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Abstract
This paper presents a system deployed on parallel clusters to man-
age a collection of parallel simulations that make up a computa-
tional study. It explores how such a system can extend traditional
parallel job scheduling and resource allocation techniques to incor-
porate knowledge specific to the study.

Using a UINTAH-based helium gas simulation code (ARCHES)
and the SimX system for multi-experiment computational studies,
this paper demonstrates that, by using application-specific knowl-
edge in resource allocation and scheduling decisions, one can re-
duce the run time of a computational study from over 20 hours
to under 4.5 hours on a 32-processor cluster, and from almost 11
hours to just over 3.5 hours on a 64-processor cluster.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design—Batch processing systems, Distributed
systems, Hierarchical design; C.5.m [Computer System Organi-
zation]: Computer System Implementation—Miscellaneous

General Terms Design, Performance

Keywords Parallel System, High-throughput computing

1. Background
Computer simulation has become an integral part of the scientific
method, often delivering deeper insights into complex physical pro-
cesses than possible using only the traditional dyad of theory and
experiment. Often, such insights manifest themselves in the scien-
tific exploration process in the form of computational studies built
out of multiple computational experiments corresponding to indi-
vidual runs of simulation software. Examples of such studies range
from exploration of design spaces in engineering to molecular sim-
ulations for drug design.

Traditionally, much research effort has been put into discover-
ing ways to speed up the performance of a single simulation under
high levels of parallelism. However, relatively less effort has been
directed toward improving the performance of entire computational
studies. As gains in computation power is increasingly being deliv-
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ered on ever-higher levels of parallelism, the ability to exploit paral-
lelism inherent in computational studies becomes more important.

One example that demonstrates this rift is in Design Space Ex-
ploration (DSE). DSE is a type of computational study used in
various disciplines such as automotive design, mechanical engi-
neering, electrical engineering, chemical engineering and medicine
(15; 21; 9; 5; 14). An example of multi-experiment studies, DSE
relies on multiple executions of a simulation code using different
input parameters to discover a region of interest. Each execution
would simulate, for example, the dynamics of a car crash under
variously-shaped body frames, or the accuracy of a chemical sim-
ulation software under different values of model parameters. Out
of all these simulations, a subset is then identified as the ’best’ and
singled out as the belonging to the region of interest.

Since the simulations in a DSE are completely independent of
each other, DSE can be a trivially parallel problem. However, as
shown in (1) and (23), if the runtime system understands the char-
acteristics of the underlying DSE, the system can use the results
of earlier simulations to guide the exploration in later simulations,
significantly reducing the overall size of the search space. Addi-
tionally, (22) shows that, if the runtime system can store the results
and internal states of some early simulations, they can be reused
by later simulations, thus reducing the runtime of later simulations
and the overall run time of the DSE.

Hence, not all simulations are created equal: some simulations
may be more important because their results and internal states
have more reuse potential, or because their results are beneficial to
trimming the design space in later exploration. Thus, if the system
can devote more computational resources to these higher-priority
simulations, it could improve the runtime of the DSE.

(23) and (22) have shown how application-specific knowledge
can be used to improve the performance of computational studies
made up of multiple execution of serial simulation codes. This pa-
per expands on that work by looking at how application-specific
knowledge can be used to schedule and allocate resources for com-
putational studies made up of multiple execution of parallel simula-
tions codes. In particular, we examine how to expand on the work in
traditional parallel job scheduling, described in Section 6, to incor-
porate application-specific knowledge. This knowledge helps the
system decide which simulations to run, and in what order, as well
as to decide which processing elements to devote to execute each
simulation.

Section 2 describes the formulation of the multi-experiment
computational study problem, and presents the helium model val-
idation study (5), which serves as a running example throughout
the paper. Section 3 introduces the SimX system, a runtime system
designed to conduct multi-experiment studies. Section 4 describes
how application-level knowledge can influence system decisions



made by SimX. In Section 5, we evaluate the effectiveness of vari-
ous types of application-level knowledge in the helium model vali-
dation study. Section 6 provides an overview of previous work, and
we conclude in Section 7.

2. Problem Description
This section presents the helium model validation study, which
serves as the running example for this paper.

2.1 Helium Model Validation
To understand how gases mix during a fire, a computational model
for simulating turbulent mixing of gases of different densities was
developed at the University of Utah Center for the Simulation of
Accidental Fires and Explosions (C-SAFE). The model is imple-
mented in an application known as ARCHES (16), which is built
using the UINTAH Problem Solving Environment (PSE) (4).

To validate the model, the results computed by ARCHES are
compared against the results obtained from a real-life experiment
(5). In the experiment, helium is pumped into a cube-shaped con-
tainer from an inlet at the bottom of the container. The centerline
gas velocity profiles are measured at three heights. These mea-
sured results are then used to compare against that computed by
ARCHES.

ARCHES, however, contains many input parameters whose ex-
act values are not precisely known. These include model parame-
ters, such as the Prandtl number, the turbulent mixing model, or the
Smagorinsky coefficient; simulation parameters, such as the reso-
lution of the simulated domain, the solver used in timestepping, and
if the solver is an iterative one, its residual tolerance; and experi-
ment parameters, such as the helium inlet’s gas velocity, or the size
of the inlet. The goal in the validation study is to find the values
of these parameters such that the difference between the center-
line velocities produced by the simulation code and the centerline
velocities measured in the real-life experiment are minimized. Fig-
ure 1 shows the centerline velocity profiles produced by running
ARCHES twice, each time using a different set of input parameters
(or configuration). The velocity profiles of the two configurations
are overlaid on top of the measured velocity profile. Configuration
A is clearly superior to Configuration B at height 0.2, as its velocity
profile is a better match for the measured profile, but at height 0.4,
the two configurations are more evenly-matched.

Validation study is a multiple objective optimization problem,
where the user searches the space spanned by the input parameters
in order to optimize for multiple objectives, in our case, the differ-
ence of the centerline velocity profile at each height.

For this paper, we consider a simplified version of the study. We
only explore two input parameters: the Prandtl number and inlet
velocity, and measure the “goodness” of each set of inputs using
two centerline velocity profiles instead of three.

To conduct the simplified study, the user executes ARCHES
multiple times, each time using a different combination of Prandtl
number and inlet velocity. At the end of each execution, the user
takes the centerline velocities from the execution at two heights,
and calculates the difference between the measured and simulated
velocities at each heights. He then looks for the set of input param-
eters that minimize those differences.

This simplified version preserves the properties of the full ver-
sion; the only difference is that there are fewer objectives and fewer
input parameters. The principles learned from designing the run-
time system to support this simplified version are applicable to the
full system.

2.2 Pareto Optimization
Keeping with the terminology used in (23), (24), and (22), we
refer to the space spanned by Prandtl number and inlet velocity

as the Design Space, each combination of Prandtl number and inlet
velocity values as a design, and the optimization problem as Design
Space Exploration (DSE). The velocity profile difference on each
height is known as a Performance Metric, and the space spanned
by performance metrics is known as the Performance Space.

As discussed above, the validation study is a multi-objective op-
timization problem. A common strategy for multi-objective opti-
mization is Pareto optimization (e.g., (10), (21)). Pareto optimiza-
tion seeks to find a set of designs, with each Pareto-optimal design
corresponding to a different trade-off of optimization objectives,
e.g., two designs may be equally desirable, one for its good veloc-
ity profile match at a lower height, and the other for its good match
on a higher height.

A Pareto-optimal design has the property that improving one
measure can only be achieved at the expense of another, e.g., a
design is Pareto-optimal if the velocity difference on one height
cannot be improved while holding the velocity difference on the
other height fixed. This set of optimal designs is the Pareto frontier.

Figure 2 shows the result of the simplified validation study. A
region of the design space is sampled on a regular grid (left), and
their performance metrics are plotted on the performance space
(right). The simulation code can be thought of as a function that
maps a point on the design space to a point on the performance
space. The North-East most designs on the performance space
(circled in red) form the Pareto Frontier. If a point is on the Pareto
Frontier, there is no other point on the design space that yields a
lower value on both performance metrics. The goal of the Pareto
Optimization is to discover where on the design space is the Pareto
Frontier.

2.3 Implementation Details
Like all UINTAH applications, ARCHES is an MPI-based timestep-
ping application. It is designed to run on parallel clusters, and uses
a shared file system to store the simulation result and checkpoints.

ARCHES simulates gas flow in three dimensions. For the ini-
tial condition, the simulation domain is filled with air with zero
velocity. A boundary condition is placed in the gas inlet, where he-
lium gas is introduced at constant velocity. At each timestep, the
pressure, velocity, and gaseous mixture in the simulation domain
is updated. Due to the buoyancy of helium and the velocity with
which the helium gas is pumped into the system, the simulated do-
main undergoes a “puffing” motion (Figure 3), where the gas at the
central part of the domain is pushed upwards, resulting in a veloc-
ity profile like Figure 1. ARCHES writes checkpoints (the pressure,
velocity, and gaseous mixture) to disk periodically, and continues
to timestep until the total kinetic energy of the simulation domain
reaches a steady state.

The time to execute an ARCHES run thus depends on the per-
timestep run time and the number of timesteps required to reach the
steady state. More specifically, it depends on the input parameters
of the particular run - simulation parameters like grid resolution and
residual tolerance affect the per-timestep run time, and model and
experiment parameters such as the Prandtl number or Smagorinsky
coefficient affect the time it takes for the system to settle.

For the simplified version of the study, an ARCHES run typi-
cally takes more than a half-hour on 32 processors, which is pro-
hibitively long: it would take over 20 hours to complete a study
that requires achieving the grid resolution shown in Figure 2. Con-
sequently, the user can only explore a few points in an ad hoc fash-
ion.

However, this paper shows that, by combining knowledge spe-
cific to the validation study with traditional scheduling techniques
in parallel systems, the user could explore the design space auto-
matically, systematically and efficiently, and complete the study in
a few hours.
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Figure 1. Comparing the velocity profiles of two input configurations at two heights. Configuration A’s velocity profile is a better match
with the measured profile than Configuration B’s at height = 0.2. At height = 0.4, the two configurations are more evenly-matched.
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Figure 2. Pareto Optimization Validation: the design space (left) is sampled on a regular grid, and the performance metric is plotted on the
performance space (right). The Pareto Optimal designs are circled in red in both plots.

While this work focuses on the validation study, the techniques
used here can easily be generalized to other Pareto optimization
studies or studies involving multiple parallel malleable or moldable
simulations.

3. SimX
The Parallel System Software for Interactive Multi-Experiment
Computational Studies (SIMECS, or SimX for short) is a runtime
system designed for conducting interactive computational studies
on parallel clusters (23). We use SimX as a test bed to experiment
with incorporating application-specific knowledge in the running of
the helium model validation study. This section offers an overview
of the SimX architecture and interface.

3.1 SimX architecture
The SimX architecture is presented in Figure 4. It shows three types
of processes. The manager process runs on the front-end of the
cluster and interacts with the user. The worker processes run on the
compute nodes of the cluster and run the actual simulation code.
The Spatially-Indexed Shared Object Layer (SISOL) servers run

on the compute nodes and facilitate the sharing of data between
worker processes.

A typical workflow in SimX proceeds as follows.
After the user is allocated a partition of the cluster, he starts up

the SISOL servers on one or more of the assigned cluster nodes, and
launches a single MPI job on the rest. Each of these MPI processes
is a worker process. He then starts up the manager process on his
front-end machine.

The user uses the UI module in the manager process to specify
the DSE he wants to conduct. A module known as the Sampler
decides which computational experiments need to be executed,
and puts those experiments into the Task Queue. A third module,
the Resource Allocator, decides which worker processes should be
assigned each particular task, and sends this task over to the worker
processes, instructing them to form into a processor sub-group and
run the simulation.

Each worker process is part of two MPI communicators: the
global communicator (i.e., MPI COMM WORLD), used by the
SimX system to form processor groups, and a sub-communicator,
used by the simulation code to run the application. Initially, the
sub-communicator is a duplicate of MPI COMM WORLD. When



Figure 4. An overview of the SimX architecture.

a worker process receives an instruction from the Resource Allo-
cator to form a group, it destroys its old sub-communicator, and
rebuilds a new MPI sub-communicator with the other processes
making up the same group. The Resource Allocator thus acts as
a global coordinator: by sending reconfiguration directives only to
the worker processes involved in a reconfiguration, it can form and
destroy groups without involving the other worker processes.

Once the process group is formed, the worker processes are es-
sentially Simulation Containers; they do little more than to serve
as a substrate on which the simulation code is run. When the Sim-
ulation Container receives a simulation to run, it will consult the
SISOL first to see if there are opportunities to optimize the simula-
tion run (see Subsection 4.1). Then it hands over the thread of exe-
cution over to the simulation code. The simulation code may peri-
odically return control to the Simulation Container to check if there
is a need to terminate the simulation early (see Subsection 4.3).
When the simulation is finished, the Simulation Container writes
the simulation result into SISOL to enable their use in optimizing
future simulation runs. It also executes an evaluation module to cal-
culate the performance metric for the experiment just conducted. It
then sends the performance metric back to the manager process.

As the manager process receives simulation results, they are
sent to the UI to update the user of the progress of the study, as
well as to the Sampler module so it may adjust the contents of the
Task Queue (see Subsection 4.2).

The modular structure of SimX separates out key functionalities
that optimization techniques can be adapted onto each module
independently as dictated by the needs of the particular DSE being
conducted.

3.2 SimX interface
In the workflow described above, only the simulation code (in our
case, ARCHES) and the evaluation code (in our case, the velocity
profile comparator) are provided by the user. The UI module is part
of SimX/SCIRun (24; 13; 12). The Sampler, Task Queue, Resource
Allocator, and Simulation Container modules, as well as the SISOL

servers, are all part of the SimX package. However, these modules
have a set of APIs that allows the user to customize their behaviors.
This set of APIs is the mechanism through which the user can
provide application-specific knowledge to SimX.

Table 1 shows a simplified version of the Sampler module’s
API. The Sampler module converts user specifications of the DSE
into sample points in the design space for which simulations need
to be run. In our case, the Sampler module issues a list of <Prandtl
Number, Inlet Velocity> tuples, each one representing a set of input
parameters to an execution of ARCHES.

The Sampler module occupies an intermediate position between
system and application software. Adding domain knowledge to the
Sampler is likely to enhance its performance, but narrow the appli-
cability of the system; making the Sampler completely application-
independent may result in suboptimal sampling strategies in some
cases. In our case, we use a sampler module specialized in Pareto
optimization. This Sampler module is discussed at length in Sub-
section 4.2.

The Task Queue represents a list of experiments issued by
the Sampler. There, a subset is selected into a batch. The batch
consist of experiments that are determined by application-domain
knowledge to be more important, and thus need to finish early.
The Task Queue will then issue the tasks that are batched first.
When all tasks in a batch are executed, a new batch is selected.
If no task is available then (i.e., the Task Queue is empty), then
the Task Queue will ask the Sampler to issued more experiments.
The user can employ the Task Queue’s API (Table 2) to tell SimX
how the experiments on the Task Queue ought to be batched, as
well as the computational resources that should be assigned to each
experiment in the batch. Subsection 4.1 discusses how the Task
Queue is used. As is shown by the next section, the user can adapt
the system’s scheduling policy to the needs of his application by
controlling how experiments are batched.

The Resource Allocator is responsible for assigning the batched
tasks from the Task Queue to the worker processes. It is also re-
sponsible for configuring the worker processes so that the sizes of



Inferface Explanation
struct StudyID
{vector<range> DesignSpaceRanges,
SamplerType, InitialSamplerOptions}

A data structure to identify a DSE study.

SetCurrentStudy(StudyID) Called by the UI module to initialise a study.
registerResults(Experiment, Values) Registers the result (performance metric) of an experiment.
getNextPointToRun(hasPointReady) Gets the next experiment to issue from the current study.

Table 1. SimX interface to the Sampler.

Inferface Explanation
addTask(Experiment e) Called by the Sampler. Adds an experiment to the Task Queue.
CreateBatch
(set<Experiment>*)

A customizable function that selects a subset of the tasks on the Task Queue and mark them as being
in the current batch.

GetIdealGroupSize() The user uses this function to tell the Task Queue the ideal number of processors to be assigned to
each task on the current batch. All task in the batch get the same number of processors.

AssignNextTask(groupID) Called by the Resource Allocator. Removes a task from the current batch and assigns it to the worker
process group identified by groupID)

Table 2. SimX interface to the Task Queue.

Figure 3. Visualizing the helium plume. Image courtesy of Chem-
ical Reaction Simulation group, University of Utah

process groups available will be as close to the requirements of the
task (corresponding to the return value of GetIdealGroupSize()) as
possible. As discussed above, SimX normally manages this module
without the user’s intervention. However, the user can override the
default SimX policy and create their own worker process group-
ings by calling the Resource Allocator API. This API consists of
the following function:

reconfigure(const int* assign)

which creates one or more worker process groups and destroys
old ones. The assign array is an array of length N, where N is the
total number of worker processes involved in the study. The worker
processes’ new group assignments are stored in this array, indexed
by their global processor ranks. Worker processes with the same
assignments will form themselves into the same process group.
Subsection 4.3 discusses how application-specific knowledge is
used in the reconfigurations of worker process groups.

The Spatially Indexed Shared Object Layer (SISOL) pro-
vides implicit communication between simulation workers. In the
current implementation, SISOL is implemented as a variable num-
ber of stand-alone data servers and one directory server commu-
nicating through TCP/IP. The data servers store the actual objects,
in volatile memory, while the directory server stores the mapping
from spatial coordinates to data servers. Table 3 shows the SISOL
interface. Typically, objects on the SISOL are identified by their as-
sociated point on the design space, hence the objects are spatially-
indexed. Subsections 4.1 and 4.3 discuss how SISOL is used.

Section 4 explains how these interfaces are used in concert to
incorporate application-specific knowledge into running the helium
model validation study.

4. Application-Aware Allocation
To conduct the helium model validation study efficiently, SimX
makes use of various pieces of knowledge specific to the study.
This section explains how such knowledge is exploited and how
the required elements are introduced into SimX via its interfaces
described in Subsection 3.2.



OPERATION SIGNATURE FUNCTION
Initialization int CreateSet(int setID, int typeID, int arity,

double *weights, int capacity)
Create object set of arity dimensions to store
objects of type typeID. The weights array
specifies a weighted Euclidean distance metric.

Registration int RegisterSet(int setID, void** objSet) Registers client as participant; retrieves object set
metadata in objSet.

void UnregisterSet(void* objSet) Unregisters client.
Access void Insert(void* objSet, double* coords, void* obj)

void Remove(void* objSet, double* coords)
Insert/remove an object into/from the set.

void* StartRead(void* objSet, double* coords)
void* StartWrite(void* objSet, double* coords)
void EndRead(void* objSet, double* coords, void* obj)
void EndWrite(void* objSet, double* coords, void* obj)

Start/end a read/write operation on an object.

Query void QueryClosest(void* objSet, double* coords, int
numToLookup, int* numRetrieved, double** retrCoords)

Query for up to numToLookup closest neighbors

Table 3. Interface of the spatially-indexed shared object space layer (SISOL).

4.1 Reuse classes
As discussed in Subsection 2.3, ARCHES run time depends on the
per-timestep run time and number of timesteps required to reach a
steady state. An inherent characteristic of ARCHES is that, if two
simulations with the same inlet velocity are run, it is possible to
use one simulation’s final state as the initial condition of another.
By using the first simulation’s final state instead of the default
initial condition, the second simulation can reach its steady state
with fewer number of timesteps. This is a type of result reuse,
where the result from one simulation can be used to speed up the
execution of another. On average, without reuse, ARCHES takes
2900 timesteps; with reuse, it takes 1641 timesteps.

However, as pointed out above, only simulations with the same
inlet velocity can reuse each other’s results. We refer to experiments
that can reuse each other’s final states as belonging to the same
reuse class.

SimX’s Task Queue uses the knowledge of reuse classes to
select its batches. When selecting a batch, it takes one simulation
from each reuse class without a completed simulation (of the set
referred to by the current tasks in the Task Queue). This way, the
Task Queue can ensure that all subsequent runs have a result to
reuse.

Another benefit to this batching policy is that the simulations
issued within the same batch are either all starting from scratch,
or all starting from a checkpoint. This way, the simulations issued
together will have more comparable run times, limiting the sizes of
“holes” on the scheduling graph.

To enable result reuse, a database of checkpoints is stored in
SISOL. When ARCHES finishes, it will have written the simulation
result on the disk as the last checkpoint. The Simulation Container
writes this disk location into SISOL, using the <Prandtl number,
Inlet Velocity> tuple as its spatial index. When a new simulation
starts, the Simulation Container checks against SISOL to see if a
checkpoint with the same inlet velocity is already on disk. If so, it
instructs ARCHES to start from that checkpoint instead of starting
from scratch.

4.2 Active Sampling
Another type of result reuse is Active Sampling. In our simplified
validation study, we issue experiments on a 6x6 grid on the design
space (see Figure 2). However, as explained in (23), it is possible to
explore the space without running all 36 simulations. The Sampler
can first issue experiments on a sparser 3x3 grid to identify a
coarse version of the Pareto Frontier. This version represents a
“promising” region of the design space. Then the Sampler issues
experiments only for the finer grid points that are neighbors to the

coarse Frontier. Using this technique, we can reduce the number
of simulations needed from 36 to 24. Note that the active sampler
would provide an even larger benefit for real-life computational
studies involving a larger base number of experiments.

For SimX to take advantage of this application-specific knowl-
edge, we specify the Active Sampler as the sampler type when we
initiate the study. Note that the Active Sampler module (provided
by SimX) is not only specific to the helium model validation study:
it can be used for any Pareto Optimization studies.

This sampling technique is only possible because SimX knows
the DSE being conducted is a Pareto Optimization. Unlike tradi-
tional parallel job scheduling systems, SimX is not interested in
the results of the individual simulations - it is only interested in the
aggregate, i.e., the Pareto Frontier. Therefore, it has freedom not to
run some jobs if it is confident that they will not alter the aggregate.

4.3 Scaling behavior
Like most parallel codes, ARCHES does not scale perfectly be-
cause of parallelization overhead. The time it takes to execute a
single timestep on different numbers of processors in a cluster en-
vironment is shown in Table 4.3.

The non-linear scaling behavior has several implications. First,
in order to minimize parallelization overhead within each process
group, SimX would like to schedule “long-and-thin” scheduling
graphs - many executions running concurrently on relatively small
process groups. Knowing the exact parallelization overhead can
help Task Queue decide the optimal batching policy.

For example, consider a case when 32 processors are assigned to
conduct a study, and 6 simulations with the scaling behavior shown
in Table 4.3 need to be run. Assume for the moment that they all
take the same exact number of timesteps, n. The optimal batching
would be to issue two simulations concurrently first, and then issue
the remaining four. That way the total time will be 0.8n seconds
to execute the first batch (each simulation getting 16 workers),
and 1.14n seconds to execute the second batch (each simulation
getting 8 workers), totaling 1.94n seconds. However, if there are 7
simulations to be run, it is better to issues all 7 in a single batch, and
finish in 1.95n seconds (each simulation getting 4 workers, with 4
workers left idle).

The optimal way of grouping experiments in batches can be
found by dynamic programming. Let Tm,n be the time to complete n
jobs with m batches or fewer. T1, j can be looked up from Table 4.3.

Then, for 2≤ m:

Tm,n = min1≤i≤n(Tm−1,i +Tm−1,n−i)



No. of CPUs 4 8 16 32 64
Run time (s) 1.95 1.14 0.80 0.60 1.82

Table 4. ARCHES scaling behavior: run time per timestep

Here, i represents the “dividing point” of the batch: the n jobs
are divided into two sub-batches of i jobs and n− i jobs, which
themselves could be further sub-divided. The optimal way to sched-
ule the n jobs can then be looked up from the dividing points used
to calculate the Tm,n table.

To realize the benefits from scaling behavior-based batching,
during initialization, the Task Queue loads the scaling behavior of
the ARCHES code, and calculates the ideal batch sizes. When it is
asked to create batches, it tries to batch the tasks according to the
ideal batch sizes.

In the current implementation, SimX requires the user to explic-
itly specify the scaling behavior of ARCHES. A more sophisticated
implementation of SimX can conceivably infer the scaling behav-
ior automatically by performing test runs of ARCHES during the
study’s initialization.

4.4 Preemption
Unfortunately, the “ideal” batch sizes assumes that every simu-
lation executes the same number of timesteps. Since simulations
do require different timesteps, there will always be “holes” left
on the scheduling graph. Separating checkpointed runs from non-
checkpointed runs can mitigate this problem, but does not solve it.

Luckily, like most checkpointing-capable MPI applications,
ARCHES is not only moldable (can run on different number of
processes) but also malleable (can adjust to changing allocations at
run time). ARCHES leaves checkpoints periodically, so when idle
worker processes are detected, it is possible to preempt an ongoing
simulation, assign the idle processes to the process group that has
been working on the simulation, and restart the simulation from
the last checkpoint using the resulting process group, now with a
larger number of worker processes. This preemption policy fills up
the “holes” on the scheduling graph by “spreading out” existing
simulations, at a cost of having to re-do the work that the original
process group has done from the time it left the last checkpoint up
to the time it was preempted.

The scaling behavior can help decide when it is beneficial to
preempt an existing simulation. Suppose a simulation has com-
pleted a fraction σ of work between the last checkpoint and the next
(0 < σ < 1), and some worker processes become available at that
time. Let α be the speedup ratio between the original process group
and the expanded process group (i.e., assuming perfect scaling, α

= original group size / expanded group size). Then, in order for the
preemption to be beneficial, the time it takes for the new process
group to advance to the next checkpoint from the last checkpoint
must be smaller than the time it takes for the original group to ad-
vance to the next checkpoint from where the simulation currently
is (otherwise, the preemption should performed at the next check-
point). Therefore, for preemption to be beneficial, the inequality
must hold:

α < 1−σ .

To help carry out the preemption strategy, a database is kept in
SISOL to keep track of idle process groups. Every time a process
group finishes its simulation and is not assigned a new one, the
information about its processors are written into the database.

As discussed previously, while ARCHES runs, it may peri-
odically return control to the Simulation Container. The Simula-
tion Container can look for idle worker processes on the SISOL

database and decides whether to claim them. If it claims them, it
sets a flag in the database, terminates ARCHES early, and sends
back a “claim ticket” to the manager process. On the manager
process, when the Resource Allocator recognizes a claim ticket,
it sends a reconfiguration directive to the claimed processes. The
claimed processes and the original worker processes then form
themselves into a new process group, which continues the original
simulation from the last checkpoint left on disk.

5. Evaluation
To evaluate the performance of application-knowledge-enabled
SimX, we use a 128 processor cluster of 2.4GHz Intel Xeon nodes
each with 2GB memory and 1 Gigabit Ethernet interconnect to con-
duct the simplified version of the helium model validation study.
We used various configurations of SimX, enabling subsets of the
application-specific knowledge elements in order to measure the
impact of each piece of knowledge. The configurations are as fol-
lows:

Configuration A: Use Active Sampler. No result reuse. The
Task Queue issues one simulation at a time to 32 processors. No
preemption.

Configuration B: Same as Configuration A; enable result reuse.
Configuration C: Same as Configuration B; the Task Queue

issues simulations according to the optimal batch size based on
ARCHES’s scaling behavior.

Configuration D: Same as Configuration C; the Task Queue
gives the first member of each reuse class higher priority.

Configuration E: Same as Configuration D; enable preemption.
In addition to the five configurations above, we estimate the

time it would take to conduct the study with no application-specific
knowledge, i.e., a brute force search with no reuse, no preemption,
and always using 32 processors per simulation. We call this Con-
figuration O.

For each configuration, we conduct the study on a set of 32 or 64
worker processes, 1 manager process, and 1 SISOL data server. The
same problem size is used on all runs. We record the total wall clock
time it takes to complete the study, the worker process utilization
rate, the average run time of a single simulation, the percentage
improvement over the previous configuration. The results are listed
in Table 5.

Comparing Configurations O and A shows that Active Sampling
cuts down the total run time by 33% and 27% on 32- and 64-
processor configurations, respectively. The benefit is an artifact of
how the run time of Configuration O is estimated: the brute force
search requires 36 instead of 24 experiments. So, on 32 workers,
Configuration A is estimated to be 33% faster. On 64 workers,
however, since Configuration A always uses 32 processors per
simulation, when there is only one experiment left in the system,
half of the workers are idle, hence the non-100% utilization rate
and lower-than-33% speedup.

Comparing Configurations A and B shows the benefits of
reusing results from prior checkpointed runs. The benefit is de-
rived from the reduced average per-simulation run time: down to
24.7 mins for 32 processors and 26.8 mins for 64 processor runs.
That translates to a 28% (32 processors) and 26% (64 processors)
reduction in the study’s run time.

Comparing Configurations B and C shows the benefits of ideal
batching. More simulations are being issued concurrently, each on
fewer processors. This increases individual simulation run times,
but reduces the overall amount of work because less time is spent in
the communication overhead in individual simulations. The overall
run time of the study is reduced by a further 38% and 33% on 32-
and 64-processor configurations respectively.

Comparing Configurations C and D shows the benefits of using
the knowledge of reuse classes in batching decisions. Figure 5
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32 workers 64 workers
Config- Total time Utilization Average Incremental Total time Utilization Average Incremental
uration Rate simulation improvement Rate simulation improvement

run time run time
O 20 hr 35 min 100% 34.3 min N/A 10 hr 53 min 100% 36.3 min N/A
A 13 hr 44 min 100% 34.3 min 33% 7 hr 55 min 92.74% 36.3 min 27%
B 9 hr 52 min 100% 24.7 min 28% 6 hr 0 min 93.33% 26.8 min 26%
C 6 hr 10 min 71.08% 63.4 min 38% 4 hr 3 min 60.60% 36.1 min 33%
D 5 hr 10 min 71.29% 39.7 min 16% 3 hr 37 min 70.00% 27.0 min 10%
E 4 hr 27 min 91.81% 33.5 min 14% 3 hr 41 min 93.67% 25.8 min 0%

Table 5. SimX performance on simplified helium model validation study

shows the scheduling graph of Configuration C on 32 workers. The
X-axis shows the time, and the Y-axis lists the 32 worker processes.
The graph shows which experiment each worker process is working
on at any moment, with each experiment shown in different colors,
so the workers in the same group show up as a same-colored block.
Experiment IDs are annotated on the graph. While waiting for
long-running experiments like Experiment 13 to finish, the system
leaves idle the other worker processes, which have finished their
shorter-running experiments. Separating reuse classes ensures that
concurrent simulations are all start-from-scratch or all start-from-
checkpoint and thus have comparable run times. It also reduces
the average per-simulation run time by maximizing reuse potential.
Experiments 1, 2, and 4 could have reused each others’ results,
as could Experiment 5, 7, and 8, but are prevented by doing so
because Configuration C issued them concurrently. In contrast,
Configuration D, whose scheduling graph on 32 workers is shown
in Figure 6, achieves better process utilization and shorter average
per-experiment run time. The overall run time shows a further 16%
(32 processors) and 10% (64 processors) improvement.

Comparing Configurations D and E shows the benefits of pre-
emption. Even though separating start-from-scratch or start-from-
checkpoint experiments alleviates the problem of uneven run times
of concurrent experiments, the scheduling graph of Configurations
D still shows that many worker processes are kept idle while wait-
ing for some long-running experiment to finish on another worker
process group. In Configuration E, these long-running experiments
may be preempted so they may be “spread out” to those idle worker
processes. Configuration E’s scheduling graph (Figure 7) shows
that long-running experiments can fill in the “holes” in the schedul-
ing graph. Experiment 16, for example, started on 4 workers and
eventually spread itself out to all 32 workers. Configuration E im-
proves processor utilization rate back above 90%. On 32 workers,
this translates into a 14% improvement of the overall study run
time. On 64 workers, however, the improved utilization rate is off-
set by the overhead required to perform the reconfigurations, and
Configuration E shows no improvement over Configuration D.

In summary, adding application-specific knowledge to the
scheduling and resource allocation decisions in our helium model
validation study resulted in a 4.6- and 3- fold improvement in over-
all run time.

6. Related Work
SimX builds on a body of related work, some of which are men-
tioned here.

The issue of resource allocation in a multi-processor environ-
ment is not new. (7) surveys conventional parallel scheduling tech-
niques such as dynamic re-partitioning to minimize the turn-around
time of individual tasks. (18) and (17) advocate “fairness” in dis-
tributing processing elements: the proportion of processing ele-
ments out of the whole cluster assigned to a task is decided by

comparing its expected run time to that of the other tasks on the
task queue. (19) reduces the parallel overhead of individual tasks
by ensuring they are run on co-located processors. However, as is
apparent, these systems differ from SimX in that SimX aims to min-
imize the overall run time of the entire study, while these systems
focus on the turn-around time of individual tasks.

Theoretical results of the Multi-Processor Scheduling problem
(MPS) are surveyed in (8). In MPS, a system tries to allocate pro-
cessing elements to a group of inter-dependent tasks while mini-
mizing the total makespan of the entire group of tasks. However,
the MPS model does not capture application-specific information
such as result reuse and scaling overhead.

Grid-based parameter sweep infrastructures provide scheduling
support for running the same application with a change in param-
eter values across distributed resources. Example systems include
Nimrod (2), Nimrod/O (1), Condor (20), Globus (11), Virtual In-
struments (6), and NetSolve (3). Like SimX, they aim to minimize
the makespan of an entire computational study, but they primarily
focus on fault tolerance, resource management, and load balanc-
ing issues on grid computing infrastructures, rather than the use of
application-level knowledge in resource allocation and scheduling.

7. Conclusion
This paper described system support for and the benefits from
exploiting application-specific knowledge of a multi-experiment
study involving dozens of executions of a parallel simulation code.
We have demonstrated that, by taking into account information
such as reuse classes, scaling behavior, and study objectives in its
sampling strategies, batching policies, and preemption policies, the
SimX system can reduce the overall run time of the helium model
validation study by more than four times.

While this paper has demonstrated a number of improvements,
additional opportunities remain. For example, the current SimX
system does not have knowledge of expected run times - only that
runs with reuse are expected to take less time. An implementa-
tion of SimX that takes advantage of the simulation software’s per-
formance model (provided by the user or inferred from SISOL)
can construct more sophisticated execution plans to further reduce
the run time of the study. Also, SimX currently treats all worker
processes as equal, but by being topologically-aware, SimX can
co-locate nearby processors in the same worker processor groups,
thereby further improving the performance of parallel simulations.
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