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Abstract

We present a family of discrete isometric bending models (IBMs) for triangulated
surfaces in 3-space. These models are derived from an axiomatic treatment of dis-
crete Laplace operators, using these operators to obtain linear models for discrete
mean curvature from which bending energies are assembled. Under the assump-
tion of isometric surface deformations we show that these energies are quadratic in
surface positions. The corresponding linear energy gradients and constant energy
Hessians constitute an efficient model for computing bending forces and their deriva-
tives, enabling fast time-integration of cloth dynamics with a two- to three-fold net
speedup over existing nonlinear methods, and near-interactive rates for Willmore
smoothing of large meshes.

Key words: cloth simulation, thin plates, Willmore flow, bending energy, discrete
Laplace operator, discrete mean curvature, non-conforming finite elements.

1 Introduction

Curvature-based energies play a principal role in the description of both phys-
ical and non-physical systems: simulations of cloth and garments rely on bend-
ing energies that govern the mechanics of elastic thin plates and shells [14,47];
geometry processing operations such as smoothing, denoising, and hole-filling
rely on curvature functionals that measure surface quality [8,15,18,29,43]. At
the same time, computation of curvature-based energies—and in particular
their derivatives—is considered costly in simulations of deforming meshes.

In general a curvature energy may be expressed in terms of principal curvatures
(eigenvalues of the shape operator) of a surface, S. Desired symmetries often
lead to expressions in terms of the elementary symmetric functions: mean



(H = κ1 + κ2), Gaussian (K = κ1κ2), and total (κ2
1 + κ2

2) curvature. As a
model problem consider the bending energy functional

Eb =
1

2

∫
S

H2dA . (1)

This energy, closely related to the Willmore energy [52] of a surface and the
Canham-Helfrich energy [12,28] of thin bilipid membranes, is invariant under
the group of Möbius transformations of ambient 3-space [50] and in particu-
lar under rigid motions and uniform scaling of the surface. Invariance of the
energy under rigid motions leads to conservation of linear and angular mo-
menta (Noether’s theorem), and invariance under uniform scaling plays a role
in setting the size of wrinkles and folds of elastic surfaces. For these reasons,
we require discrete bending energies to be invariant under rigid motions and
uniform scaling of the surface S.

Typically, computations in cloth simulations and surface smoothing applica-
tions require both the energy gradient and Hessian. Since the gradient of Eb is
a nonlinear operator of the embedding, some authors consider linearizations
of the gradient. While this greatly accelerates computation, the linearization
destroys invariance under rigid-motion and uniform scaling. Our central ob-
servation in the continuous setting is that Eb is a priori quadratic in positions
under isometric deformations of the surface S, with linear gradient and con-
stant Hessian: there is no need for artificial linearization.

To see that Eb is quadratic in positions, first recall that a Riemannian metric
(first fundamental form) of a smooth surface is defined by assigning a smoothly
varying inner product to each tangent plane of the surface. If the surface is
embedded into Euclidean 3-space, we refer to this metric as the metric inher-
ited from R3. A Riemannian metric gives rise to intrinsic notions of gradient
and divergence, and hence a Laplace-Beltrami operator ∆ = −div grad on the
surface, see [19]. Now consider deformations of some fixed reference surface S.
A deformation corresponds to changing the embedding x : S → R3; it is called
isometric if the metric inherited by x(S) is the same as that of the reference
surface S. Assuming isometric deformations, the mean curvature vector 1 of
x(S) is given by H(x) = ∆x, where ∆ is the Laplace-Beltrami operator on
the reference surface. We can hence rewrite equation (1) as

Eb = Eb(x) =
1

2

∫
S
〈∆x, ∆x〉R3 dA , (2)

where 〈·, ·〉R3 denotes the standard inner product of R3; here and henceforth
vector quantities are typeset in boldface. Since ∆ remains unaltered under iso-
metric deformations, the energy Eb(x) is indeed quadratic in positions x, and

1 The mean curvature vector is defined as the vector field normal to x(S) with
magnitude pointwise equal to mean curvature.
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Fig. 1. Snapshots from our simulation of a billowing flag. Despite its economy of cost,
the proposed bending model achieves qualitatively the same dynamics as popular
nonlinear models.

equation (2) together with the assumption of isometric surface deformations
is henceforth called the isometric bending model (IBM). The assumption of
(quasi)isometric deformations is justified when simulating nearly inextensible
materials such as cloth since internal stretching forces exceed bending forces
by orders of magnitude and keep the surface deformation nearly isometric. We
list the essential properties of our isometric bending model in the following
box:

(E1) Eb is invariant under rigid motions and reflections of the surface.
(E2) Eb is invariant under uniform scaling of the surface.
(E3) Eb is quadratic in positions under isometric deformations.
(E4) Eb = 0 if the surface is part of a plane.

Discrete theory. In the discrete setting, we replace smooth surfaces by
meshes comprised of flat Euclidean triangles. When dealing with such discrete
meshes, one requires a corresponding discrete bending energy, which may be
derived either by a process of discretization—for example using finite elements
and numerical quadrature—or by taking a discrete viewpoint ab initio, such
as provided by the various families of discrete differential operators proposed
in [7,16,17,36,37,40,51]. The literature offers multiple examples where the lat-
ter approach enables fast, robust computations for simulation and geometric
modeling [8,18,25,26,29,41,43,44,48]. Our approach also belongs to this second
category: we discuss discrete isometric bending models that are constructed
from discrete building blocks rather than from discretizing a continuous model.
We derive a variety of discrete IBMs satisfying (E1)–(E4) from very general
structural properties of discrete Laplace operators (Section 2), and we illus-
trate how these models can be applied to significantly accelerate physically
plausible simulations of cloth dynamics as well as Willmore fairing applica-
tions (Section 3).
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2 Discrete IBMs

Our goal is to derive discrete versions of (2) such that properties (E1)–(E4)
remain valid. To this end, we analyze the structure of discrete isometric bend-
ing models by presenting an axiomatic approach to discrete Laplace-Beltrami
operators. Together with an axiomatic treatment of mass matrices, discrete
Laplacians are used to define notions of discrete mean curvature vectors, from
which we obtain discrete IBMs in analogy to (2). In particular, we show in
Theorem 1 that the energy axioms (E1)–(E4) are fulfilled in the discrete case
if the corresponding discrete Laplacians satisfy a set of properties (L1)–(L4)
and the mass matrices satisfy another set of properties (M1)–(M3).

The metric of a polyhedral surface is uniquely determined by the lengths of
its edges, and the terms isometric embedding and isometric bending should
be understood accordingly: for polyhedral surfaces, an embedding is called
isometric if it leaves edge lengths unaltered. Moreover, edges serve as hinges
across which stiff triangles can bend. Notice that surfaces may become rigid
if isometry is strictly enforced (e.g., for convex bodies), but small deviations
from isometry are sufficient for eliminating rigidity. Our approach is to derive
models which are exact for isometric deformations and use them as approxi-
mations for deformations sufficiently close to isometric.

2.1 Structure of Laplace operators; mass matrix; discrete mean curvature

We define discrete Laplace operators by requiring that core properties from
the continuous theory carry over to the discrete setting. In the continuous
case, consider the solution, u, to the Dirichlet problem: ∆u = 0 in the interior
of S, with prescribed boundary condition u = g along the boundary, ∂S. Then
u is the minimizer of the Dirichlet energy,

D(u) =
∫

S
〈∇u,∇u〉dA , (3)

with fixed boundary condition u = g on ∂S. Since D is defined via a sur-
face integral we refer to it as an integrated quantity. Dirichlet energy is a
quadratic form which satisfies the following three main properties: (D1) D is
non-negative. (D2) D(u) is zero if and only if u is a constant function. (D3)
D is scale-invariant in dimension two, i.e., if the surface is uniformly scaled
by a factor λ then the Dirichlet energy remains unaltered because the area
element, dA, scales as λ2 and the gradient, ∇, scales as 1/λ.

Discrete Laplace operators. In the continuous case, the Laplace-Beltrami
operator is the variational derivative of Dirichlet energy. We want to keep this
property in the discrete case. Dirichlet energy is a quadratic form, which in
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the discrete case can be written as

D(u) =
∑
m,n

Lmnumun ,

where L is a real symmetric matrix. Here, the set {un} is a finite set of samples
of a (sufficiently smooth) function u. 2 We note that the symmetric matrix L
takes the role of discretizing the Sobolev H1 semi-norm |u|21 =

∫
S〈∇u,∇u〉dA.

We now translate properties (D1)–(D3) from the continuous to the discrete
case. First, we make the natural assumption that L be intrinsic, that is, it does
not change if a different isometric embedding of the mesh is chosen. Secondly,
observe that (D1) implies that L must be a positive semi-definite matrix.
Next, observe that (D2) states that D vanishes on constants. The following
argument shows that this implies that constants are in the kernel of the L.
Every quadratic form gives rise to a symmetric bilinear form via polarization:
2D(u, v) = D(u+v)−D(u)−D(v). Since D vanishes on constants, we obtain

D(u + c) = D(u) + D(c) + 2D(u, c) = D(u) + 2D(u, c) .

This implies that D(u, c) = 0. 3 Since D(u, c) = 0 for all u, we conclude that
Lc = 0, so that constants are indeed in the kernel of L. Moreover, property
(D2) states that D vanishes only on constants. We therefore additionally re-
quire that the kernel of L consists only of constants. Finally, (D3) states that
D is scale-invariant, and we require that the matrix L remains unaltered if the
mesh is uniformly scaled. In summary, L must satisfy the following conditions:

(L1) L is symmetric positive semi-definite.
(L2) L has a 1-dimensional kernel, given by the constants.
(L3) L is invariant under uniform scaling of the mesh.

We consider a fourth requirement:

(L4) If S is part of a plane then
∑

n Lmnxn = 0 at each inner node m.

This property is motivated by a geometric observation in the smooth case: the
standard Laplacian on the Euclidean plane, ∆ = ∂2

x + ∂2
y , has linear functions

in its kernel. This implies that planar surfaces have zero mean curvature,
H = ∆x = 0, since x is a linear embedding of surface positions. Therefore,

2 For the remainder of this section, we treat {un} as interpolating samples of the
smooth function u. In many settings, samples approximate but do not interpolate
smooth functions; under careful assumptions, the development presented here ac-
commodates the approximating case.
3 Assume D(u, c) 6= 0. Choose α such that D(u)+α2D(u, c) < 0. Then D(u+αc) =
D(u) + α2D(u, c) < 0, a contradiction to the requirement that D be non-negative.
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the smooth bending energy vanishes for flat surfaces. We require the same to
hold in the discrete case: the x− and y−coordinates of the vertices of a planar
mesh are linear functions over the plane, and (L4) requires those to be in the
kernel of L. This will ensure that Eb = 0 for planar meshes.

Before presenting examples of discrete Laplacians fitting into the above paradigm,
we discuss two important concepts related to discrete Laplacians: (1) inte-
grated vs. pointwise discrete operators, and (2) discrete mean curvature.

Pointwise vs. integrated objects: the role of the mass matrix. Dirichlet
energy is an integrated quantity which is scale-invariant. As a consequence, by
(L3), if the entire mesh is uniformly scaled with λ then Lmn remains invariant.
In contrast, the smooth pointwise Laplace-Beltrami operator, ∆ = −div grad,
scales with 1/λ2 in this case. In order to obtain a similar discrete pointwise
Laplacian with the same scaling behavior, we consider the Poisson problem,
∆u = f on S, with u = 0 on ∂S. The corresponding variational formulation

D(u, v) = (f, v)L2(S) for all v with v|∂S = 0 ,

has the following discrete analogue:∑
m,n

Lmnumvn =
∑
m,n

Mmn fmvn for all v with v|∂S = 0 .

Here the mass matrix, M, takes the role of approximating the L2 inner product
(f, v)L2(S) =

∫
S fv dA on S. 4 Discarding boundary effects, the discrete Pois-

son problem can be written as Lu = M f , and we may consequently regard
the operator M−1 L as a discrete pointwise analogue to the smooth pointwise
operator ∆. This is immediately reminiscent of the Galerkin-Ritz method;
however we stress that the presentation so far makes no use of test functions,
and that our axiomatic view indeed accommodates for a broader class of mass
matrices, such as those corresponding to, e.g., Voronoi regions.

Consider now the indicator function χΩ of a set Ω ⊂ S. Then (χΩ, χΩ)L2(S)

is equal to the area |Ω|. Consequently, requiring that M approximate the L2-
product implies that

∑
m,n∈Ω Mmn, the sum taken over all nodes inside the set

Ω, should be an approximation of |Ω|. This discussion motivates calling M a
mass matrix if it satisfies the following axioms:

(M1) The mass matrix M is symmetric and positive definite.
(M2) If the mesh is uniformly scaled by λ then M scales by λ2.
(M3) The sum

∑
m,n∈Ω Mmn converges to the area |Ω| as the discretiza-

tion of S is refined and Ω ⊂ S stays fixed.

4 A closely related interpretation of the mass matrix is given in terms of the discrete
Hodge star operator, see [17]. This is due to the relation (u, v)L2 =

∫
u ∧ (?v).
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Properties (M1) and (M2) imply: if a discrete Laplacian, L, satisfies (L1)–(L3)
and M is a mass matrix then the operator M−1 L satisfies (L1) and (L2) and
scales like the pointwise Laplace-Beltrami operator, ∆, in dimension two.

Discrete linear mean curvature. In analogy to the smooth case where
H = ∆x, we define the discrete mean curvature vector as H = Lx. From the
above discussion we conclude that Lx is an array of integrated quantities. In
the smooth case, integrated mean curvature corresponds to the action of H
on smooth functions ϕ with compact support,

∫
ϕH =

∫
ϕ∆x. In contrast,

∆x is a pointwise quantity in the smooth case. To obtain a similar pointwise
version in the discrete case, we transform Lx by the inverse mass matrix.
Consequently, a pointwise version of the discrete mean curvature vector is
given by M−1 Lx. The situation is summarized in the following table:

Dirichlet energy L2-metric Laplacian H H

(integrated) (integrated) (pointwise) (int.) (pntw.)

discrete
∑

Lmnumun
∑

Mmn umvn M−1 L Lx M−1 Lx

smooth
∫
∇u · ∇u

∫
uv ∆

∫
ϕ∆x ∆x

scaling 1 λ2 1/λ2 λ 1/λ

Here and henceforth Ax refers to the usual matrix-vector product, (Ax)m =∑
n Amnxn.

2.2 Laplacian Zoo

Discrete Laplace operators on meshes have been studied in abundance by
the graphics community, e.g., for geometric modeling [1,34,43,44], geometric
flows [18,29,37,40], mesh parameterization [22,24], as well as mesh compres-
sion [5,32,45]. Two common discretizations of Laplacians found in the lit-
erature result from (1) the finite element method (FEM) and (2) a purely
combinatorial viewpoint. We are first going to review the FEM approach and
then embed it into a broader class of new geometric Laplacians recently in-
troduced by Glickenstein [23]. Finally, we will shortly review combinatorial
Laplacians in the framework of electrical networks.

The picture in terms of linear finite elements. In the Galerkin-Ritz ap-
proach, discretizations of linear PDEs, such as the Laplace and Poisson equa-
tion, are obtained by choosing a suitable finite dimensional approximation
space consisting of the test functions uh for which a corresponding finite-
dimensional problem is solved. The finite element method (FEM) adopts
locally-supported basis functions defined by their (polynomial) restriction to
mesh triangles. Finite elements give a family of definitions for the pair of stiff-
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Fig. 2. Left: Vertex-based linear Lagrange basis function equaling 1 at a single vertex
(marked red) and 0 at all others. Right: Edge-based linear Crouzeix-Raviart basis
function equaling 1 at a single edge midpoint (marked red) and 0 at all others.

ness and mass matrices, L and M, and a unique definition comes from the
choice of basis {Φm} via

Lmn =
∫

S
∇Φm · ∇ΦndA and Mmn =

∫
S

Φm · ΦndA , (4)

respectively. In the simplest case, approximation spaces are constructed from
piecewise linear basis functions, although higher order ones have been explored
in graphics [2,49]. Here we quickly review details for a vertex-based and an
edge-based set of such linear basis functions.

The space spanned by linear Lagrange basis functions, denoted by (Φp), with
p running over all vertices, yields the so-called cotan formula [40]. Each basis
function Φp is a linear function on the mesh such that

Φp(p) = 1 and Φp(q) = 0 if q 6= p .

Similarly, linear finite elements associated with edges are spanned by the
Crouzeix-Raviart basis functions, denoted by (Φi), with i running over all
edges. Here each Φi is linear on triangles and

Φi(i) = 1 and Φi(j) = 0 if j 6= i ,

where Φi(j) denotes the value of Φi at the midpoint of edge j, compare Fig-
ure 2. Note that the space spanned by linear Lagrange elements is contained
in the space spanned by Crouzeix-Raviart elements since

Φp =
1

2

∑
ei∼p

Φi , (5)

summing over all edges ei incident to p. However, functions in the Crouzeix-
Raviart approximation space are non-conforming: they are only continuous at
edge-midpoints but are in general no longer continuous everywhere. Crouzeix-
Raviart elements have been used to derive a discrete Hodge-decomposition of
vector fields on meshes [41], as well as to obtain an edge-based linear mean
curvature vector [29].
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Fig. 3. Left: Vertex-based discrete Laplacian with Lpq = −1/2(cot αpq + cotβpq),
Right: Edge-based discrete Laplacian with Lij = −2 cot αij , where αij = ∠ei, ej .

Applying (4) to both the Lagrange and Crouzeix-Raviart elements, it is straight-
forward to check that the corresponding mass- and stiffness matrices satisfy
properties (M1)–(M3) and (L1)–(L4). In particular, to verify (M3), note that

∑
q∼p

Mpq =
1

3
Ap and Mii =

1

3
Ai ,

where Ap and Ai denote the total area of triangles incident to p and i, respec-
tively. Moreover, (Mij) is always a diagonal matrix whereas (Mpq) is usually
not. In general, replacing M by a diagonal matrix Mlump with entries corre-
sponding to the sum of the entries of each row of M is called mass lumping.
Note that the lumped version of the vertex-based mass matrix (Mpq) is again
a mass matrix satisfying (M1)–(M3).

Finally, a careful calculation shows that if p and q share an edge (resp. ei and
ej share a triangle) then, referring to the notation of Figure 3,

Lpq = −1

2
(cot αpq + cot βpq) if q 6= p and Lij = −2 cot ∠ei, ej if j 6= i .

The form of Lpq is precisely what is referred to as the cotan representation [40].

Extending the FE view. As outlined in the previous paragraph, the cotan
Laplacian satisfies properties (L1)–(L4). In fact, the cotan operator is a mem-
ber of a whole family of discrete Laplacians, recently introduced by Glicken-
stein [23], satisfying these properties. Glickenstein’s Laplacians have a similar
structure as the Laplacians previously introduced in the beautiful work of Mer-
cat [36] who defines discrete Laplacian by considering simultaneously a primal
and a corresponding dual mesh. In this view, discrete Laplacians are defined
by the ratio of the lengths of dual to the lengths of primal edges. Mercat
takes a combinatorial point of view, assigning arbitrary positive edge lengths
to primal and dual edges—which does in general not yield Laplacians satisfy-
ing our geometric property (L4). In contrast, Glickenstein takes a geometric
viewpoint, considering orthogonal dual edges with (signed) lengths given by
intrinsic distances, allowing for positive and negative length assignments, and
automatically satisfying our geometric condition (L4).
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Fig. 4. Left: Dual (purple) and primal (black) edges are perpendicular. Middle:
Dual edges partition primal edges such that d2

pq + d2
qr + d2

rp = d2
qp + d2

rq + d2
pr. Right:

Weighted triangulations give rise to Laplace operators Lpq = −l(?epq)/l(epq), where
?epq is the dual edge to epq.

To construct these Laplacians, one associates with a given primal triangula-
tion a dual graph with the condition that all dual edges are perpendicular to
primal edges, see Figure 4 (left). There are certain compatibility conditions,
which ensure that for each triangle {pqr} the three lines perpendicular to the
triangle’s primal edges indeed meet in a single point, called the center Cpqr, see
Figure 4 (middle). Centers are the vertices of the dual graph. The Laplacian
associated with such a primal-dual structure is obtained by

Lpq = − l(?epq)

l(epq)
, (6)

where l(?epq) is the signed length of the dual edge ?epq. This length is obtained
by taking the sum of the signed Euclidean distances of Cpqr to epq and Cpqs

to epq, see Figure 4 (right). The sign of the distance between Cpqr and epq is
positive if Cpqr and vertex r lie on the same side of epq and negative if they lie
on different sides, and similarly for Cpqs.

Setting Lpp = −∑q 6=p Lpq, it is obvious that the Laplace matrix, L, satisfies
condition (L3) and that constants lie in the kernel of L. Moreover, to ensure
(L1)—the condition on non-negative Dirichlet energy—and (L2), namely that
the kernel of L consists only of constants, it suffices to additionally assume that
each center Cpqr is contained in the circumcircle of its respective triangle {pqr},
see [23]. Finally, Laplacians defined by (6) satisfy the geometric property (L4).
To see this, identify the plane with the complex numbers C, let epq = xq −xp,
and let the dual edge be oriented such that the pair (epq, ?epq) has positive
orientation if l(?epq) > 0 and has negative orientation if l(?epq) < 0. This
orientation convention yields

∑
q ?epq = 0, so that

∑
q

Lpqxq = −
∑
q

Lpq(xp − xq) = −
∑
q

l(?epq)

l(epq)
epq = ı

∑
q

?epq = 0 ,

where ı denotes the unit imaginary number. This proves (L4).

Note that the vertex-based cotan operator discussed above is indeed a special
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case of weighted triangulations: it corresponds to a weighted triangulation
where all centers, Cpqr, coincide with the centers of circumcircles.

Electrical networks. In the view of discrete Laplacians associated with elec-
trical networks (or weighted graphs, the umbrella operator being one example),
see [20,21], one thinks of the edges of a polyhedral surface as carrying pos-
itive conductances Cpq = −Lpq with potentials up living at vertices. Setting
Lpp = −∑q Lpq yields a vertex-based discrete Laplacian, and it is not hard to
show that conditions (L1)–(L3) are satisfied. However, we issue warning that
these Laplacians usually fail to satisfy the geometric condition (L4).

2.3 Discrete isometric bending model (IBM)

We follow the analogy to the smooth case, where the IBM was defined by
equations (1) and (2). Using the fact that a pointwise version of the discrete
mean curvature vector is given by M−1 Lx, and noting that by property (M3)
the mass matrix plays the role of a discrete L2-metric, we define in the discrete
case:

Eb(x) =
1

2
(M−1 Lx)T M(M−1 Lx) =

1

2
xT
(
LT M−1 L

)
x .

Theorem 1 Let x be an isometric embedding of a discrete mesh. If L is a
discrete intrinsic Laplace operator satisfying (L1)–(L4) and M is an intrinsic
mass matrix satisfying (M1)–(M3), then the discrete bending energy

Eb(x) =
1

2
xT
(
LT M−1 L

)
x

satisfies properties (E1)–(E4).

PROOF. Since L and M are intrinsic properties of the mesh (i.e., they do
not change if we choose another isometric embedding of the mesh), it follows
that Eb(x) is indeed quadratic in x, which is property (E3). To show property
(E1), first note that (L2) implies that Eb is invariant under translations of the
mesh in R3. To show invariance under rotations and reflections, note that

xT
(
LT M−1 L

)
x =

∑
m,n

(
LT M−1 L

)
mn

〈xm,xn〉R3

=
∑
m,n

(
LT M−1 L

)
mn

〈Rxm, Rxn〉R3

for any element R ∈ O(3) of the 3-dimensional orthogonal group. Property
(E2) is a consequence of scaling: if x scales with λ then L is scale-invariant by
(L3) and M−1 scales with 1/λ2 by (M2), so that Eb is again scale-invariant.
Finally, (E4) follows directly from (L4).
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2.4 Comparison to other bending models

In common edge-based bending models, such as those of Baraff and Witkin [4],
Bridson et al. [11], and Grinspun et al. [25], the (non-quadratic) bending
energy, together with its (non-linear) bending forces and (non-constant) energy
Hessian, is assembled from contributions of individual hinge stencils consisting
of two triangles meeting at an interior edge. Here we sketch that—up to second
order in the limit of infinitesimal displacements about the planar rest state—
the (non-quadratic) discrete shells energy [25] agrees with the (quadratic)
energy of a discrete IBM based on Crouzeix-Raviart elements. Consequently,
if one substitutes models, then for small bending away from the flat state,
the energy gradients are the same—and as we will see in Section 3.1—this
implies that the elastic restoring forces are identical as well. Hence there is no
need to readjust material coefficients when switching between these models,
facilitating adoption of the discrete Crouzeix-Raviart based IBM.

To see this equality of models, we first rewrite the Crouzeix-Raviart based
IBM (where the Laplace and mass matrix are assembled from non-conforming
Crouzeix-Raviart elements) as a sum over hinge-based bending energies:

ECR =
∑

i

Ei with Ei =
3‖ei‖2

2Ai

(
2 cos

θi

2

)2

, (7)

where Ai is the combined area of the two triangles meeting at edge ei, and θi is
the dihedral angle at ei. This can be derived from Ei = 1/2 M−1

ii 〈Hi,Hi〉, with
Mii = Ai/3 as before, and Hi = (Lx)i denoting the edge-based mean curvature
vector at ei. Note that in this form it is no longer obvious (but certainly still
true) that the bending energy ECR is quadratic in vertex positions under
isometric deformations.

i

i

θi

e
p

n

q

The discrete shells bending energy in [25] is
given by

EDS =
∑

i

Ei with Ei =
‖ei‖
hi

(π − θi)
2 ,

where θi is the dihedral angle and hi is a third
of the sum of the heights of the two triangles
incident to ei. Observing that 2Ai = 3hi‖ei‖,
and that (π− θi) and 2 cos(θi/2) agree up to
first order as θi → π, we obtain:

Theorem 2 The Crouzeix-Raviart-based discrete IBM agrees with the discrete
shells bending model up to (and including) second order in the limit of small
normal displacements of the plane (θi → π).
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Fig. 5. Left: Final rest state of a cloth draped over a sphere, for (left) the proposed
isometric bending model and (right) the widely-adopted nonlinear hinge model.
Both models yield very similar final states. Right: Initial and final frames of Willmore
flow applied to smoothing a 24192 triangle hand at interactive rates.

We note that bending energy in discrete shells can be interpreted in terms of
a (scalar) mean curvature model given by Hi = (π − θi), a version which in
turn can be interpreted in terms of geometric measure theory, as shown by
Cohen-Steiner and Morvan [16].

Finally, we sketch the relation to other common bending models. The model
of Bridson et al. [11] replaces (up to a constant factor) the term (π − θi)ni

by sin ((π − θi)/2)ni for evaluating bending forces in the limit of small dis-
placements, where ni is the angle-bisecting edge normal to ei. Consequently,
in the limit θi → π, Bridson’s model agrees (up to a constant factor) with
the discrete shells model, and hence our model (however, the models differ
for θi → 0, where our model unfortunately has vanishing force, whereas Brid-
son’s model does not). Furthermore, Bobenko introduced a version of

∫
H2,

integrated squared mean curvature, and notes in [7] that his model is also
intimately linked to discrete shells, and hence our model, in the limit of small
displacements over the plane.

3 Applications

3.1 Application to Simulation of Cloth and Thin Plates

Simulations of flexible surfaces that bend without stretching (inextensible thin
plates) find applications in manufacturing, computer animation, and fashion
design. For specificity, we will focus on the simulation of inextensible textiles
(see the recent surveys [13,35,39,54]); however, our observations about the
role of the discrete IBM apply in general to inextensible thin plates. The
behavior of a thin plate is governed by its elastic energy, which measures the
deformation of the surface away from its flat undeformed configuration. Most
models of cloth consider separately the bending energy, Eb, and the in-plane
energy, Ep,

E(x) = Eb(x) + Ep(x) .
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Ep penalizes change in first fundamental form with respect to the undeformed
configuration, where the metric of the deformed surface is induced by the
immersion, x. The gradient of Ep is usually very large relative to that of Eb,
since textiles tend to resist stretching more than bending [4,46]. Therefore, we
may safely view the in-plane elastic response as a mechanism (in the spirit of
penalty forces) that ensures that deformations preserve the metric. Henceforth,
we accept that some in-plane model has been chosen, we assume that all
deformations are isometric, and we focus on presenting the role of our discrete
IBM in accelerating an existing cloth solver.

Forces. We first consider elastic (energy-preserving) forces, and then damp-
ing (energy-dissipating) forces. The elastic response of a deformed material
is governed by a conservative force, i.e., one which acts against the energy
gradient: 5

Fe(x) = −∇E(x) = −∇Eb(x)−∇Ep(x) . (8)

Most real materials dissipate energy during motion. Rayleigh damping is among
the simplest models of dissipation used by the computational mechanics com-
munity [31,55]. In the Rayleigh view, the damping force, Fd, is proportional
to velocity, v(t):

Fd(v) = −Kd v , where Kd = α1 M +α2 Hess(E) . (9)

The constant of proportionality is written as a linear combination 6 of two
tensors: the mass matrix (as discussed in §2.1), and the Hessian of elastic
energy; the two tensors correspond to damping of low and high temporal
frequencies, respectively. When using the discrete IBM, we may expand Kd as

KIBM
d = α1M + α2 Hess(Ep) + α2Hess(Eb) . (10)

Computation of forces is efficient for the discrete IBM: The constant Hessian,
Hess(Eb), is pre-computed once, and forces are later computed by the matrix-
vector products Hess(Eb)x and α2Hess(Eb)v, respectively.

Other bending models, such as those surveyed in [47], do not take advantage
of isometry and they therefore involve forces nonlinear in positions. Methods
exist to linearize the bending forces at every time step,and while these were
applied to existing nonlinear models, they destroy properties (E1) and (E2).

Dynamics. In our classical mechanical system, the temporal evolution of
position, x ≡ x(t), and velocity, v ≡ ẋ, is governed by the equations of

5 Here ∇ ≡ ∇x.
6 In this ad-hoc model, the constants α1 and α2 are endowed with the requisite
units so that the final product has units of force.
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motion:  ẋ(t)

v̇(t)

 =

 Id 0

0 (ρ M)−1


 v(t)

Fe(x(t)) + Fd(v(t))

 ,

with initial conditions x(0) and v(0). Here the physical mass matrix, ρ M, is
given by the product of mass surface density and the geometric mass matrix
of §2.1. Considering q = (x,v) as a point in phase space, the above equation is
simply an ordinary differential equation describing the flow of the point along
a vector field f(q):

q̇ = f(q) , given q(0) . (11)

Time integration. Time discretization of (11) is a well-studied problem
(see [27] and references therein); approaches may be classified as explicit, im-
plicit, or mixed implicit-explicit. 7 As representative examples, consider the
explicit Euler method, which uses the update rule qk+1 = qk + hf(qk), where
t = hk. Since the explicit method directly evaluates qk+1, it is easy to imple-
ment and fast to compute; however, explicit methods become unstable if the
time step is not very small.

Implicit methods alleviate problems of instability, at the cost of a more ex-
pensive update step. The implicit Euler method searches for the root of

G(qk+1) = qk+1 − qk − hf(qk+1) = 0 .

Most often this system is treated by repeated Newton iterations until conver-
gence (although semi-implicit approaches simply assume convergence after a
single Newton iteration). The (i + 1)th Newton iteration is given by 8

q
(i+1)
k+1 = q

(i)
k+1 − (∇G)−1G(q

(i)
k+1) . (12)

If the function G(·) is sufficiently smooth and the initial guess (which we

take as q
(0)
k+1 = qk) is sufficiently close to the solution, then repeated Newton

iterations converge to a root of G = 0. Newton’s method requires evaluation of
the flow, f , and the flow Jacobian, ∇f , to compute G and ∇G, respectively, 9

7 In mixed implicit-explicit (IMEX) time-integration, some forces are treated using
the explicit method, and other forces are treated using the implicit method. In our
tests we measured both an explicit and an implicit treatment of our bending model;
since both modes of integration were accelerated, we expect acceleration also in the
case of IMEX methods. For more details on implementing an IMEX solver we refer
the reader to [27].
8 Here and henceforth ∇ ≡ ∇q.
9 In computing terms of∇G associated to Rayleigh damping, it is standard practice
to consider only derivatives with respect to v but not x.
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and in the case of the discrete IBM, the constant bending Jacobian

∇fIBM =

 0 Id

(ρM)−1Hess(Eb) α2(ρM)−1Hess(Eb)

 (13)

is pre-computed only once.

Implementation. We have presented general guidelines for incorporating
the discrete IBM into an implicit or explicit cloth solver: We compute elas-
tic and dissipative bending forces with the matrix-vector products Hess(Eb)x
and α2Hess(Eb)v, respectively; the constant matrix Hess(Eb) is pre-computed
once. For implicit methods, expression (13) provides a flow Jacobian for the
bending model; this too should be pre-computed once. These guidelines are
independent of the choice of stretching model. In general the stretching model
will have nonlinear time-varying forces and flow Jacobians. Therefore, even
when the discrete IBM is used, the net forces are in general nonlinear, and
the net flow Jacobian is in general nonconstant. However, all computations
related to bending can be treated using the pre-computed Hessian, and these
guidelines apply regardless of the choice of a specific discrete IBM.

We now describe a discrete IBM specifically tailored to cloth simulation, begin-
ning with the intuition that bending is associated to pairs of triangles bending
about an edge (a “hinge”). This immediately invokes the picture of the stencil
of the Crouzeix-Raviart Laplacian (see §2.2). Recall that Crouzeix-Raviart ele-
ments have edge-based degrees of freedom (DOFs), and that functions defined
in the edge basis are not everywhere continuous. If we were to represent the
immersion in the edge-based DOFs, we would introduce mesh discontinuities.
Therefore, we seek a way to combine the edge-based Laplacian with vertex-
based DOFs. That such a matrimony is feasible, and indeed simple, follows
from the observation that the vertex-based Lagrange approximation space is
contained in the Crouzeix-Raviart space, see Equation (5). For each inner edge
and with reference to the illustrated labeling convention, the mapping from
vertex positions to mid-edge positions takes the form

1

2



1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1


·



x0

x1

x2

x3


=

1

2



x0 + x1

x0 + x2

x0 + x3

x1 + x2

x1 + x3


.

e0

e2 e4

e3e1

x0

x2

x

x3

α01
α02

α03
α04 1

Before detailing its proof, we present the final result, which makes reference
to the hinge stencil illustrated above.
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Theorem 3 Using a diagonal mass matrix and discarding boundary edges,
any discrete bending energy can be written as a single sum over contributions of
inner edges, Eb(x) =

∑
i Ei(x). Specifically, using Crouzeix-Raviart elements,

we obtain

E0(x) =
3

2A0

3∑
p,q=0

cpcq〈xp,xq〉R3 ,

with respect to the above labeling, where A0 is the combined area of the two
triangles meeting at ei, and

c0 = cot α03 + cot α04, c1 = cot α01 + cot α02,

c2 = − cot α01 − cot α03, c3 = − cot α02 − cot α04.

In fact, this energy can be written in a more geometric way, see (7). Here
we chose the above form because it illustrates how to assemble the constant
energy Hessian, Hess(Eb). In our case this is done in a single loop over all
inner edges ei, by adding the scalar factors in front of 〈xp,xq〉 from the above
energy expression to (Hess(Eb))pq.

PROOF. Discarding boundary edges (which cannot act as a “hinge” and are
therefore excluded from consideration), the mass matrix M is a square matrix
with rows and columns corresponding to inner edges, whereas the number of
columns of the Laplace matrix L corresponds to all edges and the number of
rows of L corresponds to the number of inner edges. We denote the mapping
from the vertex- to the mid-edge representation by I, that is, Ijp = 1/2 if
edge ej contains vertex xp, and Ijp = 0 otherwise. Since the Crouzeix-Raviart
mass matrix M is diagonal, we can write our bending energy as a sum over
contributions from inner edges,

Eb(x) =
1

2

∑
i

1

Mii

∥∥∥∥∥∥
∑
j,p

(LijIjp)xp

∥∥∥∥∥∥
2

R3

.

Observing that Lij = 0 if ei and ej do not belong to a common triangle, and
referring to the above labeling convention (fixing i = 0), we obtain

∑
j

L0jIj0 = −1

2
(L03 + L04),

∑
j

L0jIj1 = −1

2
(L01 + L02),

∑
j

L0jIj2 =
1

2
(L01 + L03),

∑
j

L0jIj3 =
1

2
(L02 + L04) .

For Crouzeix-Raviart elements one has L0j = −2 cot ∠e0, ej for j 6= 0, which
completes the proof.
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Fig. 6. The quadratic bending model is valid over the full range of bending to
in-plane stiffness ratios, e.g., (left to right) 10−5 : 1, 10−3 : 1, and 10−2 : 1.

Experiments. In a series of experiments, we observed that pre-computation
of the Hessian enables considerable acceleration of cloth simulations. We im-
plemented the Crouzeix-Raviart discrete IBM, and for comparison we imple-
mented a variant of the nonlinear hinge model, which measures the change
in dihedral angle between two triangles; for popular variants of this model
see [4,11], and for our specific implementation see [25].

In an evaluation of two solvers, two problem scenarios, two mesh types, and
resolutions ranging from 400 to 25600 vertices, we observe a typical two- to
three-fold speedup in simulation times compared to the nonlinear hinge. Fig-
ures 1 and 5-left provide a visual point of comparison, and Figure 7 summarizes
our performance measurements. We observe a seven- to eleven-fold speedup
in bending force computation. Since IBM’s Hessian is pre-computed, we can
report only the negligible time required to add ∇fIBM to ∇G; in contrast,
the repeated computation of the nonlinear hinge Hessian is costly. Overall
speedup will depend on the fraction of total computation associated to bend-
ing; to estimate this we conducted several experiments. Our test platform
includes two time integrators: an implicit solver framework of [4] and the
explicit Euler method; the constant strain linear finite element for in-plane
response [31,55]; collision detection using k-DOP trees [33] and response us-
ing Bridson’s framework [10]; the PETSc Newton solver and both direct and
iterative linear solvers [3].

We simulated heavily-damped draping of a square sheet over a sphere (see
Figures 5 and 6). The draped cloths are qualitatively similar in their final
configuration and distribution of folds. Only the final draped shape is im-
portant; therefore, we used large Rayleigh coefficients, allowing larger time
steps [31]. Next, we simulated the dynamics of a flag under wind (refer to Fig-
ure 1). The billowing motion of the IBM and nonlinear flag are qualitatively
similar. We found no need to readjust material parameters when switching
from the nonlinear to the IBM model; this is not surprising, in light of §2.4.
We modeled wind by a constant homogeneous velocity field, with force pro-
portional to the projection of the wind velocity onto the area-weighted surface
normal.
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Draping problem regular mesh (resolution, in no. vertices) irregular mesh (resolution, in no. vertices)
400 1600 6400 25600 450 2100 6500 22500

Gradient nonlinear hinge 0.937 3.45 16.4 66.6 1.10 5.43 17.6 67.8
cost (ms) quadratic IBM 0.081 0.338 2.19 9.15 0.098 0.494 2.32 9.68
Hessian nonlinear hinge 12.8 54.2 218    890. 15.2 77.2 246    888    
cost (ms) quadratic IBM 0.237 0.963 3.87 15.7 0.266 1.28 3.99 13.6
Explicit step nonlinear hinge 3.81 6.64 27.5 112. 2.16 9.53 31.4 140.
cost (ms) quadratic IBM 2.63 2.90 11.9 48.8 0.964 4.35 15.2 76.5
Implicit step nonlinear hinge 28.6 138    470. 1730    33.9 219    557    1880    
cost (ms) quadratic IBM 11.0 62.7 168    505    13.6 103    219    612    

Flag problem regular mesh (resolution, in no. vertices) irregular mesh (resolution, in no. vertices)
400 1600 6400 25600 450 2100 6500 22500

Gradient nonlinear hinge 0.975 3.99 16.0 64.0 1.10 5.43 17.8 68.7
cost (ms) quadratic IBM 0.085 0.341 2.14 8.75 0.099 0.490 2.31 9.28
Hessian nonlinear hinge 13.4 54.8 212    849    15.2 77.4 247    887    
cost (ms) quadratic IBM 0.251 0.974 3.79 14.99 0.267 1.30 3.96 13.7
Explicit step nonlinear hinge 1.73 7.05 27.7 112. 1.97 9.80 32.7 134    
cost (ms) quadratic IBM 0.780 3.26 13.3 53.4 0.900 4.54 16.1 70.0
Implicit step nonlinear hinge 27.6 106    420. 1680    33.5 155    513    1880    
cost (ms) quadratic IBM 9.53 32.9 127    490    12.5 50.4 166    608    

Fig. 7. Computational cost per time step for two solvers, regular- and irregu-
lar-meshes, and multiple resolutions, comparing IBM to the nonlinear hinge, as
measured on a Pentium D 3.4GHz, 2GB RAM. Time step cost includes collision
handling.

3.2 Application to Geometric Modeling using Willmore Flow

As noted in [8], immersions which minimize Willmore energy are of interest in
a range of areas, including the study of conformal geometry [6,50,52], physical
simulation of fluid membranes [12,28], and geometric modeling. The Willmore
energy of a surface is given as 10

EW (x) =
∫

S
(H2 − 4K)dA =

∫
S
(κ1 − κ2)

2dA.

In contrast to our treatment of cloth and inextensible thin plates, in applica-
tions of Willmore energy the presence of an accompanying isometry-enforcing
term is notably absent. Indeed, the deformations governed by Willmore flow
are generally not isometric so that the energy gradient will not be linear, as
it was for cloth. It may therefore seem surprising that our proposed Willmore
flow application, while incorporating an isometry assumption, gains speed
without paying in visual quality. The inexact Newton Method serves as the
numerical framework in which this phenomenon can explained.

Geometric flow. Our geometric flow application deals with surfaces without
boundary and surfaces whose boundary is fixed up to first order, i.e., posi-
tions and normals are prescribed. In both cases, the Willmore functional is
variationally equivalent to the functional (1). The corresponding geometric
flow sets surface velocity as a function of surface curvature:

ẋ = f(x) = −∇Eb(x) .

10 The Gaussian curvature factor of 4 is due to our use of H = κ1 + κ2 instead of
H = 1

2(κ1 + κ2).
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Fig. 8. Initial and final frames of Willmore flow applied to smoothing (left) a 44928
triangle dinosaur mesh and (right) to solve the hole filling problem posed in [8]. For
the dinosaur, 16 smoothing steps require a total of 7.47s, with one-time factorization
costing 8.77s. The solution of the hole-filling problem was obtained in 640ms, after
120ms for Jacobian pre-factorization. Images rendered with flat shading.

This flow has spurred many applications for surface fairing and surface restora-
tion [8,15,43,53]: Hole-filling applications (see Fig. 8-right) integrate the flow
to its stationary limit (when such a limit exists). Smoothing applications (see
Figures 5-right and 8-left) integrate the flow over a prescribed duration, with
longer integration times smoothing progressively coarser spatial frequencies.

Implementations of discrete Willmore flow were reported by several authors.
Ken Brakke’s Surface Evolver [9,30] used a discretized version of mean curva-
ture as a building block for Willmore energy. Yoshizawa et al. [53] discretized
directly the energy gradient, f(x), using the cotangent formula. The latter in-
troduced an additional tangential force to improve the quality of the evolving
mesh. Clarenz et al. [15] discretized the variation of the Willmore energy in
terms of linear Lagrange elements and treated the corresponding L2-flow by a
coupled system of second order equations. Finally, Bobenko et al. [8] presented
a discrete version of the fact that the integrand of the smooth Willmore energy
is conformally invariant. However, existing approaches did not focus on the
economy that arises from assuming (or rather pretending) that deformations
are isometric.

To compute a geometric flow, one must integrate the flow trajectory over time.
This may be achieved via explicit or implicit methods, as described in §3.1.
Following the direction laid out by Desbrun and coworkers [18], who note
that the stability of implicit integration methods improves the performance of
geometric flows, we implemented an implicit method, in particular using the
inexact Newton’s method. In the framework of this method we explain why
the assumption of isometric deformations is indeed a powerful one.

The inexact Newton’s method. The fixed points of Newton’s method,
G(xk+1) = xk+1 − xk − hf(xk+1) = 0, remain unaltered when the Jacobian,
J = ∇G, is replaced by any invertible matrix, J̃ ≈ J. This observation justifies
the inexact Newton’s method: Instead of a costly J, use any good but efficient
approximation J̃ [38]. Approximating the Jacobian may affect (the rate or
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radius of) convergence, but it will not affect the limit value of converging
iterations. In contrast, approximating G will affect the value of the fixed
points; therefore, inexact Newton approximates only the Jacobian ∇G, not
the function G.

The isometric deformation assumption gives the constant approximant, J̃, to
the flow Jacobian, J, where

J = h Hess(Eb)(x)− Id ≈ h Hess(Eb)(x0)− Id = J̃ ,

and x0 corresponds to the undeformed configuration. Equality J = J̃ would
hold only if the space of permissible deformations were confined to isometries of
the initial surface. The approximate flow Jacobian, J̃ needs only be computed
once as long as the time step, h, is constant. Along with this approximate
Jacobian, we use the exact, nonlinear G.

Implementation. Using the PETSc [3] and PARDISO [42] solver libraries,
we implemented the backward Euler method with an inexact Newton solver.
We found that a semi-implicit treatment, which stops Newton’s method after
one iteration, exhibits the best trade-off between stable time step size and cost
per time step, for a prescribed level of accuracy.

We briefly discuss the details that led to efficient Newton iterations. We rewrite
the Newton iteration (12) to make clear the structure of the linear solve:

(∇G)(q
(i+1)
k+1 − q

(i)
k+1) = −G(q

(i)
k+1) .

For the right hand side, we compute the full nonlinear expression ∇Eb(x);
consult the appendix for a derivation. For the left hand side, we pre-compute
∇G at program initialization. We used PARDISO’s LLT solver, which factors
∇G symbolically and numerically. Since ∇G is known at program start, the
symbolic factorization step—the bulk of the linear solver’s computation—can
be executed just once at startup. The pre-factorization of ∇G, and the elim-
ination of repeated matrix assembly, accounts for the speedup we observed.

To evaluate the performance of our method, we duplicated several problem
scenarios presented by Bobenko et al. [8] (see Figures. 8 and 9). Whereas
Bobenko’s work preserves the Möbius symmetries of the underlying contin-
uous system, our focus is on rapid computation at nearly interactive rates,
maintaining good surface quality, while retaining only a subset (E1 and E2)
of the Möbius symmetries. Figure 9 demonstrates the evolution of a four-times
subdivided icosahedron into a sphere. We report computation times for a sin-
gle process running on a 2GHz notebook with 2GB RAM. The Jacobian was
pre-factored in 200ms, and 10 smoothing steps were applied, each requiring
12ms of computation. The sphere diameter was 2 units and the flow time step
h = 0.1. Figure 9-right illustrates the role of the mass matrix. One face of the
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Fig. 9. Initial and final frames of Willmore flow applied to smooth a 4-times subdi-
vided icosahedron into a sphere. (left) The sphere converged in 120ms (12ms × 10
smoothing steps), with 200ms for Jacobian pre-factorization. (right) Comparison of
flow results for a non-uniformly tessellated icosahedron, with and without a mass
matrix, illustrating the importance of the scaling properties of the mass matrix.

icosahedron was subdivided a fifth time to induce a nonuniform tessellation of
the domain. If the mass matrix is neglected, then the flow of the non-uniformly
subdivided icosahedron does not converge to a sphere.

Figure 8-right shows the result of a six-sided hole filling problem (compare
with [8]). In this problem setup, the boundary conditions are taken from a
smooth Loop subdivision surface, and the interior triangles are initialized with
a trivial non-smooth solution. We fix two rings of vertices to enforce the pre-
scribed boundary conditions up to first order, and integrate the geometric
flow until it reaches a stationary point. The solution required 760ms, which
includes 120ms for Jacobian pre-factorization.

Due to its constant, pre-factored Jacobian, our method scales well to larger
meshes. We applied Willmore flow to smooth several large meshes, including
the dinosaur (45k triangles) and hand (24k triangles), shown in Figure 8 and
Figure 5. Unlike Laplacian smoothing, for which fast implicit methods have
been demonstrated [18], Willmore flow is derived from a scale-invariant energy,
hence it is not biased toward shrinking the surface. The inexact Newton’s
method enabled us to accelerate computation by several orders of magnitude.
The near-interactive times are reported using a notebook computer, suggesting
that fully-interactive Willmore flow for large meshes is well within the reach
of the discrete IBM.

4 Conclusion and Future Work

In this paper we derived a general class of discrete isometric bending models
from an axiomatic treatment of discrete Laplace operators, linear mean cur-
vature, and the mass matrix. We leave as open directions two generalizations
of this idea. The first is to consider anisotropic energies of the form

Eaniso =
∫

S
(c1κ1 + c2κ2 + · · ·+ cnκn)2 dA , (14)
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where κi is the normal curvature along material direction vi (not a principal
curvature direction). Observe that any directional curvature, κi, along material

direction vi, is given by the vector-valued expression κin = d2

ds2
i
x, where n is

the surface normal, and derivatives are taken with respect to an arc length,
si, of a curve with the direction vi at the point of interest. Considering only
isometric deformations, κin is linear in the embedding, x. Furthermore, we can
sum multiple such expressions corresponding to different material directions,
as in (14): This is reasonable because only their magnitude (κi) but not their
direction (n) differs. Consequently, the energy is quadratic in the immersion,
and one could carry out a similar procedure to that presented in the current
paper to obtain a corresponding discrete model.

The second point for further exploration is to consider bending energies that
are minimized by a non-flat reference surface; for example, consider

Enonflat =
∫

S
(H −H0)

2 dA ,

for a prescribed spontaneous curvature H0. In this case, the energy is no longer
quadratic in the immersion of the deformed surface; we can see, however, that
it is cubic under isometric deformations: (H−H0)

2 = 〈H,H〉−2〈H,nH0〉+H2
0 ;

the familiar first term is quadratic and the last term is constant in the isometric
immersion x. The middle term is cubic: H is linear in x; n is quadratic under
isometric deformations as is evident from n = ( d

ds1
x) × ( d

ds2
x), where s1 and

s2 are arclength parameterizations of any two orthogonal material directions
v1 and v2. That the non-flat energy is cubic can potentially be used to obtain
simpler computations for gradients and Hessians of the discretized bending.
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differential-geometry operators for triangulated 2-manifolds, in Visualization
and Mathematics III, H.-C. Hege and K. Polthier, eds., 2003, pp. 113–134.

[38] B. Morini, Convergence behaviour of inexact newton methods, Mathematics of
Computation, 68 (1999), pp. 1605–1613.

[39] H. N. Ng and R. L. Grimsdale, Computer graphics techniques for modeling
cloth, IEEE CG&A, 16 (1996), pp. 28–41.

[40] U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their
conjugates, Experim. Math., 2 (1993), pp. 15–36.

[41] K. Polthier and E. Preuß, Identifying vector field singularities using a
discrete Hodge decomposition, in Visualization and Mathematics III, H.-C. Hege
and K. Polthier, eds., Springer-Verlag, Heidelberg, 2003, pp. 113–134.
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5 Appendix

Here we derive IBM’s fully non-linear forces. To compute these forces, one
drops the assumption of isometric deformations and allows arbitrary variations
of vertices. According to Equation (7), we can write IBM’s full bending energy
as a sum over contributions from individual edges:

ECR =
∑

i

3‖ei‖2

2Ai

(
2 cos

θi

2

)2

=
∑

i

3‖ei‖2

Ai

(1 + cos θi) ,

where Ai is the combined area of the two triangles meeting at edge ei, and θi

is ei’s dihedral angle.

We focus on a single edge i = 0 and its hinge stencil, consisting of the two
triangles meeting at e0. We shall drop the subscript 0 wherever this causes no
confusion. The non-linear forces arising from edge e0 with respect to variations
associated with vertex xi are

fnl
i = −3(1 + cos θ)∇xi

(
‖e0‖2

A0

)
︸ ︷︷ ︸

fP
i

+
3‖e0‖2

A0

sin θ∇xi
θ︸ ︷︷ ︸

fB
i

. (15)

Notice that we decompose the force fnl
i into a sum of two parts—a compo-

nent fP
i , corresponding to in-plane deformations, and another component, fB

i ,
corresponding to pure bending modes. We now provide closed expression for
these components.

Nonlinear bending forces With respect to the labels in Figure 10-left, we
have

cos θ = −〈n(0),n(1)〉,

where n(0) and n(1) are triangle normals of unit length. The derivatives of
these normals are obtained by expressing e.g. n(0) = e0 × e3/‖e0 × e3‖ and
differentiating with respect to e.g. x0. This gives

∇x0n
(0) =

e3 × (·)
‖e0 × e3‖

−
〈
n(0),

e3 × (·)
‖e0 × e3‖

〉
n(0) =

e3 × n(0)

‖e0 × e3‖
⊗ n(0).
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Fig. 10. Labeling of angles, edges, and normals in e0’s edge stencil.

where a⊗ b = abT . We thus obtain

∇x0 cos θ =
[n(0), e3,n

(1)]

‖e0 × e3‖
n(0) +

[n(0), e4,n
(1)]

‖e0 × e4‖
n(1),

where [a, b, c] = 〈a × b, c〉 is the usual triple product. Using that [a, b, c] =
[c, a, b] as well as

n(1) × n(0) = − e0

‖e0‖
sin θ,

we arrive at

∇x0 cos θ =
sin θ

‖e0‖
(
cot α03 n(0) + cot α04 n(1)

)
,

where we use the labeling of Figure 10. Similarly, we derive variations with
respect to x1, x2, and x3. From ∇xi

cos θ = − sin θ∇xi
θ we obtain

∇x0θ =
−1

‖e0‖
(
cot α03 n(0) + cot α04 n(1)

)
,

∇x1θ =
−1

‖e0‖
(
cot α01 n(0) + cot α02 n(1)

)
,

∇x2θ =
1

‖e0‖
(cot α01 + cot α03)n

(0) =
‖e0‖

2A(T0)
n(0),

∇x3θ =
1

‖e0‖
(cot α02 + cot α04)n

(1) =
‖e0‖

2A(T1)
n(1),

where A(Ti) denotes the area of triangle Ti. We note that the above formulas
for ∇θ are well-known in the literature, see e.g. Bridson [11]; indeed, they
can be derived from the fact that ∇θ causes no in-plane stretching and is
orthogonal to all rigid body modes. This completes our derivation of fB.

Nonlinear in-plane forces To compute the gradient ∇(‖e0‖2/A0) in (15),
which corresponds to in-plane deformations, we need to take derivatives of
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‖e0‖2 and of 1/A0. Referring to the labels of Figure 10, we let ti be the vector
which is perpendicular to ei, is of the same length as ei, and lies in the same
plane as the triangle which ei belongs to. With this notation, we see that

∇x0A0 =
−t3 − t4

2
, ∇x1A0 =

−t1 − t2

2
, ∇x2A0 =

−t
(0)
0

2
, ∇x3A0 =

−t
(1)
0

2
.

Moreover,

∇x0‖e0‖2 = −2e0, ∇x1‖e0‖2 = 2e0, ∇x2‖e0‖2 = 0, ∇x3‖e0‖2 = 0.

This yields

∇x0

(
‖e0‖2

A0

)
=
−2

A0

e0 +
‖e0‖2

2A2
0

(t3 + t4),

∇x1

(
‖e0‖2

A0

)
=

2

A0

e0 +
‖e0‖2

2A2
0

(t1 + t2),

∇x2

(
‖e0‖2

A0

)
=
‖e0‖2

2A2
0

t
(0)
0 ,

∇x3

(
‖e0‖2

A0

)
=
‖e0‖2

2A2
0

t
(1)
0 .

Discussion of bending gradient We compare the force fB associated with
pure bending (but no in-plane stretching) from (15) to IBM’s force vector f IBM

(which is linear in positions for isometric mesh deformations). We have

fB
i = −3‖e0‖2

A0

∇xi
cos θ and f IBM

i = −
(
xT
(
LT

0 M−1
0 L0

))
i
,

where L0 and M0 correspond to the stiffness and mass matrix of the hinge
stencil of e0, respectively, and (·)i refers to the the ith component of the force
vector, i.e., the force acting on vertex xi. Both, fB and f IBM , are orthogonal
to rigid body modes. However, in general,

fB 6= f IBM .

This discrepancy is due to the fact that fB is tangent to the manifold of
isometric deformations, whereas f IBM usually contains a component normal to
the manifold of isometric deformations. In other words, fB causes no in-plane
deformations—but this is in general not true for f IBM . What is important for
our applications, though, is the fact that f IBM agrees with fB when projected
to the subspace of infinitesimal isometric mesh deformations.
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