices to consider rectangular prisms of size a x b x 100 with
0 <a<b<100. We sometimes write a x b x 1 in place of a x b x 100.

Taking U = § x § x 1 gives #T > Cpl(T)(S_Z‘ More generally, the Frostman condition

can be expressed in terms of covering numbers. For fixed 6 < a < b < 1, let U be the
smallest possible family of a x b x 1 prisms covering T, i.e.

each T € T is contained in some U € U.

Then
#T <> #T[U] < Cp(T) Vol(U)#U #T,
“ veld
-1
H#U > o) Vol(U)~.

Thus, the Frostman condition implies that the number of p-tubes needed to cover T is
at least p~2; the number of a x 1 x 1 slabs is at least a~!; and the number of a x b x 1
prisms is at least (ab)~'.

Under our pigeonholing assumptions, we can reverse this logic. Let #(a x b x 1)
denote the minimal number of such prisms needed to cover T. Then

1
(1.1) Assuming T is well pigeonholed, Cr(D) = 53312%31 #(axbx1) Vol(axbx1).
A technical note: In general, it is too much to ask for that every a x b x 1 prism
involved in covering T has the same number of tubes in it. But if a x b x 1 is extremal
for the Frostman constant, this can be justified.
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1.3. Introduction. The goal of these lectures is to prove the Kakeya theorem [5] using
the Sticky Kakeya theorem [6] as an ingredient.

Theorem 1.1 (Kakeya). Let T be an essentially distinct set of § x 6 x 1 tubes with
Cp(T) < 1. For each T €T, let

Y(T)c T
be a shading with Vol(Y (T')) > 6" Vol(T'). For any € > 0,
vol(|J Y(1)) 2, 1.

TeT

Recall that by our notation, this means that for any ¢ > 0,
Vol(| Y(T)) > .6,
TET

Going forward, we will often suppress the shading Y'(7") and the subscript 7 in Z,,.

The Sticky Kakeya theorem deals with the special case when the tubes are Ahlfors—
David regular, or sticky.

Theorem 1.2 (Sticky Kakeya). Let T be an essentially distinct set of § x § x 1 tubes
with Cp(T) <1 and

(1.2) #TP =, p 2 forpeld1].

Then
vol(|J Y(1) 2 1.

TeT
Due to pigeonholing, the sticky hypothesis (1.2) is equivalent to
#T[T*] =, (§/p) 2 for all p € [,1] and T* € T”.

Our goal is to prove Theorem 1.1 using Theorem 1.2.

1.4. The challenge of non-sticky. Let us make an example by placing down

A(6Y2)72 many 6'/%-tubes, and
(1.3) 1
A
Here A € [1,(6'/?)72] is a parameter controlling the degree of stickiness at scale §'/2.

If A =1 then T is sticky at scale 6*/2, and if A = (6/2)72 then T is very far from
sticky—there is just one d-tube inside of each §'/2-tube.

(6Y%)72 many é-tubes inside each '/%-tube.

It is natural to consider how the §/2tubes of T%"* are arranged, and how the 9-
tubes inside each 6'/?-tube are arranged. The best we could hope for is that the union
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of the §'/2-tubes cover the entire unit ball, and the J-tubes inside each §'/2-tube are
essentially disjoint:

Vol(UT**) ~ 1, and

(1.4) Vol(UT[T¢"?))
Vol (T9'?)

, Vol(6-tube) 1
~ 1/2 _
~ #(0-tubes in each & / -tube) Vol(37-tube) =7
The lossy multiscale inequality relates these two volumes to the volume of the whole
Kakeya set.

Proposition 1.3 (Lossy Multiscale Inequality). For p € [4, 1],
Vol(UT[T"])

Vol(UT) 2 Vol(UT") -~ 0

If we apply this Proposition to our example at scale 6%/2, we find

Vol(UT) = —
o ( ) ~ A?
which is not efficient if A > 1. That’s why we call it lossy.
Why is this proposition so inefficient? Let us recall a proof. Let

E = UT,

and decompose E into a union of p-balls covering it. One of our pigeonholing hypothe-
ses is that for any p-ball B involved in covering E, the volume of £ N B is roughly
constant. Thus we can decompose the volume of E into a piece above scale p and a
piece below scale p:

Vol(E”) = Volume of the p-neighborhood of E,

(ENB
% = Density of F inside a p-ball,
Vol(E N B)
1. I(F) =~ Vol(E?)—————
(1.5 Vol(E) m Vol( ) =5, 1

The first term is equal to Vol(UT”), which we have a good estimate for in (1.4). The
second term is trickier. To prove Proposition 1.3, we only consider the contribution to
E'N B from a single p-tube T” entering B,
Vol(E'N B) S Vol(UT[T?] N B)
Vol(B) — Vol(B) '
The density of T[T”] inside B is equal to the density inside 77,
Vol(UT[T*] N B)  Vol(UT[T"])

Vol(B) Vol(T?)

yielding Proposition 1.3.



THE PROOF OF KAKEYA, FOLLOWING WANG-ZAHL 5

FIGURE 1. The tubelets Tp inside a p-ball, figure from Guth [1, Figure 1].

When T is sticky, it is okay to just consider the contribution to £ N B from a single
p-tube, because we expect each p-ball to only have one p-tube through it. But when
T is not sticky, this is very lossy. Focus on a §'/2-ball B in our example. We expect
A-many 6'/2-tubes through it, each of which contributes a set of density % to B. In
Proposition 1.3, we allow for the possibility that these A-many sets overlap each other
perfectly, leading to a total density of %. In order to prove Kakeya, we need to prove
the exact opposite: We need to prove these sets barely overlap at all, leading to a total
density of 1.

To solve this problem, we can think about how tubes of T intersect B. Let
Tp={TNB:TecT}
be the set of (§ x d x §'/2)-tubelets active inside of B. See Guth’s figure Figure 1.

We can write N B as a union of these tubelets,
EnNnB=UTg.

In general, it isn’t clear how many tubelets there are in T . But in our special example,
we can estimate the number of these using Assumption (1.4): There are A-many §'/2
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tubes through B, each of which contributes 1 (§'/2)~ many tubelets, giving a total
count of (6'/2)2 many tubelets. If the tubelets T happen to be Frostman-Wolff,
we are in luck: we have a new problem of the same type inside B, and we can use
induction to show
Vol(UT'g) > 1
Vol(B) ~

If the tubelets of Ty are not Frostman—Wolff, it isn’t clear what to do. To prove
Kakeya, Wang and Zahl figured out what to do if Ty is not Frostman—Wolff.

In order to deal with Tz, Wang and Zahl prove a structural theorem describing the
union of any set of tubes, Frostman or not. Let T be an essentially distinct set of -
tubes, and let U be the maximum density convex set in the definition of the Frostman
constant, meaning the supremum in

_ #T[U']
Cp(T) = sup Vol(U")#T

is achieved at U. After some pigeonholing, we can assuming T is covered by a collection
of essentially disjoint translated and rotated copies of U, each of which have the same
density of tubes—call this collection U.

Wang and Zahl proved that £ = UT fills out each U € U, and that the convex sets
U are essentially disjoint:
Vol(ENU) = Vol(U) for each U e U, and

(1.6) Vol(E) ~ #U Vol(U).

This is a precise description of what UT looks like. In order to study Tg, we apply the
description in (1.6) and split into different cases depending on what U looks like.

1.5. A non-sticky example. I would like to describe a particular example that is
helpful to keep in mind during the proof.

We choose A = (6/2)~! in (1.3), meaning we place down
(64%)73 many §'/?-tubes, and
(6%2)71 many d-tubes inside each 6/%tube.

Inside each 6%/%-tube, the d-tubes are arranged in a regulus.

To make a regulus, arrange the §'/2 tube so it points vertically, and take a bottom
slice and a top slice, each of which are 6'/? discs. Place a parameterized line segment
in each disk,

t — 71(t) € Bottom Disk is a line segment,
t — ,(t) € Top Disk is a line segment.
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For each ¢, we include the tube T’ 4 ,,(s) connecting the bottom point to the top point.
In total, our tube set is

T[T = {Ty ooy : t = {0,6,20,...,62}.

The union of these tubes sweeps out a two dimensional surface inside of 75" called a
regulus. If we intersect this regulus with a §/2-ball, we get a § x 6%/2 x §'/2 slab. As
we move along the tube, these slabs rotate.

Inside of each §'/2-ball B there are 6~ /2 incoming tubes, each of which contribute
a d x 012 x §'/2-slab. We want to show these slabs are essentially disjoint, so that E

fills out B. But what is stopping several tubes from contributing the same slab?

Actually, Katz and Zahl [3] found an example of this form over the ring F,[x]/z?

where there is just one slab inside B—total overlap—giving E a density of 6'/2. So
there was good reason to be scared of this example.

I said before that the strategy is to study T g, but that seems useless in this example.
In the worst-case scenario that there is one slab inside B, what is there to say? The
description (1.6) tells us what we already know: E N B looks like a single filled out
slab.

The trick is to study T where B has diameter p close to 1. This is not possible in
Katz and Zahl’s example, as the ring F,[z]/2z? has only two scales. If B has diameter
close to 1 and (1.6) tells us £N B is a union of filled out slabs, we have made progress:
we know the Kakeya set is close to a union of filled out slabs. The Frostman hypothesis
directly tells us there are lots of these, and we can analyze the union of those slabs
using L? arguments. There are several other cases depending on what U looks like.
For this reason, I cannot describe exactly how Wang and Zahl deal with this example,
because I don’t know what Tg looks like when p is close to 1. It depends on the details
of how the reguli are laid out in each 6'/? tube, and how the §'/? tubes are laid out.

1.6. Bird’s eye view: the multiscale strategy. Let A (o) denote the assertion
Cr(T) S 1= Vol(| J V(1)) 2 0°.
TeT

Our goal is to show A(0) holds. Let
(1.7) o =inf{c’ : A(c’) holds},

and assume by way of contradiction that ¢ > 0.

A multiscale decomposition is a way of relating a Kakeya problem to several smaller
Kakeya problems. The lossy decomposition (Proposition 1.3) is efficient if T[17] is
Frostman, but not in general. In general, we analyze Ty using the description (1.6)
to break an arbitrary Kakeya problem into several smaller sub-problems. Here is a
precise bird’s eye view description of the proof strategy.
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To prove Theorem 1.1, take a Frostman set of tubes T which is a worst scenario for
A(o):
(1.8) Vol(UT) ~ §7.
We will produce a finite list of related collections
T; is a collection of w; tubes for j =1...j

such that

e Cp(T;) S L,

® wi...wj =0,

e Vol(UT) g []}Z, Vol(UT;). This is the main point. By applying A(c) to each

term on the right hand side, we learn

(1.9) Vol(UT) 2 [Jwf =07,

which lets us recover A(o) from itself.

e One of the sub-problems, say T;, is sticky. That means we can apply the
Sticky Kakeya theorem rather than A (o) to estimate Vol(UT};), which improves
Equation (1.9) to

Vol(UT) £ H w} = 0w; 7.
J'#7
As long as w; is sufficiently small, this represents an improvement over the
A (o) bound and contradicts (1.8).

We won’t always explicitly write down these sub-problems. They appear implicitly
in lemmas.

2. LECTURE 2: HICGH DENSITY LEMMA AND NOWHERE STICKY REDUCTION

The main goal of this lecture is to prove the following high density lemma, which
improves on A (o) when #T > 6 2.

Lemma 2.1 (High Density Lemma).
Cp(T) < 1= Vol(UT) Z 67 (8°#T)7/2.

The proof of this lemma uses Sticky Kakeya and the Lossy Decomposition (Propo-
sition 1.3). It is helpful to rethink when we can apply Sticky Kakeya. The sticky
hypothesis (1.2) says

#TP ~p?  forpe[d1].
This is a useful hypothesis because it guarantees that after rescaling, the d-tubes
inside each p-tube are themselves Convex Frostman. We can make this the hypothesis
instead. Let T* be a p-tube, and let ¢/" : T — [0, 1]*> be an affine rescaling map to
the unit cube.
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Proposition 2.2 (New Sticky Kakeya). Assume that
(2.1) Cr(p™" (T[T*])) <677 for all p € [6,1] and T? € T*.

Then
Vol(UT) in 1.

If (2.1) holds, we say T is n-sticky. If T is n-sticky, one can show that it contains a
subset T’ satisfying the hypotheses of Theorem 1.2. So, we can prove Proposition 2.2
from Theorem 1.2.

Our strategy is to find a large number of scales for which (2.1) holds. Roughly
speaking, we will use Sticky Kakeya near the scales where (2.1) holds, and use A(o)
elsewhere.

Equation (2.1) is hard to verify because we need to look at every convex set inside
a p-tube. It would be easier if we just needed to worry about tubes, and could forget
about other convex sets. To be precise, we would like the following.

Tube-y Assumption. If the number of w-tubes contained inside a p-tube of T”
satisfies

#(w-tubes in a p-tube) > (w/p)~? for all w € [4,1],
then 1" (T[T*]) is Convex Frostman.

It turns out that the High Density Lemma can be reduced to this special case. Here
is a very brief sketch. If the Tube-y Assumption fails, that implies that for some
p-tube T? the convex set inside of T” maximizing the Frostman density

#T[U]
H#T[T?] Vol(U)/ Vol(T)

is some a X b x 1 prism that is not a tube. The fact that U is maximum density implies
that T[U] is Frostman relative to U, in the following sense:

Vol(V)
Vol(U)"

For any V C U, #T[V] < #T[U]

At this point it is natural to study two problems: The union of the tubes inside U,
and the union of congruent copies of U covering T. These are convex set variants of
the original Kakeya problem. Wang and Zahl study these convex set variants. They
prove a Kakeya type theorem for tubes inside an arbitrary convex set, and for unions
of arbitrary convex sets. There is a high density lemma in this larger context, which is
proved by induction. Within this larger context, the case that T is Frostman inside U
is good for induction. It remains to prove the high density lemma under the Tube-y
Assumption.
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From now on I will make the Tube-y Assumption. We want to understand the
set of good scales p such that

# (w-tubes inside each p-tube) > (w/p) 2 for w €[4, p|.
To do so, we make a log-log plot describing how tubes are distributed. Define the
branching function f : [0,1] — [0, 4] by
6 = T
Analyzing branching functions is an important idea in fractal geometry—this idea was
introduced by Keleti and Shmerkin [4]. Some examples:

o If T is sticky, then #T? ~ p~2, and f(z) = 2x.
e If 572 tubes are placed down uniformly at random, then all (6'/2)~* many
distinct §'/2 tubes will be active, and each will have just one d-tube inside of

them. Thus
-4 1/2
yr— )P if p € [6"/2,1],
672 if p € [6,6'?
and
dr if x €0,1/2],
flz) = .
2 ifzell/2,1]
o If we place down 6=27¢ tubes uniformly at random, what changes? The tubes

are well spaced, meaning that for some scale py, every py tube is active and
there is one J-tube per py tube. To calculate py, we use the equation

P54 — 57— py = §-1/2-¢/4

The part of the branching function with slope 4 gets expanded a bit, and the
part of slope 0 gets contracted a bit. The new branching function is

fa) = dr ifx e [0,1/2+¢/4),
| 24¢ ifzell/2+4¢/41).

We can find good scales using the branching function. The scale p = §* is good if and
only if

fx+a)> f(z)+2a foraec|0,1—xl.

Geometrically, consider the graph of f, and make a line of slope 2 eminating from the
point (z, f(z)). If this line lies below the graph of f, then §* is a good scale.

The higher density T is, the more good scales there are. Let
H#T =62  for ¢ >0.
Let y € [0, (], and consider the line
{(t,2t+y) :t €[0,1]}.
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The graph of f starts out below this line and ends up above it, so they have to cross
at some point. Let G(y) be the supremum z-value where f lies below this line,

G(y) =sup{z : f(z) <2z +y}.
Equality must hold at G(y),

f(Gy) =2G(y) +y
The supremum in the definition implies that G(y) is a good point. For any a €
[07 1— G(y)],
f(Gy) +a) = 2(G(y) +a) +y = f(Gy)) + 2a.

Next we show that y — G(y) increases in a quantitative way. Since the branching
function f is 4-Lipschitz and satisfies f(G(y)) = 2G(y) + y, for any y; < y» we have

[f(G(y2)) = F(G(y))] = 2[G(y2) = Gya)| + [y2 — vl
Applying the Lipschitz bound gives

2(G(y2) = G(y1)) + (y2 — 1) < 4(G(y2) — G(y1)).
Rearranging yields
G(y2) = G(yr)| = 3ly2 — wl.
In particular, the set of good scales obtained from G,
g :=G([0,¢]),
has Lebesgue measure at least (/2.

Consider our third example above, where we placed down §~27¢ tubes randomly.
One can check that G = [0, (/2] in this example, matching our measure lower bound.

Suppose that G is a union of a constant number of intervals,
G=LU---UlI,.
The rest of [0,1] is also broken up into intervals,
0,1]\G=FU---UF,.

Each interval corresponds to some range of scales in [d, 1]. For instance, if I; = [a, b],
this interval corresponds to the range of scales [6°, §%], and we can look at the set of
§°-tubes inside a §%tube:

T;, = O(T [T7), 1 is an affine rescaling map.

The fact that all of I; is good implies that Ty, is sticky in the sense of (2.1). With this
notation, the Lossy Decomposition (Proposition 1.3) implies

/

Vol(UT) gﬁ 1(UTy,) ﬁ\/ol (UTw).

J'=1
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We use Sticky Kakeya for the good I;-intervals, and A (o) for the remaining F; intervals.
Note that the left endpoint of each Fj interval lies in G, so the tube sets Tp, are
Frostman. These estimates imply

VOI(UT) Z 50’Leb([0,1]\g) _ 60'670'Leb(g) > 50’5*0§/2 _ 50(52#T)a/2

as desired.

With some more work, this argument can be generalized to work for all G (not
necessarily a finite union of intervals).

3. LECTURE 3: THE L? METHOD
3.1. Tubes. Let T be a set of tubes in R?, and let
FE = UT.

For p € E, let T(p) be the tubes through p. By pigeonholing, we hypothesize that
#T(p) ~ const. as p varies over E.

The L? method involves computing [ (ZTGT 1T)2 dzx in two different ways. First we
put the sum inside the integral,

(3.1) / Z 1p 1y do = / #T(p)* dx = Vol(E)#T(p)>.
Em mer E
Next, we put the sum outside the integral,
(32) Z / ]_T1 ]_T2 dr = Z VOl(Tl N Tg)
Ty, et ¥ 0,11 Ti,T2€T

Comparing these two, we find

(3.3) VOl(E)#T(p)* S Y Vol(T1 NTy).

Ty,T5€T

On the other hand, Vol(FE) = ﬂ#\é—?’gﬂ. Comparing these two expressions gives

(#T Vol(T))?
(3.4) Vol(E) > S T T

The denominator has several contributions, depending on the angle between T} and
T5. In order to make the denominator simpler, it is helpful to assume T(p) is broad,
meaning a large portion of pairs of tubes in T(p) are 1-separated in angle,

#{T, Ty € T(p) : 0(Ty, T) ~ 1} =~ #T(p)*.
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Due to the broadness hypotheses, (3.1) becomes

/ Z 1T1 1T2 dr =~ / Z 1T1 1T2 dx
E

Ty, T€T E o e 0(Ty o) ~1
= E VOI(Tl N TQ)
T ,TQGT,Q(Tl,TQ)NI

< ST Vol(T)>.
In (3.4), 30 pyer VOI(T1 N Ty) gets replaced with #T? Vol(T')?, giving the estimate
Vol(E) 2 1.

This is a funny result. We didn’t assume anything about the tube set T, just that T(p)
is broad. The number of tubes appeared in our equations, but canceled out so that
the final result, Vol(E) 2 1, did not depend on the total number of tubes.

An arbitrary set of tubes may not be broad, but we can still use the L? method to
understand their union. After a bunch of pigeonholing, we find that there is a scale
w € [0, 1] such that for each p € E

e T(p) is w-narrow, meaning all the tubes of T(p) are contained in one w x 1
rectangle, and

e T(p) is w-broad, meaning a large portion of pairs of tubes in T(p) are w-
separated in angle,

#{T\, Ty € T(p) : O(Ty, To) ~ w} ~ #T(p)*.

The broadness hypothesis is a robust way of saying that the tubes T(p) are not con-
centrating at a smaller scale than w.

Let T* be the set of w-tubes active in covering T. For T* € T*, let
Ere = UT[T"]

be the union of d-tubes inside of there. By the w-narrow hypothesis, each p € F
belongs to just one of the sets Er,. We may write

Now apply a rescaling to map T% — Unit Cube. Due to the w-broadness hypothesis,
this rescaling maps T[T"] to a broad tube set. By the L? method,

Vol(Erw) Z Vol(T").
In other words, FE fills out every w-tube active in covering T. Overall,

(3.5) Vol(E) > #T% Vol(T™).
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We may write this equation as the approximate equality of sets
E ~UTv.
Notice that if we assume T is Frostman, then the right hand side is = 1 for any

w € [6,1], implying Vol(E) = 1.

3.2. Slabs. Something similar works with a set of slabs instead of a set of tubes. Let
S be a set of § x 1 x 1 slabs, and let

E=US.

For p € E, let S(p) be the set of slabs throgh p. For a slab S, 6(S) € S? denotes the
normal vector of S.

Suppose that a typical p € E is broad, meaning

#{S1, 52 € S(p) = 10(S1) — 0(S2)| ~ 1} = #5§(p)*.
If a typical p € F is broad, then
Vol(E)#S(p)* < #82 Vol(S; N Sy) = (#S Vol(S))2.
On the other hand,
#S Vol(5) 1
Vol(E) = T————= < Vol(E)'/?
(B) =T S Vol(E)
implying
Vol(E) = 1.
We can define w-broadness and w-narrowness in a similar way. If every S(p) is w-
broad, then every w x 1 x 1 slab involved in covering § is totally filled out. If S(p) is

w-narrow, then these w x 1 x 1 are essentially disjoint. Thus if a typical p is w-broad
and w-narrow,

E ~1SY

where §Y is the set of w x 1 x 1 slabs involved in covering S.

4. LECTURE 4: UNION OF PLANKS

In the introduction section, in (1.6), we described the structure of an arbitrary union
of tubes. To recap, let U be the maximum density convex set for T, and let U be a
minimal number of congruent copies of U to cover T. Wang-Zahl proved

Vol(ENU) =~ Vol(U) for each U e U, and
Vol(E) ~ #U Vol(U).
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By the covering number description of the Frostman constant (1.1), #U Vol(U) =
#(TW So, it follows from Wang and Zahls’s description that

1
Vol(E) & Cr(T)’

Actually, there is an easy argument to prove this directly from Theorem 1.1, which is
robust enough to apply to A(o).

Lemma 4.1. Suppose A(c) holds. Then for any set of tubes T,

1
Vol(UT) 2 ——— §°.
(U = Cr(T)

Proof. Let
T’ = A union of Cr(T)-many randomly translated and rotated copies of T.
Because the copies are all thrown down randomly,
#axbx1inT) = Cp(T)#(axbx1inT).
Thus

o ET/) = ir;fl#(axbxl in T') Vol(axbx1) 2 Cr(T)#(axbx1 in T) Vol(axbx1) = 1.
F axbXx

By A(0),

Vol(UT’) = 6.
On the other hand,
Vol(UT") < Cr(T) Vol(T),

so we find

Vol(T) 2 s

O

Let P be an arrangement of 6 x b x 1 planks. The Frostman constant is defined by

_ #P[U]
) = R PRV 0)

which is equivalent by pigeonholing hypotheses to
1

Cr®) ~ uoith #U VoI,

Lemma 4.2 (Union of Planks). Assume A(c). Let P be an arrangement of 6 x b x 1
planks with Cp(P) < 1. Then

Vol(UP) Z b7
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— eV

!
S
F1GURE 2. Planks intersecting tangentially in a slab are anisotropically
rescaled to tubes intersecting in a ball

If b = 9, then P is an arrangement of tubes, and this Lemma restates A(c). If b =1,
then P is a Frostman arrangement of slabs. In this case, we can use the L? method.
Let S be the arrangement of slabs, and assume S(p) is w-broad and w-narrow. By the
L? method,

us ~ US"
where 8% is the set of w x 1 x 1 slabs active in covering S. In particular,
Vol(US) ~ #S5* Vol(S").

By the Frostman hypothesis on S, the right hand side is = 1.

When b € [4,1] is arbitrary, we can find a slabby sub-problem by zooming into a
b-ball B. Each incoming plank intersects B in a § x b x b slab. Let w € [0, b] be smallest
such that all the § x b x b slabs through a point are contained in a w x b x b slab. We
are assuming that the § x b x b slabs through a point are w-broad and w-narrow.

By the L? method, every w x b x b slab active in covering F is completely filled out.
By w-narrowness, the w x b x b slabs are disjoint. Thus

Vol(E) > #(w x b x b) Vol(w x b x b).

First suppose w = b. In this case, the right hand side above is the union of b-tubes
containing each plank, and

Vol(E) = Vol(UT?) Z, b°

By A(o).

Next suppose w = §. If you look at all the § x b x 1 planks through a point, they
all contain one fixed § x b x b slab. In this case, we say d X b x 1 planks intersect
tangentially, like in Figure 2. In the tangential case, we can zoom into a % x 1 x 1 slab
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and consider all the § x b x 1 planks inside of it. After anisotropically rescaling,

¢ x 1 x 1-slabs + Unit cube,
0 X b x 1-planks — b-tubes,
0 X b x b-slabs + b-balls,
By A(o),
(4.1)

1 bxb 1
#(0xbxb inside eachéxlxl)vo (0 xbxb)

Z b :
b Vol(§ x 1 x 1) © " Cp(6 x b x 1-planks inside 2 x 1 x 1)

We can estimate the Frostman constant on the right hand side in terms of the Frostman

constant of T. We have
1 , #(U to cover T) Vol(U)

— inf
Cr(0 % b x L-planks inside 2 x 1 x 1) Uclgnxlxl ECxIx ) Vol(E x 1 x 1)

o 1 1
Y COp(T)#(2 x 1 x 1) Vol(2 x1x1)

(4.2)

The more  x 1 x 1 slabs there are, the smaller the loss factor is in (4.1). On the other
hand, when we compute the total number of § x b x b slabs active in all of E, we have
to sum over all the big % x 1 x 1 slabs. These two factors perfectly cancel,

Vol(E) = #(5 x b x b) Vol(6 x b x b) 2 b°

Cr(T)
as desired.
If w € (6,b), we can do something similar. By the L? method, we know every w-ball

of E is filled out. Thus we can consider w x b x 1 planks instead of 0 x b x 1 planks.

To estimate the number of w x b x b slabs, we zoom into ¥ x 1 x 1 slabs and repeat

b
the argument above.

Lemma 4.2 lets us give the following improvement over Lemma 4.1.

Lemma 4.3 (Improvement in plank-y case). Assume A(c). Let T be a set of tubes
whose mazimum density convex set is an a X b X 1 prism. Then

Vol(UT) £

Proof of Lemma 4.3. Consider a fixed a x b x 1 plank. Anisotropically rescale so it
becomes the unit cube. Tubes are mapped to % X g x 1 planks which are arranged in
a Frostman way. By Lemma 4.2,

Vol(ENaxbx1)
Vol(a x b x 1)

< (6/a)”.
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The density inside of a a-ball is at least as large,
Vol(E N B(xo, a)

Vol(B(z,a))
Now consider the set of a-tubes T*. By maximum density, the a-tubes inside an axbx 1

plank are arranged in a Frostman way. By the L? method for tubes in R2, they fill out
the a x b x 1 planks, implying

Vol(E*Na xbx1) 2 Vol(a x b x1).

& (6/a)”.

Let P denote the collection of a x b x 1 planks. We would like to apply Lemma 4.2 to
P. We use the same trick as Lemma 4.1 and take C'r(T) random copies to find

1
Vol(UP) Z #P Vol(P)b” = b?.
Ol(UB) Z #BVOI(P)Y = &
Combining these two densities,
1
Vol(E) % §2)7
( ) ~ CF(T)( a)
as desired. U

5. LECTURE 5: THE LOSSLESS DECOMPOSITION AND PROOF OF KAKEYA

We are ready to finish the proof of Kakeya. This section is a bit different from [5],
although the ingredients are mostly the same.
Let
o =inf{c’ : A(0’) holds}.
Assume by way of contradiction that ¢ > 0. Here are our ingredients.

e If T is a set of d-tubes, the maximum density convex set is the U = a x b x 1
maximizing the density

#T(U]
#T Vol(U)

Equivalently, letting ¢ be the minimal collection of congruent copies to cover
T, U minimizes

#UVol(U).
The Frostman constant is
#T[U] 1
Cr(T) ZTVol(U) and Cr(T) #U Vol(U)

e The high density lemma says that if #T > §~2, there is a gain over A(o).
The proof uses the lossy decomposition along with Sticky Kakeya. We need a
slightly refined version that allows for an arbitrary set of tubes rather than a
Frostman set of tubes.
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Lemma 5.1 (Refined high density). Assume A(o). For any set T of d-tubes,

Vol(UT) 2 57 (82Cp(T)HT)"/2,

CF( )

As a consequence, if we know o ( > A, then

T)

62 #T | min{o/2,1}
) '

Proof. Make a new tube set T’ by taking C'r(T)-many random translations and
rotations of T. As discussed in Lemma 4.1, Cr(T’) < 1. By the high density
lemma Lemma 2.1,

VOl(UT') g 87 (8*#T')7 = 67 (8°Crr(T)#T)"/>.
On the other hand, Vol(UT") < CF(T) Vol(UT). Thus

Vol(UT) 2 A7 (

Vol(UT) £ CF( ]

Now, let o (T = A\ with A > 1. Then

57 (82Cp(T)HT) /2,

2 2 _
VOI(UT) % Aéa(ﬁ)aﬂAlaﬂ % )\(50(6 fT)mm{U/ZI}.

O

The low density lemma is a variant of the high density lemma. The proof is
analagous—we won’t discuss it.

Lemma 5.2 (Low Density Lemma). Assume A(c). Let T be a set of §-tubes
whose mazimum densilty convexr set is a d-tube. This is equivalent to saying

#TU] < y&g; Then

Vol(UT) Z #T Vol(T) (62#T) /2.

The factor #T Vol(T') is equal to &

so the improvement factor (02#T)~7/? is always > 1, and it is > 1if #T < 62,
The next lemma, the nowhere sticky reduction, will help us apply the high

( . The assumption implies #T < §2,

density lemma inside the proof.

Lemma 5.3 (Nowhere Sticky Reduction). There exists a worst-case-scenario
set of tubes T, meaning Cr(T) ~ 1 and

Vol(UT) ~ §7,

such that
HTP > p~2 for all p € (4,1) strictly.
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The proof uses the lossy decomposition. If there was a scale p where #T? ~
p~2, we could apply the Lossy Decomposition (Proposition 1.3) to split into two
sub-problems. Both those sub-problems have to also be worst-case-scenario. If
one if them is nowhere sticky, we are done. Otherwise, we can keep splitting
into sub-problems. FEventually, we have to either find a nowhere sticky sub-
problem, or find so many sticky scales that we can apply Sticky Kakeya to get
a gain.

The plank-y improvement (Lemma 4.3) says that if the maximum density con-
vex set is @ X b x 1, then

1 b,
Vol(UT) % - T (6-)°.

In the proof we will need to study d-tubes inside of a w-tube. Let ¢ : T% —
[0,1]3 be a rescaling map, and consider the rescaled set 1(T[T"]). The inverse
Frostman constant is estimated by

1 . o Vol(U)
Cr(prapre])) — v #U o cover TGy
it #(U to cover all of T) Vol(U)
~ e ZTw Vol(T)
1 1

= Cr(T) #T% Vol(T%)

Suppose T is Frostman. Then ——— ~ 1, and

Cr () m S 1. If the number of
w-tubes is the minimal amount, w2, then the right hand side is ~ 1. In other
words, ¥ (T[T"]) is itself Frostman. The more w-tubes there are, the farther

T[T™] is from Frostman.

We are ready to start the proof. Let T be a nowhere sticky, worst-case scenario set
of tubes, so

Vol(UT) ~ §°.

We would like to find a contradiction.

Pick a scale p € [4,1]. At the end of the proof we will talk about how to choose p.

Let B denote the collection of p-balls active in covering E. For B € B, let

Ts={TNB:TecT}

be the set of d x § X p tubelets active inside of B, as in Figure 1. A priori, we don’t
know much about Tg. We don’t even know how many tubelets there are in Tg. As a
first step, let U = a x b X p be the extremizing convex set for Tp.



THE PROOF OF KAKEYA, FOLLOWING WANG-ZAHL 21

IfUis pxpxp,ie Tgis Frostman, we could finish the proof right now. We split
into a problem above scale p and a problem below scale p,

Vol(UT )

Vol(E) Z, #B Vol(B) VolB)

To estimate Vol(UTg), use A(o). To estimate #B Vol(B) = Vol(UT?), use the nowhere
sticky reduction and the high density lemma. Altogether,

Vol(E) 2 87(#T7%)7? > &7,

contradicting our assumption that T is worst-case-scenario. To deal with the gen-
eral case, when U is not necessarily p x p X p, we need to use our plank-y improve-
ment (Lemma 4.3).

Towards estimating the Frostman constant of Tp, define

#(a x b x p) = The total number of a X b X p convex sets active in covering E

= #B #(a x b x p needed to cover each Tp).

The inverse Frostman constant of Ty is given by

1 #(a x b x p)Vol(a x b x p)

Cr(Tp) #B Vol(B)

By the plank-y improvement (Lemma 4.3) applied to Tp,

Vol(UTg) o #(a xbx p)Vol(a x b x p) (éé)o
Vol(B) 7 #B Vol(B) pa’
Summing over all B € B gives an estimate for Vol(F£),
Vol(UTp) 0b\os

We've turned the problem of estimating Vol(E) into the problem of estimating #(a x
b X p).

Suppose, as an example, U = § x § x p. We need to estimate the total number of
tubelets. If we're lucky and every 0 x § X p tubelet has just one d-tube through it, then

#(5 x § x p) = #(0-tubes)p™t =6 2p 7,

giving the favorable bound #(d x 6 x p) Vol(d x § x p) = 1.

What if there are several d-tubes through each § x § x p tubelet? All these d-tubes

have to lie in the %—tube we get by scaling up our original tubelet, and they all have

p~! many tubelets along them. If we take a new d-tube through one of these other
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FI1GURE 3. To estimate the total number of § X § x p tubelets active in
covering F, rescale d/p tubes.

tubelets, it still lies in the same %—tube. What we are seeing is another Kakeya type

problem. If we rescale this %—tube to the unit cube,

é—tube — Unit cube,
p

0-tube — p-tube,
0 X 0 x p-tubelet — p-ball.

To count the total number of § x § x p-tubelets, we can apply A(c) inside of each
d/p-tube, and multiply by the number of % tubes. See Figure 3.

A similar idea works if U is a X b X p. The best thing to do is zoom into b/p tubes
and count copies of U in each of these. Inside each b/p-tube, the count of a x b X p
convex sets is related to the volume of the union of a-tubes via

Vol(a x b x p) Vol(UTe[T?/?])

TR b/p
#(a x b x p inside T"7)) VOl(TV)  ~  Nol(T%)

We apply A(o) to estimate the volume of the union of a-tubes and get

Vol(UT*[T*?)) _ , p., 1

Vol(T?/r) = ag) Cr(a-tubes inside b/p-tube)
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To estimate the Frostman constant, we use (5.1),
. 1. Z (ag)" ! .
Cr(a-tubes inside b/p-tube) =~ *"b" #(Tb») Vol(T?/r)
When we combine these estimates to count the total number of a x b x p, the factor
#(T"?) Vol(T*?) cancels and we are left with

H(a x bx p)Vol(axbxp)Z (a%)".

Plugging this estimate into (5.2) gives
Vol(E) g ¢°.

We have recovered A (o) from itself by splitting into various sub-problems. This is the
lossless decomposition.

e The first sub-problem was applying Lemma 4.3 to Tg. Under the hood, A(0)
is applied to various collections of tubes related to Tp.

e The second sub-problem was applying A (c)—more precisely, the general ver-
sion Lemma 4.1—to the collection of a-tubes inside a b/p-tube.

We hope to get an improvement on the second sub-problem, to contradict the hypoth-
esis that T is worst-case-scenario. If a > §, then by the nowhere sticky reduction, the
number of a-tubes inside a b/p-tube is greater than the easy lower bound

a72

HTO/p’
so by the refined high density lemma (Lemma 5.1) provides an improvement.

Ifa = 0 and b < p, then the low density lemma Lemma 5.2 provides an improvement.
There’s one remaining case we haven’t dealt with: If

U=4dxpxp,

then the second sub-problem is the same one we started with, so the high density
lemma does not give an improvement.

To deal with this last case, we will choose p very close to 1, in a way that depends
ono. If U=4§ x px p, the L? method implies

Vol(E) Z #(0 x p x p) Vol(d x p x p),
and the Convex Frostman hypothesis implies

#(5 x px p)Vol(d x p x p) Z p'.

= §7/1%0 50 that these estimates give a gain over A (o). Remember that

We choose p
the gain from the high density lemma requires p to be strictly in the range (6, 1), which
is why we can’t choose p = 1.
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