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Symmetric universal constraints for algorithm classification are described that, in a sense, permit replacement by 

equivalent functional constraints. Symmetric and functional constraints are a part of a theory of universal and local constraints 

[1-4] being developed within the framework of an algebraic approach [5, 6] to the problem of synthesis of correct recognition 

algorithms. The terminology, results, and notation described earlier [7] are employed here. 

Let a functional category • that is defined by a permissible functional signature ~ be given. Rudakov [3] has described 

the construction of a group % such that category ,I, is P-complete in the symmetric category 1~, defined by that group. The 

condition 

(1) 

must be satisfied for signature ~,. 

In condition (1), inclusion is strict, i.e., S(it. i~) ~ S(i2, i2)" 

The question arises as to when the inverse problem can be solved --  namely, that of constructing for a given group 

a a functional signature ~ such that group cr coincides with a¢. In other words, for a given symmetric category E we can 

construct a functional category ,I, such that ,I, is a F-complete subcategory of ~, where E includes any symmetric category in 

which category ~ is F-complete. Below we shall describe a signature for groups a that permit such a construction. We shall 

examine only groups a that do not have stationary elements. As was pointed out earlier [7], this does not reduce the generality 

of the examination. 

Definition 1. Signature ~o is called maximal for group a if for any pair (il, Jl) of S set S(i~, j~) coincides with a block 

w(iJ, JO' constructed for group a. 

We shall describe the construction of functional signature ~%. 

1. We number arbitrarily the classes of functional similarity in S for group a. For each pair S(i~. j~) contained in class 

3, l with number l, we let ,t(i~. j~) be equal to l. 

2. In each class ~/l we select an arbitrary pair (i 1, Jl), which we call the lead pair. We define S(i,, y~) as follows: 

S(it, it) coincides element by element with block w(i~, Yt) ; order in S(it. Yt) is introduced arbitrarily. 

3. For all pairs (i, j)  of class .zl we let S(i,1 ) be equal to g(S(it, it)) , where g is an arbitrary substitution of cr that 

transforms (i, j)  to (i t, Jl). On the strength of the definition of a block, S(i,j ) is not a function of the choice of g. 

Under certain conditions, the constructed signature generates a desired category, i.e., the equality a = %~ is realized 

for a class of groups a. 

We shall prove a few auxiliary propositions. 

LEMMA 1. Functional signature ~% is permissible, satisfies condition (1), and is maximal for a. 

Proof. We shall verify the conditions of signature permissibility (Rudakov's conditions (1)-(5) [3]). The condition 

V (i, 19 ((i, 1) ~ S(/, j3 ) is satisfied, since (i, 1") ~ w(~. J3 We shall show that the following condition is satisfied: 

V g e aV (il , ]1 ) e S V k (g(s(i 1 , ]1 , k)) = S(g(i I , ]1 ), k)). 
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Let (i t, Jl)  be the lead pair of the class y l  t o  which pairs (il, Jl)  and g((il, Jl))  belong. Then if (ii , ]l) = & ((i1, i t ) ) ,  

g((it , h ) ) = & ( ( i t , h ) )  = g ( & ( ( i t , J l ) ) ) ,  then s(il ,]l  , k ) = & ( S ( i l , h , k )  ) ,  s (g( i  I , i i ) ) , k ) = g ( & ( S ( i l ,  h , k ) ) ) ,  i.e., s (g( i  ! , i l ) ,  

k )  = g(s( i l  , ]1 , k)). The realization of Rudakov's  conditions (2), (3), and (5) [3] follows readily from the above. We 

shall show that condition (2) is satisfied. If  a(i I , Jl ) = a(i2,  h ) ,  there exists a substitution g of  a such that g(i I , ./l ) = (/2, h)-  

Let (i I , 11 ) = s(i l  , h , k ) .  Then s(/2 , ]2, k) = g(s( i l  , Jl , k)) -- g(i I , Jl ) = (/2, J2)- 
From condition (3) we have 

(s(/~, h ,  ~) = g(s(i~ , A ,  k ) )  * (a(s( /2 , h ,  k ) )  = a(s ( i ,  , j~ , k ) ) ) .  

Analysis for condition (5) 

(S(S(il , Jl , k ) ,  r) = s( i  I , Jl , m ) )  - (g ( s ( s ( i  t , ]1 , k) ,  r) = g(s ( i  t , Jl , m ) ) )  =- 

- (s (s(g( i l  , Jl , k ) ,  r) = s(g( i  1 , Jl ), m ) )  •- ( s ( s ( i  I , Jl , k ) ,  r) = s( i  2 , ]2 ,  m ) ) .  

The realization of condition (4) is obvious. 

The maximality of ~% follows directly from the construction. 

Since S does not contain functional-similarity classes of cardinality 1 and, by construction, the sets in ~o a either do not 

intersect or coincide, condition (1) is satisfied. 

The lemma is proved. 

We shall show that the following inclusion is valid: 

a C %.  (2) 

Let g E a. According to the construction of ~ ,  the condition /l(g(i I , Ji)) = ; t (~ ,  12) is satisfied. The realization 

of the condition g( s(  !l , ]l , k ) ) = s(g(  i 1 , ]1), k )  was demonstrated in the proof of Lemma 1. 

L E M M A  2. Let o be a subgroup of a symmetric group. If  % coincides with o for some permissible functional 

signature ~ that satisfies condition (1), signature ~ is a-equivalent to %.  

This lemma allows the examination to be limited to functional signature ~a in determining the possibility of  coincidence 

of groups % and a. 

Proof .  We shall consider the set of functional signatures that are a-equivalent to ~ that was described in the theorem 

[7]. 

Let ~Pmax be maximal signature for a that belongs to that set. We shall show that ~max is a-equivalent to ~%. Accord- 
m a x  

ing to the definition of a maximal signature and according to the definition of ~%, o (~ j~ = w(/, :3 and S~(/, j) = ~v(/, 13 for any (i, 
c m a x  . emax ,~max, if J). We can convert ,,(/,/3 to 4i.  :3 by transformation (lb) described earlier [7] Since for any (il, J l) ,  ~'(i~,/.~ ) = gt~(/, J3) ' 

g( i ,  j )  = g( i  1, Jl) ,  and S~(i~ '/.1) = g(S~(il" ]0 ) by construction, transformation 1 converts all sets that correspond to elements 

of the given similarity class into one another. That is, ~Oma x can be converted to ~ by a superposition of transformations 1, 

i.e., they are o-equivalent. Therefore, ¢ is o-equivalent to %.  

The lemma is proved. 

Thus, a = o~,~ if there exists a signature ~o such that o = % and category q, is F-complete in I2,,. A necessary and 

sufficient coincidence condition is provided by the following lemma. 

L E M M A  3. Group a coincides with group o*,~ if and only if the following conditions are satisfied: 

V (il , Jl ), (i2,/'2) E 7 "' : S(i,, jr) = S(i2,/'2) 

(3  g E or: g(S(i , ,  ],)) = S(i2 '/'2); g( i3 '  ]3) ff S(it,/.,) g(i3 ' ]3) = (/3,/'3)7, (3) 

V (il , 1'17, (i2, ]2) G }' m : S(i, "J,) ("1 S(ia, 1"2) = Q~ (4) 

(3  g E a : g(S(i, , j,)) = S(i2, J2); g(S(i2.1"2) ) = S(i, . J,) 

g(i3,  ]37 ff S(i,,  it) LI S(i2,/2) g ( i a '  ]3) = (/3, ]3)7, 

and the sets are taken over ¢~. 
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Proof, If  group cr coincides with group %~, substitutions are found in group a that satisfy conditions (3) and (4), since 

signature ~% is permissible and satisfies condition (1), according to earlier Lemma 4 [7]. Necessity is proved. 

As has been shown, a _C a~a Therefore, it is sufficient to show that %a _C a. 

Let us examine an arbitrary substitution g of a~, o. Substitution g transforms any block w into itself or into another 

block. Let w I . . . . .  wP be blocks that g converts into themselves. Then we can represent g as a composition of substitutions 

g = h of 1 ....ofp , where fk  is a substitution that transforms block w k into itself but does not change the other pairs of S and 

h is a substitution that either leaves all elements of the block unchanged or converts the block to another block. Since g 

transforms sets into sets, substitutions f 1 . . . . .  f P  also transform sets into sets. Therefore, f 1 . . . . .  f P  are contained in a, 

according to condition (3). We shall examine the effect of substitution h on the set of blocks. Any substitution can be 

represented as a product of transpositions. Therefore, h can be represented as h I o...oh t , where h/c is a substitution that changes 

the places of two blocks but leaves in place the pairs that do not belong to those blocks. According to condition (4), h 1 . . . . .  

h t also belong to tr. Since f 1 . . . . .  f P  and h 1 . . . . .  h t belong to or, their product g also belongs to tr. 

The 1emma is proved. 

Definition 2. A group a is a functional group if a = a~ocr . 

Before describing the functional groups, let us introduce a few definitions. 

Def'mition 3. The area of action of a nonunique subgroup g of a symmetric group % that acts on set S is the set of 

elements of S that are not stationary with respect to g. For a uniqu e subgroup, we shall assume that any subset of S is an area 

of action. 

Def'mition 4. Two pairs of S are connected if they belong to the same functional-similarity class or are contained in 

the same block. 

We see that the connectedness relationship is an equivalence relationship and, therefore, specifies the partitioning of 

S into equivalence classes, which we shall call cormectedness domains and denote by the symbol 6 with indices. 

Definition 5. A cell is the set of elements of a block that are contained in a given functional-similarity class. 

Notation: V kmn, where k indicates the connectedness domain, m the block, and n the number of the cell in the block. 

We shall formulate a lemma, whose proof will be given below. 

LEMMA 4. All blocks that are contained in the same connectedness domain have the same cardinality and consist 

of the same number of cells of equal cardinality. 

Thus, on set S the functional signature and its corresponding functional group specify the following system of subsets: 

cormectedness domains, which are divided into blocks, which consist of cells. 

Two more concepts are required to describe the structure of functional groups. 

Def'mition 6. Let gl . . . . .  gn be isomorphic subgroups with % that have nonintersecting areas of action and letf/c be 

an isomorphism that transforms gl into g/c. Then the consistent product of groups gl . . . . .  gn is a group consisting of 

substitutions of the form a~/] (a)°. . .  °fn(a), where a runs through group gl. 

Notation: gl [[... 11 gn" In the figures, a consistent product of groups wiU be depicted as a rectangle that encloses those 

groups. 

Definition 7. A subgroup a 0 is a base subgroup if it transforms any element of the area of action into any other and 

if no substitution of that group has fixed elements in the area of action. 

Base groups will be denoted by the character ~- with indices. In the figures, base groups will be represented by 

triangles. 
Examples of base groups are cyclic groups that have been generated by a substitution whose order coincides with the 

cardinality of the area of action and transitive groups without fixed elements. 

Now we shall provide an overall survey of the structure of functional group or. 

Functional group cr is direct product of groups G 1 . . . . .  GP, whose areas of action are connectedness domains. 

Each group C~ is a direct product of groups H/C and Sh/c. G r o u p / ~  acts on the set of blocks of a given cormectedness 

domain as a symmetric group. Group Sh k leaves the blocks in place while changing the places of the pairs within them. 

Group Sh k is a direct product of conjugate in % subgroups a 1 . . . . .  ark, whose areas of action are blocks (r k is the 

number of blocks in connectedness domain ~) .  

Each group am is a consistent product of isomorphic base subgroups whose areas of action are cells of the block on 

which a m acts. 
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Fig. 1 

Fig. 2 

We now move to a more formal description of the structure of functional groups, We shall first describe a type of 
substitution group that we shall call an F-group and then show that a group is functional if and only if it is an F-group. Objects 

that belong to F-groups will be indicated by asterisks. 
The F-group to be described is a subgroup of a symmetric group a 0 that acts on the set of pairs S = {(1, 1) . . . . .  (q, 

1)}. 
This set is divided into p subsets each of which consists of rktkZ k elements (k = 1...p, rk, tk, Z k are arbitrary natural 

numbers). The subsets will be denoted as ~ .  Each of them is divided into r k subsets wkm, of equal cardinality: ] w~m, ] = 

t/cz k. Each of subsets wkm, is divided into t k subsets l~mn, of cardinality zk, 
We specify for each k a family of substitutions f kin, m = 2 . . . . .  r k, that transform wkl, and w~m, into one another and 

leave the remaining elements of S unchanged. 
For each vkln,, k = 1 . . . . .  p, n = 1 . . . . .  t~, we specify a base group rkln,, where for a fixed k all groups rktn, must 

be isomorphic. 
We define group ok1, as a consistent product ~ l 1[ ..o II ~ t~ (Fig. 1). In the figures, single and double lines connect 

isomorphic and conjugate groups, respectively. 
We define groups o~, z . . . . .  ~rk as follows: or, km = f k , n ~ l  0ekm)- I ,  i.e., as subgroups that are conjugate to ok1, 

with respect to fkm. 
r~ 

Group Shk, is defined asa  direct product 1-I ak*m ; (Fig. 2). A direct product is represented by an oval in the figures. 
r n = l  

Group/./k, is group that has been stretched to the set of substitutions ~km}. Sincefkm specifies the transposition of 

the first and mth blocks,/_/k, acts on the set of blocks as a symmetric group. In the figures,//~, is indicated by a rhombus. 
k ~ (Figl 3). Group C/c, is defined as Sh, x 14, 

P 

~-~ll 6~. (Fig. 4). Finally, we define an F-group as a direct product k -- 
Now we shall show that any functional group is an F-group. First we shall prov e Lemma 4. • 
Proof. Let blocks w ~i and w kj be two different blocks from the same connectedaess domain. Then the blocks contain 

elements from the same functional-similarity class. According to Lemma 3, we find that these blocks can be transformed into 
one another by a substitution of a. Therefore, all blocks from the same connectedness domain are of equal cardinality. 
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We shall show that all cells of the same block are of equal cardinality. We shall assume that cell V kil of block w ki 

contains t 1 elements and cell V ig2 contains t 2 elements, where t 1 > t 2. We fix element (il, Jl) in V kil. There exist t 1 - 1 

substitutions of  a that transform (il, Jl)  into different elements of ~ i l .  All of these substitutions must transform block w ki into 

itself, i.e., transform a fixed element (/2, J2) of V ki2 into elements of  V ki2. Therefore, there exist two substitutions that 

transform (ii, Jl)  into different elements and (i 2, J2) into the same elements. But this is inconsistent with the definition of  a 

block. That is, the cardinalities of  all blocks are equal. Since any two blocks of  the same connectedness domain can be 

transformed into one another by a substation of  a, the numbers of  cells in all blocks of a connectedness domain are the same. 

The lemma is proved. 

P 
L E M M A  5. a is a direct product of  groups whose areas of action are connectedness domains: 1-1 G k, D(G -'k) = 6 k. 

k=l 
Proof.  No substitution of  a takes a pair out of a connectedness domain. As was shown in Lemma 3, any substitution 

of a can be represented as / 1  o. . .ofPoh 1 o . . .  oh t ' where h 1 . . . . .  h t are transposition of  blocks and f 1 . . . . .  f P  each transform 

a corresponding block into itself, leaving the elements of  the other blocks unchanged. We select from this product substitutions 

that refer to each of  the cormectedness domains. (Each of the substitutions f 1 . . . . .  f P  and h 1 . . . . .  h t acts on the elements of 

only one connectedness domain.) The substitutions whose areas of  action do not intersect commute. Thus, group a is a direct 

product of groups whose areas of  action are contained in different connectedness domains. On the strength of  the assumption 

of the absence of  stationary elements, the areas of action of these groups coincide with the connectedness domains. The lemma 

is proved. 

L E M M A  6. 1. A group G k with area of  action ~ can be represented as a direct product Sh  ~ x H k. Group/_/k is 

stretched to the set of  transpositions f lm, m = 2 . . . . .  r k, which transpose blocks w kl and w ~m (r k is the number of  blocks in 

~k) and group Sh  k is the group of all substitutions of  G k that leave the blocks unchanged. 

rk 

2. Group Sh  tc can be represented as a direct product ]-I °~m ' where o ~m is a group that transposes the elements of  
m=t 

w km without moving the elements of  the other blocks, and all groups akm are conjugate for a given k. 
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Proof .  Any substitution g of  C$ transforms sets into sets (sets are considered according to the functional signature ~,~). 
We fix for each block w km a set S m. Let g(S m~) = S 'nh (S 'nh is a set corresponding to w/cm that does not necessarily 

coincide with Sin2). According to Lemma 3, there exists a substitution dm2 that transforms S'  "h into S r%. Therefore,  g 

can be represented as h°(d 1 °...*d r*) - 1 where h is a substitution that transposes sets S 1 . . . . .  sr/c. 

Group/_/k, which is made up of all possible substitutions that transpose S 1 . . . . .  S r/c, is contained in G t, according to 

Lemma 3. 

Group Sh k, by definition, contains all substitutions of G k that leave the blocks unchanged. A substitution g can be 

represented as a product of  elements of  Sh k and H Ic, i.e., G t = Sh/c × I-1 ~. 
It is obvious that any substitution of Sh/c can be represented as d 1 o...od r*, where d 1 . . . . .  drk are substitutions with areas 

of action w kl . . . . .  w/cr/c. According to the definition of S~ ,  groups o ?a . . . . .  o '~r* , which consist of all substitutions that 

rk 

transpose the elements of  a given block, are contained in S~ .  Thus, S h k =  I-I °~'n" Any two groups akm~ and ~ r ~  are 
r r l = l  

conjugate with respect to the element of  ~ that transposes sets S m~ and S ~ .  The lemma is proved. 

L E M M A  7. Group a km is a consistent product of  the base groups T/cmn whose areas of  action are cells of  V/cmn, n = 

1 . . . . .  t k . 
Proof .  We define group ~- Icmn as follows: the area of  action of the group is the cell V/cmn on whose area of  action the 

substitutions of 7 kmn coincide with the substitutions of a/cm. Let the mapp ingfn :7  kmn __, a/cm place a substitution of r kmn in 

correspondence with the substitution of  cr km that generated it. We shall assume that substitutions gl and g2 of a/cm generate 

the same substitution of T/cmnl and different substitutions of  ~-/cmnL Then there exist pairs (il, J l )  of  v/cmnl and (/2, J2) of  V/cmn2 

such that gl (il , -il ) ~ g2(/2 , ]2), gl (/2, .i2) = g2(/2, ]2), and this'is in conflict with the definition of a block. 
Group ~- kmn is a base group, since, according to the definition of a block, none of its nonunique substitutions can have 

fixed elements, and according to the definition of a functional-similarity class, it contains substitutions that transform any given 

element of  V lcrnn into another. 

All groups r/cmn are isomorphic with a kin; isomorphism is established by the mapping o f f  n. 
According to the definition of r ~rnn, any substitution g of a km can be represented as g = ( f l )  - 1 (g) °...* (ftk) - 1 (g), 

from which it follows that o km is a consistent product of groups r kmn, n = 1 . . . . .  t/c. The lemma is proved. 

It can be concluded on the basis of Lemmas 4-7 that each object of the def'mition of an F-group corresponds to an 

identical object that is associated with a fixed group: 0~. corresponds to 6/c, Gk. to G g, etc. 

We shall now show that any F-group is a functional group. 

L E M M A  8. If  o is an F-group, a = a~a. 

Proof .  It follows from the definition of an F-group that sets wkm, are blocks with respect to a and 
rk 
U V,  krnn are 

m = l  

functional-similarity classes. 

If (il, Jl)  and (/2, J2) belong to the same functional-similarity class (first alternative of  Lemma 3), (il, Jl)  and (i2, J2) 

belong to the same cell l/cmn.. Then their corresponding sets S(/a, Jr) and S(i~, J2) of functional signature ~o a coincide in 

element composition with block w~m.. On the strength of the def'mition of ~mn,, a substitution g is found in o/an. that 

transforms (il ,Jl) into (i2,J2), according to the construction of¢o,  and S(~, Ji) is transformed into S(i2, J2)" Since D ( ~  'n) = wk. m, 
the remaining elements of  S are unchanged. Thus, a (okra. is a subgroup of a) contains a substitution required to satisfy the 
condition of Lemma 3. 

. k~n and (i2, J2) belongs Now let ( i l , J l )  and (i2, J2) belong to different blocks. In this case, ( i l , j l )  belongs to cell v .  
to cell, where m I ¢ m 2. Then their corresponding sets coincide with blocks wk.ml and w. k '5  . A substitution h of/-/** is found 

that transforms these blocks into one another. With the aid of  substitutions s 1 and s 2 of ~ml and .o'~m2, we obtain a 

substitution s 1 o h os 2 that transforms S(i,, JL): into S(i2, J2) and vice versa. The condition of Lemma 3 is satisfied. 

We shall formulate the result obtained in Lemmas 4 -8  as a theorem. 

T H E O R E M .  In order that for a group a that does not contain stationary elements there exists a signature ~o such that 

a = % and such that category ~ is complete in category E¢, it is necessary and sufficient that o be an F-group. 

This theorem answers the question raised at the beginning of the article. 
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