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Abstract
We suggest an approachfor correcting several types of perceived

geometric distortions in computer-generated and photographic im-
ages. The approach is based on a mathematical formalization of
desirable properties of pictures.

From a small set of simple assumptions we obtain perceptually
preferable viewing transformations and show that these transforma-
tions can be decomposed into a perspective or parallel projection
followed by a planar transformation. The decomposition is eas-
ily implemented and provides a convenient framework for further
analysis of the image mapping.

We prove that two perceptually important properties are incom-
patible and cannot be satisfied simultaneously. It is impossible to
construct a viewing transformation such that the images of all lines
are straight and the images of all spheres are exact circles. Percep-
tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
the picture.

It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.

Keywords: Perception, distortion, viewing transformations,
perspective.1 Introduction
The process of realistic image synthesis can be subdivided into
two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagation of light objectively, by comparing calculated photomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.

a.

b.

Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church
of St. Ignatzio in Rome, classical example of perspective distortions from
[Pir70]; reprinted with the permission of Cambridge University Press. b.
Corrected version of the picture with transformation applied.

The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.

One motivation for using perspective projection in computer

1By perspective projection or linear perspective we mean either central projection
or parallel projection into a plane.



graphics is the idea of photorealism: since photographic images
have one of the highest degrees of realism that we can achieve,
perhaps realistic rendering should model the photographic process.

But the intuitive concept of realism in many cases differs from
photorealism: photographic images, are often perceived as distorted
(note the shape of the sphere in Fig. 1a.) On the other hand, some
paintings, while using perspective projection, contain considerable
deviations from it (Fig. 2). These paintings, however, are perceptu-
ally correct and realistic.

In this paper we derive viewing transformations from some basic
principles of perception of pictures rather than by modeling a partic-
ular physical process of picture generation. Our approach is based
on formalizations of desirable perceptual properties of pictures as
mathematical restrictions on viewing transformations.

The main result (Section 5.1) allows us to construct usable fam-
ilies of transformations; it is a decomposition theorem which states
that under some assumptions, any perceptually acceptable picture-
independent viewing transformation can be decomposed into a per-
spective or parallel projection and a two-dimensional transforma-
tion.

Figure 2. “School of Athens” by Rafael. ( c
1994-95 Christus Rex, repro-
duced by permission) It is possible to reconstruct the center of projection
from the architectural details. The calculated image of the sphere in the right
part of the picture is an ellipse with aspect ratio 1:1.2, while the painting is
a perfect circle.

Our approach allows us to achieve several goals:� We construct new viewing transformations that reduce distor-
tions that appear in perspective projection images. It turns out
that some of these transformations can be implemented as a
postprocessing stage (Equation 1 , pseudocode in Section 7)
after perspective projection and can be applied to existing
images and photos (Figs. 1,7,8,9,10.)� We provide a basis for understanding limitations of two-
dimensional images of three-dimensional space; certain per-
ceptual distortions can be eliminated only at the expense of
increasing other distortions.� Our transformation works well in animations and movies.� Our families of transformations can be modified or extended
by adding or removing auxiliary perceptual requirements;
this provides a general basis for constructing pictures with
desirable perceptual properties.

The transformations that we propose may have a number of

applications: creation of computer-generated wide-angle pictures
and wide-angle animations with reduced distortion, and correction
of photographic images and movies.

Related Work Considerable data on picture perception have
been accumulated by experimental psychologists; overviews can
be found in [Kub86], [Hag80]. Computer graphics was influenced
by the study of human vision in many ways: for example, RGB
color representation is based on the trichromatic theory of color
perception and anti-aliasing is based on various observations in
visual perception.

Principles of the perception of color have been applied to com-
puter graphics [TR93]. A curvilinear perspective system based on
experimental data is described in [Rau86].

Limitations of perspective projection are well known in art and
photography. [Gla94] mentions the limitations of linear perspective.

As far as we know, this paper is the first attempt to apply per-
ceptual principles to the analysis and construction of viewing trans-
formations in computer graphics.

Outline of the Paper. The paper is organized as follows:2

In Section 2 we discuss the properties of linear perspective, in
Section 3 we formulate our assumptionsaboutperception of pictures
and formulate some desirable properties. Section 4 describes some
restrictions that we have to impose on the viewing transformation
to make it practical. In Section 5.1 we discuss the decomposition
theorem for viewing transformations. In Section 5.3 we discuss
construction of the 2D component of decomposition,

Section 6 describes a perceptual basis for the choice of the pro-
jection component of the decomposition of viewing transformation.

In Section 7 we discuss the implementation issues and we pro-
pose some applications of our methods.

Sketches of mathematical proofs can be found in appendices in
the CD-ROM version of the paper and in [Zor95].2 Analysis of linear perspective.
The theory of linear perspective is based on the following construc-
tion (Fig. 3). Suppose the eye of an observer is located at the point
O. Then, the image on the retina of his eye is created by the rays re-
flected from the objects in the direction of point O. If we put a plane
between the observer and the scene, and paint each point on the
plane with the color of the ray of light going into O and crossing the
plane at this point, the image on the retina will be indistinguishable
from the real scene.

objectpictureeye

Figure 3. Pictures can produce the same retinal projection as a real object

The above argument contains some important assumptions:� the observer looks at the scene with one eye, (or is located far
enough from the image plane to consider the images in both
eyes identical);� when we look at the picture, the position of the eye coincides
with the position of the eye or camera when the picture was
made.

In fact, both assumptions for linear perspective are almost never
true. We can look at a picture from various distances and directions

2The reader who is interested primarily in the implementation can go directly to
Equation 1 in Section 5.3 and pseudocode in Section 7



with both eyes, but our perception of the picture doesn’t change
much in most cases [Hag76]. This property of pictures makes them
different from illusions: while stereograms of all kinds should be
observed from a particular point, traditional pictures are relatively
insensitive to the changes in the viewing point. As the assumptions
are not always true, it is not clear why perspective projection should
be the preferred method of mapping the three-dimensional space
into the plane.

In many cases we observe that perspective projection produces
pictures with apparent distortions of shape and size of objects, such
as distortions of shape in the margins (Figs. 1,7,8,9,10). These
distortions are significantly amplified in animations and movies,
resulting in shape changes of rigid bodies.

Leonardo’s rule. The fact that linear perspective doesn’t al-
ways produce pictures that look right was known to painters a long
time ago. Leonardo da Vinci [dV70] formulated a rule which said
that the best distance for depicting an object is about twenty times
the size of the object. It is well-known in photography that in order
to make a good portrait the camera should be placed far enough
away from the object. In many paintings we can observe consider-
able deviations from linear perspective which in fact improve their
appearance (Fig. 2.)

We conclude that there are a number of reasons to believe that
linear perspective is not the only way to create realistic pictures.3 Properties of pictures.
In this section we will describe our main assumptions about the
nature of picture perception and specify the requirements that we
will use in our constructions. A more detailed exposition can be
found in [Zor95].

Structural features. We believe the that the features of images
that are most essential for good representation are the structural
features such as dimension (whether the image of an object is a
point, a curve or an area) and presence or absence of holes or self-
intersections in the image. The presence or absenceof these features
can be determined unambigously.

Most of the visual information that is available to the brain is
contained in the images formed on the retina. We will postulate
the following general requirement, which will define our concept
of realistic pictures: The retinal projections of a two-dimensional
image of an object should not contain any structural features that are
not present in any retinal projection of the object itself. Structural
properties of retinal images are identical to the properties of the
projections into an arbitrarily chosen plane [Zor95]; our requirement
can be restated in more intuitive form:

A two-dimensional image of an object should have
only structural features that are present in some planar
projection of the object.

We can identify many examples of structural requirements: the
image of a convex object without holes should not have holes in it,
the image of a connected object cannot be disconnected, images of
two intersecting objects should intersect etc. We choose a set of three
structural requirements that we will use to prove the decomposition
theorem in Section 5.1.

Figure 4. Mappings forbidden by structural conditions 2 and 3

1. The image of a surface should not be a point.
2. The image of a part of a straight line either shouldn’t have

self-intersections (“loops”) or else should be a point (Fig. 4).

3. The image of a plane shouldn’t have “twists” in it. This means
that either each point of the plane is projected to a different
point in the image, or the whole plane is projected onto a
curve (Fig. 4).

We will call these conditions structural conditions 1, 2 and 3.
Note that these requirements are quite weak: we don’t require that
features of some particular planar projection are represented; we just
don’t want to see the features that are not present in any projection.

Desirable properties. Next, we formulate some requirements
that are not as essential as the structural ones; the corresponding fea-
tures of the images can be varied continuously and can be changed
within some intervals of tolerance. Examples of such features in-
clude relative sizes of objects, angles between lines, verticality. We
will refer to these properties as “desirable properties.” We will use
two of them which we consider to be the most important. One of
the most restrictive desirable properties is the following one:

Zero-curvature condition. Images of straight lines should be
straight.

Note that this is different from the structural requirement 2
above, which is weaker. However, as we can judge straightness
of lines only with some finite precision, some deviations from this
property can be tolerated.

Another requirement is based on the following observation: the
images of objects in the center of the picture never look distorted,
given that the distance to the center of projection is large compared
to the size of the object (Leonardo’s rule). We will call perspective
projections into the plane perpendicular to the line connecting the
center of projection with the object direct view projections. Then
the requirement eliminating distortions of shape can be stated as
follows:

Direct view condition Objects in the image should look as if they
are viewed directly – as they appear in the middle of a photograph.

Unfortunately, as we will see later, the two properties formulated
above cannot be satisfied exactly at the same time.

We found several other requirements (foreshortening of objects,
relative size of objects, verticality) to be of importance, but having
much larger tolerance intervals. We will discuss their significance
in Section 7.4 Technical requirements
To narrow down the area of search for perceptually acceptable view-
ing transformations we are going to specify several additional tech-
nical requirements. They don’t have any perceptual basis and are
quite restrictive; however, they make the task of constructing view-
ing transformations manageable and the resulting transformation
can be applied to a wide class of images.

1. We need a parametric family of viewing transformations so
that an appropriate one can be chosen for each image.

2. The number of parameters should be small, and they must
have a clear intuitive meaning.

3. The mapping must be sufficiently universal and should not
depend on the details of the scene too much.5 Derivation of viewing transformations

In the following sections we formalize the perceptual and techni-
cal conditions that were stated above and use them to prove that
any viewing transformation that satisfies the structural conditions
and technical conditions for any image can be implemented as a
perspective projection and subsequent transformation of the pic-
ture plane. We show that direct view and zero curvature properties
cannot be exactly satisfied simultaneously. We introduce quanti-
tative measures of corresponding distortions and describe a simple
parametrized family of transformations (Equation 1) where values
of parameters correspond to the tradeoff between the two types of



distortion. This family of transformation is close to optimal in a
sense described in Section 5.3 and is easy to implement (Section 7).5.1 General structure of viewing transformations
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Figure 5. Coordinate systems

In this section we present a decomposition theorem derived from
structural conditions 1 -3 (Section 3) and technical requirements of
the previous section. The seemingly weak structural conditions
1-3 turn out to be quite restrictive if we want to construct image
mappings that don’t depend on the details of any particular picture,
specifically, on the presence of lines or planes in any particular point
of the depicted scene.

Applicaton of these requirements to all possible lines and planes
allows us to prove that the viewing transformation with no “twists”
in the images of planes and no “loops” or “folds” in the images of
lines should be a composition of perspective or parallel projection
and a one-to-one transformation of the plane.

In order to formulate the precise result let’s introduce some
definitions and notation:

We will use x; y; :: for the points in the domain of a viewing
transformation (a volume in 3D space), and �;  ::: for the points in
the range (a point in the picture plane).

By a line segment we mean any connected subset of a line.
A viewing transformation maps many points in space to the

same point in the picture plane:

Definition 1 The set of all points of the domain of a mapping that
map to a fixed point � is called the fiber of the mapping at the point�.

In our case, fibers typically are curves in space that are mapped
into single points in the picture plane.

Consider a viewing transformation which is a continuous map-
ping P of a region of space to the picture plane, more particularly, of
an open path-connected domain V � R3 to an open subset of R2,
satisfying the following formalizations of structural conditions:

1. The mapping of any line l to its image P(l) is one-to-one
everywhere or nowhere on l.
This condition prevents “loops” in the images of lines. It is
more restrictive: it doesn’t allow not only “loops” but also
“folds”, that is, situations when each point in P(l) is the image
of at least two points of l.

2. The dimension of the fiber dim P�1(�) = 1 for all � in the
range of P, and all the fibers are path-connected.
This condition prevents mapping of regions of space to single
points and continuous regions to discontinuous images.

3. the mapping of a subset of a plane m to the image P(m) is
one-to-one everywhere or nowhere.
This condition prevents “twists” in the images of planes.

Then our theorem can be stated as follows:

Theorem 1 For any viewing transformation P, satisfying the con-
ditions above, there is a perspectiveprojection� such that the fibers
of P are subsets of fibers of �.

An outline of the proof is given in Appendix A.
Our practical applications are based on the following corollary:

Corollary 1 Let a viewing transformation P satisfy the assumptions
of Theorem 1 and� be the corresponding perspective projection. If� is a central projection, assume, in addition, that the region V lies
entirely in one half-space with respect to a plane going through the
center of �. Then P can be decomposed in two ways:

– as a composition of a perspectiveprojection�plane into a plane
followed by a transformation Tplane of the plane ,

– as a projection into a sphere �sphere followed by one-to-one
mapping Tsphere of the sphere into the picture plane .

It is not true that any picture satisfying only structural conditions
(without additional technical requirements) should be generated
with an image mapping which has this particular decomposition,
because for a particular scene the structural conditions have to be
satisfied only by the objects that are actually present in it. It also
should be noted that our theorem is an example of a large num-
ber of statements that can be proven given some specific choice of
structural conditions. We believe that our choice is reasonable for
many situations, but it is quite possible that there are cases when
least restrictive requirements are sufficient and larger families of
transformations can be considered.

While the choice of possible viewing transformations is consid-
erably restricted by this theorem, there are still several degrees of
freedom left:� 2D mappings Tplane and Tsphere can be any continuous map-

pings.� We can choose the center of projection for the first part of the
decomposition; it is important to note that the theorem places
no restrictions on the position of this center. For example, in
an office scene it can be located outside the room, which is
impossible for physical cameras.� If we can split our scene into several disconnected domains
(for example, foreground and background), the viewing trans-
formation can be chosen independently for each connected
part of the scene. However, separation of the space into sev-
eral path connected domains introduces dependence of the
transformation on the scene.

In the next sections we will consider how we can use these
degrees of freedom to minimize the perceptual distortions.5.2 Formalization of desirable conditions
In this section we formalize the conditions listed in Section 5.1, to
apply them to the construction of viewing transformations. We will
find error functions for both conditions that can be used as a local
measure of distortion and error functionals that measure the global
distortion for the whole picture.

Let’s establish some notation for the viewing transformations
that satisfy the conditions of the theorem.

V � R3 Wplane � R2 = p

Wsphere � S2 R2 = �--? ?HHHHHHj�sphere Tplane

Tsphere

�plane

P

We will consider viewing transformations P : V � R3 ! R2,
from an open connected domain V into the picture plane �, which



are compositions of the projection �plane from the center O into the
intermediate plane p and a mapping Tplane : Wplane � R2 ! R2,
Wplane = �plane (V), We can choose the plane p so that that the
distance from O to the plane is L.

P can be also represented as a composition of central projection
from O into the sphere of radius L with center at O (intermediate
sphere ) �sphere : V � R3 ! S2 and some mapping Tsphere :
Wsphere � S2 ! R2, Wsphere = �sphere(V), We will assume that the
image of V in the sphere belongs to a hemisphere.

Let’s introduce rectangular coordinates (x,y) and polar coordi-
nates (r; �) on the plane p; rectangular coordinates (�; �) and polar
coordinates (�;  ) in the plane �. On the sphere we will choose
angular coordinate system (�; �), and local coordinates in the neigh-
borhood of a fixed point (�0; �0): u = L(�� �0); v = L(�� �0) sin �0

(Fig. 5).
The correspondence between Tplane and Tsphere is given by the

mapping S2 ! R2: � = � , r = tan �.
Curvature error function Formally the restriction on images

of line segments from section 3 can be expressed as follows:
Images of line segments should have zero curvature at each

point.
We will call this requirement the zero-curvaturecondition. Cur-

vature of the image of a line at a fixed point gives us a measure
of how well the viewing transformation satisfies the zero-curvature
condition.

If we consider the decomposition of P = Tplane � �plane , we can
observe that �plane satisfies the zero-curvature condition. There-
fore, we have to consider only the mapping Tplane . We will denote
components of Tplane(x; y), which is a point in the picture plane, by
(�(x; y); �(x; y)

The curvature depends not only on the point but also on the
direction of the line, whose image we are considering. As an error
function for the zero-curvature condition at a point x we will use
an estimate of the maximum curvature of the image of a line going
through x.

It can be shown (see Appendix B on CD-ROM, [Zor95]) that
the curvaturej�j � pj�xxj2 + j�yyj2 + 2 j�xyj2 + j�xxj2 + j�yyj2 + 2 j�xyj2

1
2 ((A + C)�p

(A � C)2 + 4B2)
where A = (�x)2 + (�x)2 , B = �x�y + �x�y, C = (�y)2 + (�y)2.

We use a characteristic size of Tplane(W) (corresponding to the size
of the picture for perspective projection) R0 as a scaling coefficient
to obtain a dimensionless error-function. We also use the square of
the curvature estimate to make the expression simpler:

K(Tplane ; x; y) = R2
0
j�xxj2 + j�yyj2 + 2 j�xyj2 + j�xxj2 + j�yyj2 + 2 j�xyj2

1
4

�
(A + C)�p(A � C)2 + 4B2

�2

If we set K(Tplane; x; y) = 0, we can see that the all the second
derivatives of � and � should be equal to zero, therefore, Tplane should
be a linear transformation. This coincides with the fundamental
theorem of affine geometry which says that the only transformations
of the plane which map lines into lines are linear transformations.

Direct view error function. In order to formalize the direct
view condition we consider mappings which are locally equivalent
to direct projection as defined in Section 3. We can observe that the
projection onto the sphere is locally a direct projection. Therefore,
if we use the decomposition P = Tsphere � �sphere we have to con-
struct the mapping Tsphere which is locally is as close to a similarity
mapping as possible. Formally, it means that the differential of the
mapping Tsphere , which maps the tangent plane of the sphere at each
point x to the plane Tf (x)R2 = R2 coinciding with the picture plane� at the point f (x), should be close to a similarity mapping. The
differential DTf (x) can be represented by the Jacobian matrix J of the
mapping Tsphere at the point x. A nondegenerate linear transforma-

tion J is a similarity transformation if and only if jJwj=jwj doesn’t
depend on w.

If this ratio depends on w, then we define the direct view error
function to be

D(Tsphere; �; �) =

����max

� jJwj2jwj2 � =min

� jJwj2jwj2 �� 1

����
can be used as the measure of “non-directness”of the transformation
at the point (for more detailed discussion see [Zor95].).

It can be shown (see Appendix B on CD-ROM, [Zor95]) that

D(Tsphere; �; �) =
(E + G)�p(E �G)2 + 4F2

(E + G) +
p

(E �G)2 + 4F2
� 1

where E = (�u)2 + (�u)2, F = �u�v + �u�v, G = (�v)2 + (�v)2.
Using the correspondence between intermediate sphere and

plane we can write D as a function of Tplane , x and y.
Global Error functionals We want to be able to characterize

the global error for each of the two perceptual requirements. We
can use a norm of the error functions D and K as a measure of
the global error. The choice of the norm can be different: the L1-
norm corresponds to the average error, the sup-norm corresponds to
the maximal local error. In the first case, the error functionals are
defined as K[Tplane ] =

Z Z
W

K(Tplane; x; y)dxdy;D[Tplane] =

Z Z
W

D(Tplane; x; y)dxdy:
In the second case,K[Tplane ] = max

(x;y)2W
K(Tplane; x; y) D[Tplane] = max

(x;y)2W
D(Tplane ; x; y)

.5.3 2D Transformation
We are going to use the error functionals defined in Section 5.2
to construct families of transformations by solving an optimization
problem. We consider only the 2D part of the decomposition of
viewing transformation assuming that the perspective projection is
fixed. Structural conditions suggest only that it be continuous and
one-to-one.

Optimization problem. The error functionals defined above
depend on the domain Wplane and the planar transformation Tplane .
The first parameter is defined by the projection part of the viewing
transformation, so we will assume it to be fixed now. In this case,
functions satisfying K[Tplane ] = 0 are linear functions and the only
functions satisfyingD[Tplane] = 0 are those derived from conformal
mappings of the sphere onto the plane. Unfortunately, these two
classes of functions don’t intersect.

In this case for a given level � for either error functional K orD
we minimize the level of the other. The corresponding optimization
problems areK[Tplane ] = min; D[Tplane ] = � or K[Tplane ] = �; D[Tplane] = min

These optimization problems are equivalent and can be reduced
[Zor95]. to an unconstrained optimization problem for the func-
tional F [Tplane] = �K[Tplane ] + (1 � �)D[Tplane ]), where � repre-
sents the desired tradeoff between two functionals: for � = 0 we
completely ignore the zero-curvature condition, for � = 1 the direct
view condition.

We also have to specify the boundary conditions in order to make
the problem well-defined. This can be done by fixing the frame of
the picture, that is, the values of Tplane on the boundary of Wplane .

We will consider solutions of this optimization problem in the
next section.

Error functions for transformations with central symmetry
From now on we will restrict our attention to transformations that
also have central symmetry. This assumption allows distribution
of the error evenly in all directions in the picture. The advantage



of this additional restriction is a considerable simplification of the
problem. The disadvantage is that real pictures seldom have this
type of symmetry and, therefore, non-symmetric transformation
might result in better images. We will discuss a way to create
nonsymmetric transformations in Section 5.4.

In polar coordinates transformation Tplane can be written as� = �(r)  = �. In this case we get the following simplified
expressions for the error functions

K(�; r) = R2
0

3
r2

� �
r � �0�2

+ �002
min

� �2

r2 ; �02�2

D(�; r) =
max(�02(1 + r2)2; �2(1 + 1

r2 ))

min(�02(1 + r2)2; �2(1 + 1
r2 ))

� 1

We note that in both cases the dependence on the angular
coordinate completely disappeared, so now the problem is one-
dimensional. We did not use symmetry in our derivation for the
general expression for K; absence of dependence on the angle in
the formulae above suggests that our bounds are quite tight.

In order for the problem to have a solution, the boundary condi-
tions should have the same type of symmetry. We can take V to be
the cone with angle at the apex �0. In this case W = �(V) will be
a circle of radius R = L tan �0. The corresponding boundary condi-
tions are �(R) = 1, �(0) = 0 (from continuity). Here we assume that
the radius of the picture P(V), corresponding to R0 in Section 5.2,
is 1.

Now there are unique functions � satisfying K = 0 or D = 0.
For K it is obvious: �K = r=R. For D it is �D(r) = �1D(r)=�1D(R) ,
where �1D(r) =

p
r2 + 1� 1=r

The solutions of the optimization problem will form a parametric
family �(�; r) and �(0; r) = �D(r), �(1; r) = �K(r).

We consider solutions for the sup norm, which is more appro-
priate from perceptual point of view: we are guaranteed that the
distortion doesn’t exceed a specified amount.

Now we can state the optimization problem that we have to
solve:

Minimize the functionalF [�] = max
[0 R]

F(�; r)

subject to boundary conditions �(0) = 0, �(R) = 1, �00(0) = 0,
where

F(�; r) = �K(�; r) + (1 � �)D(�; r)
Solving a minimization problem of this type (Chebyshev min-

imax functional) is in general quite difficult. We found the lower
estimate for the values of F , and numerically approximated the
optimal solution. It turns out that the values of F for linear inter-
polation between solutions for K = 0 and D = 0 are close to the
optimal values.
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Figure 6. Functionals K and D for � given by Equation 1 as functions of� for the field of view 90�. Note that when � = 1; there is no curvature
distortion. When � = 0; then there is no distortion of shape. For a given �,
we can find � that will approximately minimize the functionalF .

It appears that for practical purposes linear interpolation can be
used. The resulting transformations have the following form:�(r) = �r=R + (1 � �)

R(
p

r2 + 1� 1)

r(
p

R2 + 1� 1)
;  = � (1)

where the original image is represented in polar coordinate
system (r; �), the transformed image in polar coordinate sys-
tem (�;  ).5.4 Generalization to non-symmetric cases

We can use Equation 1 to construct more general transformations
by replacing a constant � with a � depending on the angle. In
this case we can choose the balance between direct view and zero
curvature conditions to be different for different directions. First,
an initial constant value of � is chosen for the whole image. Then� is specified for a set of important directions and then interpolated
for the rest of the directions. (Figure 7c). Making � dependent on
the radius and angle is more difficult, but possible; we leave this as
future work.6 Choice of viewing transformation
In the previous section we obtained an analytical expression for a
family of viewing transformations parameterized by L and �. The
distance L from the center of projection to the intermediate plane p
determines �plane , and � determines the tradeoff between the zero-
curvature and direct-view conditions.

We need to choose both parameters for a particular scene or
image. As we have mentioned before, in our approach the center
of projection need not be the position of a hypothetical camera or
observer; we are free to choose it using perceptual considerations.
However, we are restricted in our choice by the content of the
picture that we want to obtain. In many cases, the most important
constraint is the amount of foreshortening that we want to have
across the scene. By the amount of foreshortening we mean the
desired ratio of sizes of identical objects placed in the closest and
most remote part of the scene (for example, human figures in the
foreground and background of Fig. 9a). This ratio can be small for
scenes which contain only objects of comparable size placed close
to each other, such as the office scene (Fig. 9), and should be large
for scenes with landscape background (Fig. 10).

According to [HEJ78] people typically prefer pictures with a
small amount of foreshortening in individual objects. The behavior
of the error functionals is in agreement with this fact: as we move
the center of projection away from the intermediate plane (L !1),
the size of the intermediate image Wplane goes to 0 and it is possible
to show that both direct view and zero-curvature error functionals
decrease. However, a total absence of foreshortening produces
distortion (Fig. 9b). The best choice of the center of projection
typically corresponds to the field of view in the range 10 to 50
degrees. When such a choice is possible, we can achieve reasonably
good results simply by choosing a small field of view and taking �
to be equal to 1 (Fig. 9c).

There are some types of scenes, however, that don’t allow us to
choose small fields of view. If we try to decrease the field of view
in some scenes, either parts of the scene are lost, or the amount
foreshortening becomes too close to 1 and objects in the foreground
become too small. (Fig. 10c,d).

In this case, we can choose the 2D transformation by varying �
to achieve the appropriate balance between two types of distortion
that we described. We choose a “global” � for the whole image;
if parts of the image still look distorted, we can make additional
corrections in various parts of the image by varying � as described
in Section 5.4. (Fig 10b, Fig. 7c).



7 Implementation and ApplicationsImplementation. The implementation of our viewing transfor-
mations is straightforward. The �plane projection practically coin-
cides with the standard perspective/parallel projection. There is,
however, an important implementation detail that is absent in some
systems. As we mentioned before, our center of projection need
not coincide with the position of the camera or the eye. It is chosen
according to perceptual requirements. For instance, it can happen
that the most appropriate center of projection for an office scene is
outside the room. In these cases it is necessary to have a mechanism
for making parts of the model invisible (these parts of the model
should participate in lighting calculations but should be ignored
by the viewing transformation). This can be done using clipping
planes.

The 2D part of the viewing transformation Tplane can be imple-
mented as a separate postprocessing stage. The advantage of such
an implementation is that it allows us to apply it to any perspective
image, computer-generated or photographic. The only additional
information required is the position of the center of projection rela-
tive to the image. The basic structure of the implementation is very
simple:

for all output pixels (i; j) do

r :=
p

i2 + j2

setpixel( i; j;
interpolated color( ��1(r)i=r, ��1(r)j=r))

end

The inverse function ��1 can be computed numerically with
any of the standard root-finding methods, such as those found in
Numerical Recipes [PFTV88]. The interpolated color( x; y) function
computes the color for any point (x; y) with real coordinates in the
original image by interpolating the colors of the integer pixels.

The position of the center of projection is usually known for
computer-generated images, but is more difficult to obtain for pho-
tos. For photos it can be calculated if we know the size of the film
and focal distance of the lens used in the camera. Alternatively, it
can be computed directly from the image if there is a rectangular
object of known aspect ratio present in the picture [Zor95].Applications. Examples of applications of our viewing transfor-
mations were mentioned throughout the paper. We can identify the
following most important applications:� Creation of wide-angle pictures with minimal distortions.

(Figs. 9,10).� Reduction of distortions in photographic images. (Figs 7,8).� Creation of wide-angle animation with reduced distortion of
shape.� A better alternative to fisheye views. Fisheye views are used
for making images with extremely wide angle (up to 180 for
hemispherical fisheye), when the distortions in linear projec-
tion make it impossible to produce any reasonable picture.
However, fisheye pictures have considerable distortions of
their own. The pictures that we obtain using our transforma-
tions look significantly less distorted than fisheye views.� Zooming of parts of a wide-angle picture: For example, we
can cut out a portrait of one of the authors from the trans-
formed image in Fig. 7b, while it would look quite distorted
if we had used the original photo (Fig. 7a)8 Conclusion and Future Work

We developed an approachfor constructing viewing transformations
on perceptual basis. We demonstrate that two important perceptu-
ally desirable requirements are incompatible and there is no unique
viewing transformation producing perceptually correct images for
any scene. We described a simple family of viewing transformations

suitable for reducing distortions in wide-angle images. These trans-
formations are straightforward to implement as a postprocessing
stage in a rendering system or for photographs and motion pictures.

As we have mentioned in Section 5.1, Theorem 1 applies only
in cases when we consider all possible lines and planes in the scene,
not only the ones present in it. Better results can be achieved by
introducing direct dependence of the viewing transformation on the
objects of the scene.

Possible extensions of this work include considering the depen-
dence of � in the Equation 1 on r, and conformal transformations of
the plane preserving the direct-view property. We also can introduce
new perceptually desirable properties and finding new families of
transformations that produce optimal images with respect to these
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a b c
Figure 7. A wide-angle photograph of a room. a. Original image (approximately 100� angle. b.Transformation 1 applied with � = 0. c. Generalization of
transformation 1, (Section 5.4) applied, � varies from 0 to 1.0 across the image. Note the correct shape of the head and straightness of the walls.

a b
Figure 8. Photo from the article “Navigating Close to Shore” by Dave Dooling (“IEEE Spectrum”, Dec. 1994), c
 1994 IEEE, photo by Intergraph Corp. 92�
viewing angle. a. Original image. b. Transformation 1 applied with � = 0.

a b c
Figure 9. Shallow scene: model of an office (frames from the video), standard projections. a. 92� viewing angle. b. 3� viewing angle. c. 36� viewing angle,
close to perceptually optimal for most people.

a b

c d
Figure 10. Deep scene, (frames from the video). If we want to have large images of men in the foreground while keeping the images of pyramids in the
background, we have to make the angle of the picture wide enough. a. 90� viewing angle. Note the distorted form of the head of the men near the margins of
the picture and differences in the shape of the bodies of the men in the middle and close to the margins. b. 90� viewing angle, transformation 1 applied, � = 0.
c. 60� viewing angle, keeping pyramids in the same position in the picture. d. 60� viewing angle, keeping people in the center in the same position.


