
FRACTAL UNCERTAINTY PRINCIPLE OVER THE p-ADICS

ALEX COHEN

0.1. The fractal uncertainty principle over R. Let (Ω, d) be a metric space. We

say a set X ⊂ Ω is ν-porous from scales α0 to α1 if for every ball B of diameter

R ∈ (α0, α1), there exists a point x ∈ B such that the ball BνR(x) (with center x and

radius νR) is disjoint from X. Porous sets are an example of fractals. Bourgain and

Dyatlov proved an uncertainty principle for porous subsets of R.

Theorem 0.1 (Bourgain–Dyatlov [1, Theorem 4]). Let ν > 0 and suppose that

• X ⊂ [−1, 1] ⊂ R is ν-porous from scales h to 1, and

• Y ⊂ [−h−1, h−1] ⊂ R is ν-porous from scales 1 to h−1.

Then there exist constants β, C > 0, depending only on ν, such that for all f ∈ L2(R)

(0.1) supp f̂ ⊂ Y =⇒ ∥f1X∥2 ≤ C hβ ∥f∥2.

We use the Fourier transform

(0.2) f̂(ξ) =

ˆ
R
e−2πiξx f(x) dx,

and the inverse Fourier transform

f∨(x) =

ˆ
R
e2πiξxf̂(ξ) dξ.(0.3)

The proof of Theorem 0.1 is based on analyzing decay in the tails. To give an example of

this analysis, suppose f̂ has compact Fourier support. We can use the Fourier extension

formula (0.3) to extend f to an entire function on C. If you plug in a complex number

x + iy, the exponential term e2πiξ(x+iy) may grow exponentially in ξ, but because we

assumed f̂ is compactly supported, the integral is still defined. As entire functions

have isolated zeros, f has full support. This is called a unique continuation principle,

because the values of f everywhere are determined by its values on any interval I ⊂ R.
Bourgain–Dyatlov quantitatively strengthened this result. If E ⊂ R satisfies

E ∩ [n, n+ 1] contains a ν-interval for every n ∈ Z,

then there is a mass lower bound

(0.4) f̂ decays very rapidly =⇒ ∥f1E∥2 ≥ c(ν)∥f∥2.
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Bourgain–Dyatlov then upgraded this theorem to prove

(0.5) supp f̂ ⊂ Y =⇒ ∥f1E∥2 ≥ c(ν)∥f∥2.

To prove (0.5) from (0.4), Bourgain and Dyatlov construct compactly supported func-

tions ψ whose Fourier transforms decay very rapidly on Y. If supp f̂ ⊂ Y, then f ∗ ψ
decays very rapidly, and (0.4) can be applied to f ∗ ψ.

0.2. Fractal uncertainty conjecture over the p-adics. For lots of problems in

harmonic analysis, the p-adics Qp behave much like the real numbers. For this problem,

they behave differently.

Elements of the p-adics are formal sums

x =
∑
n≥n0

anp
n where an ∈ {0, . . . , p− 1} and n0 ∈ Z.

Addition and multiplication are defined by carrying from left to right. We define the

valuation of x as

valp(x) := The smallest n0 such that an0 ̸= 0.

Using the valuation, we place a norm (and hence a metric) on Qp,

|x|p = p−valp(x).

A key property of the metric is that |x + y|p ≤ max{|x|p, |y|p}. This implies that

balls around the origin are subgroups. The ball of radius pj around the origin is the

subgroup

Bpj(Qp) =
{∑
n≥j

anp
n
}
,

and the unit ball is the group of p-adic integers,

B1(Qp) = Zp =
{∑
n≥0

anp
n
}
.

The p-adics come equipped with a natural Haar measure under which the unit ball has

measure 1. Fix the character

χ(x) = exp(2πi
∑
n≤0

anp
n).

Use this character to define the Fourier transform

f̂(ξ) =

ˆ
Qp

χ(−xξ)f(x)dx

and the inverse Fourier transform

f∨(x) =

ˆ
Qp

χ(xξ)f(ξ)dx.
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From the perspective of unique continuation, the p-adics behave very differently from

the real numbers. The indicator function of the unit ball is mapped to itself under the

Fourier transform,

(0.6) 1̂B1(Qp) = 1B1(Qp).

This is very different from the real numbers, where functions with compactly supported

Fourier transform must have full support. Because of (0.6), the unique continuation

principle (0.4) is not true over the p-adics, so the proof of Theorem 0.1 breaks down

in a fundamental way.

I tried and failed to construct a counterexample to FUP over the p-adics. I’ll opti-

mistically conjecture that FUP still holds.

Conjecture 0.2 (FUP over p-adics). Let ν > 0 and h = p−n. Suppose

• X ⊂ B1 ⊂ Qp is ν-porous from scales h to 1, and

• Y ⊂ Bh−1 ⊂ Qp is ν-porous from scales 1 to h−1.

Then there exist constants β, C > 0, depending only on ν, such that for all f ∈ L2(Qp)

(0.7) supp f̂ ⊂ Y =⇒ ∥f1X∥2 ≤ C hβ ∥f∥2.

In this theorem statement, the fact that supp f̂ ⊂ Bh−1 implies that f is constant

on balls of radius h. What does this mean? In the inverse Fourier transform formula

f∨(x) =

ˆ
Qp

χ(xξ)f(ξ)dx,

the frequency ξ may have negative powers of p going down to h = p−n, but no more

than that:

ξ =
∑
j≥−n

bjp
−j.

So, if we take

x =
∑

ajp
j

and change the coefficients aj for j ≥ n, that changes xξ by an element of Zp, and the

value of χ(xξ) stays the same.

In (0.7) we may assume supp f ⊂ B1(Qp). First, we may assume Y is a union of h-

balls. Then, if we take f and replace it with f1B1(Qp), that has the effect of convolving

f with 1B1(Qp), which does not impact the Fourier support.

What have we learned? From the perspective of (0.7), it is sufficient to consider

functions f with

supp f ⊂ B1(Qp) and f const. on balls of radius h,

which is equivalent to the class of functions

supp f̂ ⊂ Bh−1(Qp) and f̂ const. on balls of radius 1.
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Figure 1. Tree structure on Z/pkZ with p = 3.

The first class is the functions on the group B1(Qp)/Bh(Qp), and the second is the

functions on the group Bh−1(Qp)/B1(Qp). Both of these groups are isomorphic to

Z/pnZ.
We can restate Conjecture 0.2 in terms of the group Z/pnZ. One can define the

Fourier transform on Z/pnZ by taking a non-degenerate character χ : Z/pnZ → S1

and setting

f̂(ξ) = |G|1/2EGχ(−xξ)f(x), g∨(x) = |G|1/2EGχ(xξ)g(ξ),

and state an FUP in this context. The valuation on Z/pnZ is

val(x) = The smallest j such that x ∈ pjZ/pnZ,

and the metric is |x|Z/pnZ = p−val(x). Under this metric,

Bp−j(Z/pnZ) = pjZ/pnZ.

This metric puts a tree structure on Z/pnZ. There are p-many balls of radius p−1,

corresponding to the p-many residue classes mod p. Each of these p-many balls contain

p many balls of radius p−2, corresponding to the residue mod p2. This continues down

to pn. See Figure 1.

In the special case ν = 1
p
, a porous set is constructed iteratively. To construct a

porous set X, first, select all but 1 of the balls of radius p−1. Then, in each of these,

select all but 1 of the balls of radius p−2. Continue down to scale p−n. You will have

constructed a porous set with (p− 1)n elements.

0.3. Self-similar Cantor sets. Dyatlov and Jin [2] proved an FUP when X and Y

are self-similar Cantor sets. Fix alphabets A ⊊ {0, . . . , p− 1} and B ⊊ {0, . . . , p− 1}.
Let

X = {
n−1∑
j=0

ajp
j : aj ∈ A} ⊂ Z/pnZ,
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and

Y = {
n−1∑
j=0

ajp
j : aj ∈ B} ⊂ Z/pnZ.

For these self-similar Cantor sets, X and Y are also porous in the Euclidean metric

on Z, so FUP holds for the same reason as Theorem 0.1. But in general, porous sets

in Qp need not be porous in the Euclidean metric, and a new idea is needed.

0.4. A comment on the Fourier transform on Z/pnZ. From the p-adic perspec-

tive, it is helpful to distinguish the two copies B1(Qp)/Bh(Qp) and Bh−1(Qp)/B1(Qp).

There is a canonical isomorphism

B1(Qp)/Bp−n(Qp) → Z/pnZ

and a canonical isomorphism

Bpn(Qp)/B1(Qp) → Tpn =: {y ∈ R/Z : pny ≡ 0}.

Let x ∈ Z/pnZ and y ∈ Tpn ⊂ R/Z. Because pny ∈ Z, there is a natural pairing

xy ∈ R/Z. Taking χ to be the standard character on R/Z gives rise to a Fourier

transform

L2(Z/pnZ) → L2(Tpn).

One should think of Z/pnZ as living inside the unit ball down to scale p−n, and Tpn as

living inside the ball of radius pn down to scale 1.

From this perspective, the Fourier transform between Z/pnZ and Tpn is analogous

to the usual Fourier transform on R, in which scale h is paired to scale h−1, and the

Fourier transform between Z/pnZ and Z/pnZ is analogous to the semiclassical Fourier

transform on R, in which scale h is paired to scale 1.

I think one could tell a similar story for Z/MkZ rather than Z/pkZ, where M is not

necessarily prime, and not much would change.
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