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Abstract

We present a manifold-based surface construction extending the C∞ construction of Ying and Zorin (2004a).
Our surfaces allow for pircewise-smooth boundaries, have user-controlled arbitrary degree of smoothness and
improved derivative and visual behavior. 2-flexibility of our surface construction is confirmed numerically
for a range of local mesh configurations.
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1. Introduction

Manifold-based parametric surface representations, unlike most commonly used arbitrary-topology con-
structions (free-form splines and subdivision surfaces) are based on blending overlapping local surface ap-
proximations, rather than stitching nonoverlapping patches together. Manifold-based representations of
surfaces offer a unique combination of features: arbitrary topology, arbitrary-order smoothness, flexibility,
explicit analytic expressions for local parametrizations and linear dependence on control points.

High-order smoothness, while having relatively little impact on visual surface quality, is useful for nu-
merical purposes: for example, for C3-continuous surfaces variation of curvature functionals are well-defined
everywhere and Ck-continuity makes it possible to use quadratures of order k + 1 to ensure rapid conver-
gence. Smooth explicit analytic parametrization makes it possible to evaluate the surface and its derivatives
at arbitrary points in a straightforward manner. Flexibility, 2-flexibility in particular, is essential for good
local approximation of smooth shapes.

Manifold surfaces are a natural setting for solving equations on surfaces as the chart overlap simplifies
maintaining smoothness of solutions across boundaries. It is often easier to apply algorithms designed for
parametric patches which treat the surface as a function f(u, v) on a planar domain to surfaces of arbitrary
topology without handling special cases for inter-patch boundaries needed for patch-based representations.

A number of manifold surface constructions were proposed in the past; in this paper, we present a
generalization of the C∞ construction of Ying and Zorin (2004a), and explore the properties of resulting
surfaces. Our goal is to construct surfaces with improved mathematical properties (higher derivative conti-
nuity, closed-form parametrization, flexibility) while maintaining, to the extent possible, visual appearance
of Catmull-Clark surfaces.

In comparison to Ying and Zorin (2004a), our surfaces need not be closed. We define special charts and
local geometry construction needed to represent surfaces with piecewise smooth boundaries, with boundary
curves defined only using boundary control points.

We relax the requirement that surfaces are C∞: it turns out, that by considering surfaces of arbitrarily
high but finite degree of continuity, it is possible to decrease derivative magnitudes and improve surface
quality. We describe geometry functions and several possible choices of blending functions for Cd-continuous
surfaces.
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One of our motivations for considering manifold-based surfaces comes from solving boundary integral
equations on surfaces with high-order accuracy. Such equations arise in a variety of contexts, including
electrostatic computations, electromagnetic scattering, Stokes equations and other. To achieve high-order
convergence rates, a high-order smooth nonsingular parametrization is necessary. Our manifold-based sur-
faces are an essential part of the boundary integral equation solver described in (Ying et al., 2006), which
achieves high convergence rates in part thanks to high degree of continuity of manifold-based surfaces.

This paper is organized as follows: in Section 2, we discuss related work and briefly compare our con-
struction with other manifold constructions. Section 3 reviews the definitions of of smooth surfaces with
piecewise-smooth boundaries. In Section 4, we review the C∞ manifold surface construction and extend it to
surfaces with piecewise-smooth boundaries. Section 5 describes local geometry functions for Cd-continuous
surfaces with improved derivative behavior, with blending partition-of-unity functions discussed Section 6.
In Section 7 we examine derivative behavior, present numerical evidence of flexibility and compare visual
quality of different versions of the manifold construction and subdivision surfaces.

2. Previous Work

A considerable number of Cd, d > 1 surface constructions for arbitrary meshes of various types were
proposed over years, with the important case of d = 2 receiving most attention. Known constructions can
be partitioned into three groups, based on spline patches, subdivision surfaces and manifolds respectively.
We briefly review other high-order smoothness constructions and consider manifold-based constructions in
more detail.

In (Hagen and Pottmann, 1989) C2 interpolants of boundary position, tangent and curvature data are
constructed. Gregory and Hahn (1989) describe a C2 hole-filling algorithm; Bohl and Reif (1997) describe
C2 conditions on degenerate patches and how N patches can be joined at a point. C2 spline surfaces on
arbitrary meshes were constructed by Peters (1996) and Cd spline surfaces for general d are described by
Prautzsch (1997). More recently, various types of constructions based on polynomial patches were proposed
in (Peters, 2002), (Loop, 2004) and (Karčiauskas and Peters, 2005). C2 subdivision algorithms based on
standard schemes and with zero curvature at extraordinary vertices were proposed by Prautzsch and Umlauf
(1998) and Biermann et al. (2000a). Flexible C2 modifications of subdivision surfaces are described in (Zorin,
2006a) and (Levin, 2006).

The idea of manifold-based constructions was introduced in (Grimm and Hughes, 1995) where a manifold
surface is built from a polygonal mesh using one chart per mesh element (vertices, edges and faces). In their
construction, all interior vertices are required to have valence four (which can be achieved by a subdivision-
based pre-process), and faces have to be polygons with no more than six edges. In (Grimm, 2002) and
(Grimm and Hughes, 2003) this manifold-based construction is used to generate parametrizations, where
manifolds are used as parameter domains for surfaces of different topologies.

In Navau and Garcia (2000) another manifold-based method for generating Cd surfaces is described. This
method requires a pre-process of repeated Catmull-Clark subdivision steps in order to isolate irregularities
of the mesh. The number of such steps is O(log n) in worst case, where n is an input parameter describing
the extent of the influence of control points. Parts of regular and irregular subgraphs of the resulting mesh
are chosen as charts with corresponding transition functions. The shapes and sizes of charts are dependent
on the input parameter n and the regularity. In order to generalize the B-spline approach with this method,
each chart is then mapped to a control point which describes the shape of the resulting surface. In (Navau
et al., 2002), three realizations of this general scheme is described.

Extensions of these methods for surfaces with smooth boundaries have been outlined in most construc-
tions mentioned above. In (Grimm and Hughes, 1995) the extension involves the definition of a different
set of charts for boundary edges and vertices similar to our construction. On the other hand in Navau and
Garcia (2000), the extension for boundaries is achieved by adding auxiliary layers of faces around the mesh
boundary such that all vertices can be treated the same. Compared to previously considered boundary
constructions, our construction has the following distinctive features: boundary curves can be independent
of the interior, and include corner points.

An important recent direction of work is manifold splines (Gu et al., 2005, 2006, 2007; Wang et al., 2008).
Compared to other manifold constructions, manifold splines use an atlas of affine transition maps. The
advantages in this case are considerable: transition maps are greatly simplified, and it becomes feasible not
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Figure 1: The charts for a surface with piecewise smooth boundary.

to use a partition of unity to merge local geometries together: one can use a spline construction on arbitrary
triangulations (e.g. DMS splines or Powell-Sabin splines) to build a purely polynomial surface; alternatively,
one can fit splines defined on a regular grid in the plane. For meshes with boundary, in principle, one can
construct a purely affine atlas, and for closed meshes one can construct an affine atlas after a number of
points determined by the genus of the mesh are removed. One can observe that manifold splines reduces the
task of building a surface of arbitrary topology to mapping the mesh to a plane and local constructions on
arbitrary triangulations. While methods for these constructions are available, they are relatively complex,
especially for high order smoothness. They are not commonly used for ab initio construction of surfaces of
high-order smoothness from relatively coarse control meshes, which is our primary goal. One can regard
manifold splines and our construction as complementary, each targeting a different scope of applications.

3. Surfaces with Boundaries

Our first goal is to describe the manifold-based construction of surfaces with boundaries. A more gen-
eral class of piecewise smooth surfaces can be easily obtained from this class by stitching smooth surfaces
with boundaries along boundary curves. To be able to do this, the boundary curves have to be defined
independently of the interior, i.e. the shape of the boundary curve should be completely determined by
the control points on the boundary of the control mesh (Figure 3, left). We describe ways to obtain both
interior-dependent and interior-independent boundaries.

Defining surfaces with boundaries requires additional chart types. Recall that for a closed C1-continuous
surface in R3, each point has a neighborhood that can be smoothly deformed (that is, using a C1 map of
maximal rank) into an open planar disk D. A surface with a smooth boundary can be described in a similar
way, but neighborhoods of boundary points can be smoothly deformed into a half-disk H, with a closed
boundary segment (Figure 1). In order to allow piecewise smooth boundaries, we introduce two additional
types of local charts: concave and convex corner charts, Q3 and Q1. A C1-continuous surface with piecewise
smooth boundary looks locally like one of the domains D, H, Q1, or Q3. Convex and concave corners, while
being equivalent topologically, are not C1-diffeomorphic, that is, there is no C1 non-singular map from Q1 to
Q3. One can show that almost all C1-continuous surfaces obtained as linear combinations of basis functions
are diffeomorphic. This implies that separate constructions are needed for convex and concave boundary
corners, just as it is the case for subdivision surfaces (Biermann et al., 2000a). Rather than having one type
of star-shaped chart domains per valence, as it was the case for closed surfaces, we need to consider three
chart types as shown in the Figure 2.

Figure 2: Left: valance 4 smooth boundary chart. Center: valance 2 convex corner chart. Right: valance 6 concave corner
chart.

While the number of chart types one needs to consider increases, the main elements of the construction
3



remain similar: we can use similarly constructed chart maps, partition of unity functions, and geometry func-
tions. While geometry functions can be obtained using essentially the same fitting idea, interior-independent
boundary curves require additional constraints.

Figure 3: Left: Comparison of corner behavior in the case of interior-dependent and independent boundaries. Right: An
example of a C3 surface with smooth boundary, convex and concave corners

4. C∞ Manifold Surfaces

4.1. C∞-continuous surfaces without Boundaries
We start with a brief review of the manifold-based construction of Ying and Zorin (2004a), which our

construction extends. For a control mesh, this construction is based on defining a set of planar charts,
depending only on mesh connectivity, local smooth geometry functions on each chart, and a way to blend
all local functions together.

A set M (in our case, the control mesh) has 2D manifold structure, if a collection of charts (Ci, ϕi) is
defined, where Ci are open domains in the plane and ϕi are one-to-one maps Ci → M , such that the images
ϕi(Ci) cover all of M (we define charts for a mesh M below). M is a C∞ (or Cd) manifold if the transition
maps from chart to chart tji = ϕ−1

j ◦ ϕi, defined for pairs of charts for which ϕi(Ci) and ϕj(Cj) intersect,
are C∞ (or Cd).

Ying and Zorin (2004a) construct functions f loc
i : Ci → R3 defining the geometry embedding functions

locally on each chart. Then partition of unity functions wi (i.e. functions with support restricted to
individual charts Ci and summing up to 1) are used to combine local geometry embeddings. On M , the
complete surface is defined by

∑
i(wif

loc
i ) ◦ ϕ−1

i . However, in practice it is evaluated on individual charts
Ci via

fi(x) =
∑

j:ϕi(x)∈ϕj(Cj)

wj(tji(x))f loc
j (tji(x)) (1)

Figure 4 illustrates the construction. All three components are designed to be C∞ to guarantee that
the function fi(x), i.e. the resulting surface is C∞, and can be evaluated using closed-form expressions
(polynomials and trigonometric functions).

Charts and Transition Maps. Chart maps ϕi are defined per vertex. Each chart domain is a curved star
shape Ci, obtained by mapping the ring of faces sharing vertex vi to the plane as described below. The
overlap between the images of two charts in the mesh is a pair of faces. Instead of constructing the maps ϕi,
the maps ϕ−1

i are constructed. The chart construction proceeds in two steps: first, the faces adjacent to a
given vertex are mapped piecewise bilinearly to the plane (maps Li to domains Si). Then a transformation
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Figure 4: Components of the manifold-based surface construction.

ci is applied to each wedge of the regular star Si; ci deforms it so that it becomes a conformal image of a
square. Therefore, the transition maps are compositions of two functions (Figure 7):

ϕ−1
i = ci ◦ Li.

The map ci is another composition of two maps, a linear map lKi and a conformal map gKi :

ci = gKi ◦ lKi

where gKi = z(4α/Ki), z = x + iy, and

lKi
=

(
cos(απ/4)
cos(π/Ki)

0

0 sin(απ/4)
sin(π/Ki)

)
. (2)

α is 1 for charts away from the surface boundary. Other values of α are used for constructing boundary
charts.

c1

L1 L2

c2

transition map  t21

S1 S2

C1 C2

lk z4/k

linear conformal

Figure 5: Chart map construction.

Note that only the bilinear maps Li depend on the mesh geometry, and the transition maps tji depend
only on the compositions Lj ◦ L−1

i . While each of the maps Li and Lj depends on mesh geometry, their
composition (which is also bilinear on each face) depends only on the shape of Si and Sj which do not
depend on mesh geometry. We conclude that fi depends on mesh geometry only through the local geometry
functions f loc

j .
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Partition of Unity. The partition of unity is built from identical pieces defined initially on the standard
square [0, 1] as a product of two identical one-dimensional C∞ functions η(u)η(v). The function η can be
chosen in different ways, and the choice has a significant impact on surface behavior. We discuss possible
choices in detail in Section 6. Ying and Zorin (2004a) uses η from Bruno and Kunyansky (2001):

η(t) =


1 : 0 ≤ t ≤ δ

h((t−δ)/a)
h((t−δ)/a)+h(1−(t−δ)/a) : δ < t < 1− δ

0 : 1− δ ≤ t ≤ 1

where δ > 0 (1/8 is used), a = 1− 2δ and h(s) = exp(2 exp(−1/s)/(s− 1)). Once the function is defined on
the square, a rotation by π/4 combined with the map g−1

K is applied to remap η(u)η(v) to a single wedge.
Then the function is defined by rotational symmetry on the rest of the chart.

Defining Geometry. In Ying and Zorin (2004a) geometry is defined using polynomials. Two steps of Catmull-
Clark subdivision are applied to the mesh to define the coarse shape of the surface and then polynomials
are used to fit the shape to these data points in the least squares sense. Every vertex of the refined mesh
after the subdivision step can be assigned to points with bilinear coordinates (l/4, n/4) in each sector of
the star S (we omit the subscripts referring to the chart index). For each vertex v, these points in S are
remapped to the chart domain C using the map c. There are m = 12K + 1 sample points in the interior
of C, which are denoted x0, ..., xm−1 (Figure 7). The 3D subdivision surface positions for these points are
denoted as s0, ..., sm−1. The polynomial geometry function f loc of total degree ≤ d = bmin(14,K + 2)c is
defined by minimizing the differences f(xi)− si in the least squares sense. The choice of 14 as the maximal
polynomial degree resulted from experiments with high valence vertices; higher degrees result in small-scale
surface artifacts (see Figure 6); reducing the degree makes it impossible to match the overall smooth shape
of a subdivision surface.

Figure 6: A valance 12 vertex chart with a lifted point on the right represented by polynomial fits of degree 14, 15, and 16
respectively.

As this optimization problem leads to a linear system of equations for polynomial coefficients, the matrix
W mapping sample points s to polynomial coefficients depends only on the central vertex valence and can
be precomputed for efficient geometry evaluation. For the fitting process, monomials p0, ..., pn−1 where
n = d(d + 1)/2 are used as basis functions. A least squares fit is used to solve for the basis coefficients aj

such that f =
∑n−1

j=0 ajpj . Let a be the vector of coefficients aj , s be the vector of values si and B be the m

x n matrix of monomials pj(xi). Then the vector of coefficients a minimizing ‖Ba− s‖2 can be computed as

a = Ws = B+s = (BT B)−1BT s, (3)

where B+ denotes the pseudo-inverse of B. In our construction, we use a similar approach, however,
additional constraints need to be imposed for the boundary.

One can observe that the formula (3) does not guarantee translation invariance by construction, which
requires that the rows of W sum up to one. In practice, we observe the rows of W sum up to 1 with high
degree of accuracy, but it is desirable to guarantee translation invariance precisely. For this reason, we use a
slightly altered formula for a: we set a0, the coefficient of the constant monomial p0 ≡ 1, to sc, the position
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of the central sample point of the chart, and fit the remaining monomials to the differences s − sc. The
vector of coefficients ad with a0 excluded is computed as

ad = W (s− s̄c) (4)

where W is redefined to be pseudoinverse of Bdiff , with Bdiff
ij = pj(xi), j = 1 . . . n− 1, and s̄c is a vector

of the same length as a with all components equal to sc, the sample point in the center of the chart.

Catmull - Clark 
subdivision

Dyadic points 

fit

Figure 7: Defining geometry functions.

Summary. To define a manifold surface, we choose chart maps ϕi, geometry maps f loc
i and functions η

determining partition of unity functions wi.
We add more types of charts (Ci, ϕi) to handle surfaces with boundaries, and consider different choices

for f loc
i and η in Sections 5 and 6 respectively.

4.2. C∞ Surfaces with Boundary
We extend the construction to surfaces with piecewise smooth boundary reusing most elements. The

input to our construction is a quadrilateral mesh, with tags for convex and concave corners.
The charts and transition maps for boundary vertices are constructed using star-shaped areas shown in

Figure 2, obtained by joining together k equal sectors for a vertex of valence k. However, instead of choosing
the angular size of each sector to be 2π/k, we use π/k for smooth boundary vertices, 3π/(2k) for concave
corners and π/(2k) for convex corners. The formulas for the maps are obtained by choosing α to be 1/2,
3/4 and 1/4 respectively in (2). The partition of unity functions are constructed per quad, in the same way
it is done in the interior vertex case.

The most significant difference is in the geometry definition. As discussed in Section 3, one can either
constrain the boundary curves to be dependent only on the boundary control points, or allow boundary curves
to be influenced by arbitrary points. In both cases, we start with two steps of Catmull-Clark subdivision,
as in the interior case. The number of control points is now m = 12k + 5 instead of m = 12k + 1, as shown
in Figure 8. We use the modified Catmull-Clark scheme described in Biermann et al. (2000a) to handle all
types of boundary vertices.

Interior-depedent boundary.. The local geometry function is computed as in the interior case using a polyno-
mial fit with a precomputed matrix W . We use monomials of total degree ≤ d = bmin(14, k + 2)c as before,
except in two empirically determined cases: for a smooth boundary vertex with valance k = 2 (valence for
regular meshes with boundary) we choose d = 6, and for concave corner vertices with valance k ≥ 6 we
choose degree d = max(14, k).

Independent boundary. In this case, we proceed in two steps: first, we compute the matrix W bnd for fitting
polynomials only to the boundary points obtained by Catmull-Clark subdivision. Next, we compute a matrix
to determine the coefficients of the remaining monomials in the basis, with boundary monomial coefficients
fixed.

The smooth boundary vertices and corner vertices have to be treated differently in the first step, because
in the case of corners the boundary curve consists of two polynomial pieces. We assume that for a smooth
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Figure 8: Left: 12k + 4 sample points for a smooth boundary chart are shown in red (interior points) and green (boundary
points). Blue points are not included. Right: coordinate systems for boundary charts.

boundary chart the boundary is aligned with the u axis, and for the corner chart the two boundary pieces
are aligned with u and v axes respectively, with the corner at zero. The sample points xi have coordinates
(ui, vi), i = 1 . . .m.

For a smooth boundary chart, we define the set of boundary monomials P bnd
i (u, v), i = 1 . . . nbnd, to

be the monomials ui−1 with nbnd = d + 1. For a corner chart (either convex or concave), nbnd = 2d + 1,
P bnd

i (u, v) = ui−1, i = 1 . . . d+1, and P bnd
i (u, v) = vi−d−1, i = d+2 . . . 2d+1. The remaining monomials up

to total degree d, are denoted qj , j = 1 . . . n− nbnd. We also split the sample points into two groups: xbnd
i ,

i = 1 . . . 7, and xint
i , i = 1 . . .m− 7. sbnd

i and sint
i are corresponding 3D points obtained by subdivision.

The complete geometry function has the form

f loc(u, v) =
nbnd∑
i=1

abnd
i P bnd

i (u, v) +
n−nbnd∑

i=1

aint
i P int

i (u, v)

Let Br,s be the matrix [pr
i (x

s
j)] of the values of monomials evaluated at sample points, with r, s being

one of bnd and int.
We first obtain the coefficients abnd

i by minimizing the difference ‖Bbnd,bndabnd − sbnd‖ between the
polynomial boundary curve and sample values sbnd; as the number of polynomials typically exceeds the
number of sample points on the boundary, the solution is not unique. We use the standard approach to
under-constrained optimization and minimize the sum of the squares of the coefficients to obtain a unique
solution. This solution is given by (Bbnd,bnd)+sbnd = W bndsbnd. To compute (a regularized) inverse of the
possibly singular matrix (Bbnd,bnd)T (Bbnd,bnd), needed for (Bbnd,bnd)+, we use SVD regularization. For a
matrix A = USV T , the regularized inverse is computed as US′V T , where S′ is a diagonal matrix with
entries S′

ii = 1/Sii for |Sii| > ε, and 0 otherwise. We use ε = 10−10.
Note that this procedure works as well for smooth and corner boundary cases. In the corner boundary

case, it is equivalent to fitting polynomials in u to the segment of the boundary aligned with the u axis,
and polynomials in v to the segment of the boundary aligned with the v axis. The point samples on the
boundary are interpolated, as the degree of the polynomials we use always exceeds the number of points.
One could entirely eliminate the fitting step, and simply interpolate the points with sufficiently low degree
polynomials, setting the coefficients for higher-order monomials to zero; however, using all polynomials up
to degree d and minimizing the norm of coefficients appears to produce better results.

We determine the remaining coefficients aint by minimizing
∑m

i=8(f
loc(xi) − si)2, while keeping the

boundary coefficients abnd
i fixed. The matrix form of this expression is ‖Bint,intaint + Bint,bndabnd − sint‖2,

which leads to the following expression for aint:

aint = (Bint,int)+(sint −Bint,bndabnd)

To sum up, the vector of coefficients a is computed from the vector of sample points s as

a =
(

aint

abnd

)
=
(

(Bint,int)+ −(Bint,int)+Bint,bnd(Bbnd,bnd)+

0 (Bbnd,bnd)+

)(
sint

sbnd

)
= Ws (5)

where W depends only on the valence of the center of the chart and can be precomputed.
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Side view Catmull-Clark C∞ surface C3 surface

Figure 9: Limitation of concave corners with independent boundary: Catmull-Clark surface with corners cannot be approxi-
mated well by C∞ surfaces; a much closer approximation can be obtained with spline-based Ck surfaces.

Limitation of the interior-independent construction.. For concave corners and interior-independent bound-
aries, the construction described above may produce somewhat undesirable shapes, independently of the
parameters of the subdivision scheme used to compute the points xi. Specifically, in cases when a concave
corner is prescribed for a control mesh vertex for which the plane formed by the boundary edges meeting
at the vertex is close to perpendicular to the nearby mesh faces (See Figure 9). In this case, even if the
underlying subdivision surface makes a sharp turn to approach the boundary curve from the outside, as it
is necessary for a concave corner, the polynomial approximation deviates significantly from the surface, and
“overshoots” in a significant way.

The reason for this behavior can be understood as follows. Consider the curve on the local surface
corresponding to line u = 0 in the chart. Note that all polynomials P int

i vanish, so this curve on the surface
is completely determined by the expression

∑
i abnd

i P bnd
i (0, v); as the coefficients abnd

i are computed using
boundary data only, the points sint

i have no effect on the curve behavior, even if it passes through corre-
sponding points sint

i in the interior of the surface. This is in contrast to the interior-dependent construction,
which results in better behavior.

To a large extent, this problem can be addressed by using Cd-continous surfaces based on splines, as
explained in the next section (See Figure 9).

5. Cd-continuous Surfaces

While for C∞ surfaces derivatives of parametrizations are formally defined for all orders, their magni-
tudes of these derivatives can grow rapidly. There is a lower bound for this growth: for linear parametric
surface constructions with localized influence of control points it is impossible to have an upper bound for
parametrization derivatives uniform in the derivative order (see Section 6). It turns out that derivative
magnitudes can be reduced and better surface quality can be achieved if we consider Cd-continuous surfaces
for some finite d, constructed using splines instead of polynomials both for geometry and partition-of-unity
functions (Figure 10)).

5.1. Cd Construction for Interior Charts
The C∞ and Cd, d < ∞, constructions are similar for interior vertices. Charts and transition maps

remain the same as for C∞ construction. For Cd-continuity, we replace the 1D partition of unity functions
h with a polynomial function (Section 6). We use a uniform bi-degree (d + 1) tensor product B-Spline fit
for the geometry.

Similar to the C∞ construction, we start with two steps of modified Catmull-Clark subdivision to get m
points x0, . . . , xm−1 in the domain C (Figure 7) and corresponding surface points by s0, . . . , sm−1

We found it important to include an extra ring of points on the subdivision surface corresponding to
the outer boundary of the chart domain to ensure a better match between adjacent patches. Thus, we have

9



Catmull-Clark C∞ surface C3 surface, g = 5. C3 surface, g = 7.

Figure 10: A flat mesh with a single extraordinary vertex of valence 12. The regular vertex adjacent to valence 12 vertex is
lifted. Ck spline-based surfaces can closely match the reflection line pattern for the subdivision surface, although the match is
not perfect due to larger area influenced by each vertex.

m = 20K + 1 for interior charts and m = 20K + 5 for smooth boundary and corner charts, where K is the
valence of the vertex.

The domain of our spline surface is the minimal box containing sample points x0, . . . , xm−1 (Figure 11).
For the geometry function defined using splines, in addition to the degree, we can also choose the number
of spline patches for the domain. We use a g × g grid, uniformly spaced in both directions on this domain,
separating it into (g− 1)× (g− 1) patches. The case of g = 2 is essentially identical to the case of monomial
basis functions used for the C∞ construction. Experimentally, we have observed that increasing g above 3
does not have any significant advantages for interior points, but leads to improvements for smooth boundaries
and concave corner points. We note that increasing g results only in a modest additional cost for surface
evaluation, as it is primarily determined by the degree of splines, not the number of patches.

We use coordinates (u, v) in the range [0 . . . g − 1] in each direction, scaling the grid of sample points so
that the domain is square. The center of the chart corresponds to the point ((g−1)/2, (g−1)/2). We choose
the axis direction so that one of them is aligned with an edge direction in the chart. The choice of the edge
is arbitrary, and the resulting surface does depend on the way this alignment is chosen for valences which are
not multiples of 4. However, we did not observe any significant effects on either surface visual appearance
or parametrization derivative behavior. For a spline of degree d + 1 (and continuity Cd), nc = g + d control
points are needed in each direction. The geometry function is given by

f(u, v) =
nc−1∑
j=0

nc−1∑
k=0

ajkNj(u)Nk(v) (6)

where ajk are the control points. In many cases, it is convenient to use a single index for the spline control
points ajk and basis functions Nj(u)Nk(v). We define a(jnc+k) = ajk and B(jnc+k)(u, v) = Nj(u)Nk(v).
Then f(u, v) can be compactly written as aT B(u, v), where a and B(u, v) are vectors of length n2

c .
The fit for spline patches proceeds similarly to the C∞ surface construction. An important change

essential for spline surfaces is regularization of the fit, especially for higher values of g: the support of basis
functions centered away from the chart center may overlap few if any sample points. We use the thin-plate
energy

∫
(∂uuf)2 + 2(∂uvf)2 +

∫
(∂vvf)2 for regularization: the energy can be written as aT Rinta, where

Rint is a constant matrix. This energy ensures that in areas where there are no sample points the function
f(u, v) is as close to linear as possible.

We construct the matrix B of basis functions evaluated at sample points, Bil = Bl(ui, vi), where i =
0 . . .m− 1 and l = 0 . . . n2

c − 1. The matrix W is obtained as regularized pseudoinverse of B:

W =
(
(BT B + εintR

int)BT
)−1

,

The choice of εint and regularization parameters for all other cases is discussed in Section 5.4.
To ensure translation invariance, we fit the differences between sample point positions si and the central

sample position sc, as we did for the C∞ construction. The monomial p0 ≡ 1 is no longer a basis function,
so we still retain a full matrix B in the fit. We observe that if we shift the sample positions si by sc,
so that the central sample position becomes 0, apply the fit, and shift them back, resulting surface is

10



translation-invariant thanks to the standard spline property
∑

l Bl(u, v) = 1. This allows us to define the
spline coefficients as

a = W (s− s̄c) + s̄c (7)

where as before s̄c is a vector of the same length as a with all components equal to sc, the sample point in
the center of the chart.

5.2. Cd Surfaces with Boundary
We do not discuss the interior-dependent boundary construction in detail, as it is identical to the interior

chart case, and focus on the interior-independent boundary construction. We use a grid of knots defined in
the same way as for the interior charts.

For a smooth boundary chart, we assume that the parametric line corresponding to the surface boundary
coincides with the u axis, with the chart center xc = (uc, vc) = (t, 0), with t = (1/2)(g − 1). (Figure 11).
For a convex corner, two perpendicular sides of the chart are on u and v axes with the corner at (0, 0) and
the concave corner chart is centered at (t, t) as it was the case for the interior chart. (See Figure 11).

c13

(0,0)

(nc-1,nc-1)(0,nc-1)

(nc-1,0)

v

u

(0,nc-1)

(0,nc)

v v(nc-1,nc-1)

(0,0) (nc,0)

(0,nc-1) (nc-1,nc-1)

uu u
(nc-1,0)(0,0)

Figure 11: Knot numbering and patch layout for smooth boundary, convex and concave charts for g = 3.

As before, we need to define a matrix W , depending on sample points xi = (ui, vi) and the degree of the
basis, which allows us to compute the vector of spline control points c from the vector of sample positions
s as in (7). We split the vector of sample positions s into two subvectors: s = [sint, sbnd], where sbnd is the
vector of 9 boundary sample positions and sint is the vector of m− 9 interior positions.

Our construction consists of two steps similar to the C∞ case:

1. First, we compute the matrix W bnd mapping the boundary sample positions sbnd to the control points
ā for the boundary curves. For the corner charts, we additionally constrain the corner point to be
interpolated.

2. In the second step, we use the curve control points ā computed in the first step to define constraints on
the surface control points a, and compute the constrained least-squares fit matrix mapping the curve
control points ā and interior sample positions sint to the control points of the spline a.

The composition of matrices obtained at two steps yields W .
Before we proceed with the details of the construction for smooth boundaries and two corner types, we

introduce additional notation.

Constrained least-squares fit matrices. In several cases in our construction, we need to compute a matrix
arising from a regularized constrained least-squares fit:

xT Rx + ‖Qx− r‖2 → min, subject to Cx = h. (8)

where Q is a n×m matrix, and C is r×n matrix of constraints for some r < n, R is a regularization matrix.
Solving this problem with Lagrange multipliers y leads to the system(

2QT Q + R BT

B 0

)(
x
y

)
=
(

2QT r
h

)
11



The solution of this system can be written as

x = Lr(Q,C,R)r + Lc(Q,C,R)h (9)

where Lr(Q,C,R) is a n × n matrix and Lc(Q,C,R) is a n × m matrix. The explicit expressions for the
matrices Lr(Q,C,R) and Lc(Q,C,R) are

Lr(Q,C) = (I −Q−1
S CT Q−1

C C)(QSQT )−1

Lc(Q,C) = Q−1
S CT Q−1

C

where QS = QT Q+R, QC = CQ−1
S CT , and the inverses are computed using SVD regularization for stability.

This notation allows us to derive the matrices W mapping sample positions to control points in a compact
form.

Step 1: Boundary computation
For smooth vertices, we compute the boundary for the chart by fitting a spline curve of degree d + 1

to the data points sbnd
i corresponding to boundary points xbnd

i . For corners, we fit two separate curves to
the subsets of sample points on two edges of the chart. We also require the corner sample position to be
interpolated. In the second step, we ensure that boundary curves of the patch coincide with the curves
computed at this step.

As the number of boundary points we fit our curve to is 9 (smooth case) or 5 (for each of the curves in
the corner case). If the number of control points for a curve exceeds the number of sample positions we fit
to, the least-squares problem is underdetermined. As in the case of polynomial geometry functions, we use
SVD-regularized inverses in these cases to obtain a solution.

Smooth boundary charts. For a smooth boundary chart, there are nc control points āj of the boundary curve
c(u) which we arrange in vector ā:

c(u) =
nc−1∑
j=0

ājNj(u)

In vector form, the boundary curve c(u) sampled at points xbnd
i , i = 0 . . . 8, can be written as Bbnd,sā, with

Bbnd,s
ij = Nj(ui), i = 0 . . . 8, j = 0 . . . nc − 1 (10)

The control points ā of the boundary curve are obtained by unconstrained minimization of ‖Bbnd,sā −
sbnd‖2 + εbndā

T Rbnd,sā, where Rbnd,s is the second derivative regularizer matrix for the boundary basis
functions Nj(u). Minimizing this expression leads to ā = W bndsbnd, with

W bnd =
(
(Bbnd,s)T (Bbnd,s) + εbndR

bnd,s
)−1

(11)

i.e., the regularized pseudoinverse of Bbnd,s.

Convex and concave corner charts. The differences between the way boundary control points are computed
for convex and concave corners are minor, and we discuss these together. In both cases we define two
boundary curves cu(u) and cv(v).

For a convex corner chart, there are nc control points for each of the boundary directions, and for concave
corners, there are d+ dg/2e = n′c for each. In the latter case, there are fewer control points because only the
part of c(u) and c(v) corresponding to uc ≤ u ≤ g − 1 (vc ≤ v ≤ g − 1) needs to be boundary independent,
and these curve segments require fewer control points than the complete boundary curves. We split the
vector of sample positions sbnd into three parts, sbnd = [scsusv]: sc is the corner point, and su and sv are
vectors of sample positions along u and v boundary directions. Due to use of (7) for the fit, we can assume
sc to be zero, but we do not rely on this assumption in our derivation. Corresponding parametric locations
are xu

i = (uu
i , vc), xv

i = (uc, uu
i ), i = 0 . . . 3. We assume that these are symmetric, that is, uu

i = vv
i .

Similarly to (10), we define
12



Bbnd,u
ij = Nj(uu

i ), i = 0 . . . 3, j = m0 . . . nc − 1

Bbnd,v
ij = Nj(vu

i ), i = 0 . . . 3, j = m0 . . . nc − 1
(12)

where m0 = 0 for convex corners and m0 = bg/2c for concave corners, so that the number of control points
is n′c.

As the boundary parametric locations are symmetric, we use a single matrix instead:

Bbnd = Bbnd,u = Bbnd,v. (13)

In addition to fitting the curves to su and sv, we need to enforce interpolation of sc. The interpolation
conditions for the two curves are

nc−1∑
j=m0

c̄u
j Nj(uc) = sc,

nc−1∑
j=m0

c̄v
j Nj(vc) = sc.

In vector form, bT c̄u = bT c̄v = sc with b defined by

bj = Nj(uc) = Nj(vc) (14)

(Here we take advantage of symmetry again: uc = vc = t.)
Now the problem of finding the boundary curve control points āu is formulated in the form (8), with

Q = Bbnd, C = bT , R = εbndR
bnd,c (the second derivative regularizer for boundary basis functions), r = su,

h = sc and x = āu; this holds for āv as well. Using (9),

āu = Lr(Bbnd, bT , εbndR
bnd,c)su + Lc(Bbnd, bT , εbndR

bnd,c)sc,

āv = Lr(Bbnd, bT , εbndR
bnd,c)sv + Lc(Bbnd, bT , εbndR

bnd,c)sc,

Combining these vectors together into a single vector of boundary control points ā = [āu, āv], we get the
following expression for W bnd in block matrix form:

ā = W bndsbnd =
(

Lc Lr 0
Lc 0 Lr

) sc

su

sv

 (15)

where we have omitted arguments of Lr and Lc. We simplify this expression somewhat using sc = 0: the
first column in the matrix can be eliminated.

Step 2: Interior control point computation
We obtain the control points aij for the surface patch by fitting f(u, v) to the interior sample positions

sint
i , while keeping the boundary curves fixed.

Smooth boundary chart. In the case of a smooth boundary chart, there is only one boundary curve f(u, 0)
and we require that it coincides with the curve obtained at the first step:

f(u, 0) = cu(u) =
nc−1∑
j=0

āu
j Nj(u)

Rearranging terms, we observe that the boundary curve is a spline curve of degree d + 1

f(u, 0) =
nc−1∑
j=0

(
nc−1∑
k=0

ajkNk(0)

)
Nj(u)

13



and it coincides with c(u) if and only if their control points coincide:
∑nc−1

k=0 ajkNk(0) = āj , or in matrix
form,

Msa = ā (16)

where the entries of the matrix Ms are

Ms
jl =

{
N(l−jnc)(0), for jnc ≤ l < (j + 1)nc

0 otherwise , (17)

with l = 0 . . . n2
c − 1, j = 0 . . . nc − 1.

The constrained least squares fit problem for the vector of control points a for the patch can now be
written as

εsa
T Rsa + ‖Binta− sint‖2 → min, subject to Ma = ā

with Bint
il = Bl(uint

i , vint
i ), i = 0 . . .m− 10, l = 0 . . . n2

c − 1, i.e., is of the form (8).
Using (9), we obtain

a = Lr(Bint,M, εsR
s)sint + Lc(Bint,M, εsR

s)ā = Lr(Bint,M, εsR
s)sint + Lc(Bint,M, εsR

s)W bndsbnd

or
a = Ws =

(
Lr(Bint,M, εsR

s) Lc(Bint,M, εsR
s)W bnd

)
s (18)

Convex and concave corner charts. In this case we need to consider two boundary curves, f(u, vc) and
f(uc, v). For convex corners, we require these curves to coincide with the curves cu(u) and cv(v) along two
boundaries of the patch 0 ≤ u, v ≤ g − 1. For concave corners, only one half of each patch boundary is the
surface boundary, so we require cu(u) = f(uc, v) only for uc ≤ u ≤ g − 1. Similar to the smooth boundary,
these constraints are equivalent to constraints relating surface control points ajk to the boundary control
points:

āu
j =

nc−1∑
k=0

ajkNk(vc), āv
k =

nc−1∑
j=0

ajkNj(uc), j, k = m0 . . . nc − 1.

In matrix form,
āu = Mua, āv = Mva. (19)

with matrix entries Mu and Mv defined by

Mu
jl =

{
N(l−jnc)(vc), for jnc ≤ l < (j + 1)nc

0 otherwise , Mv
kl =

{
Nbl/ncc(uc), for l modnc = k
0 otherwise (20)

for j, k = m0 . . . nc − 1 and l = 0 . . . n2
c − 1. Combining the two sets of constraints together, we get

Ma =
(

Mu

Mv

)
a =

(
āu

āv

)
(21)

Again, we solve a constrained problem of the form (8).

εca
T Rca + ‖Binta− sint‖2 → min, subject to Ma = ā

with the same matrix Bint for convex corners as for smooth boundary.
This formulation yields formulas for W identical to (18).
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5.3. Summary of the boundary construction.
For each chart type (smooth boundary, convex corner, concave corner) and each valence, we precompute

a matrix W , which depends only on the chart type, valence and the degree of smoothness d. At run-time,
the control points of the patch are computed from subdivision sample positions s as a = Ws.

The matrix W is
W =

(
Lr(Bint,M, R), Lc(Bint,M,R)W bnd

)
where R is a second-derivative regularizer matrix. For smooth boundaries, W bnd is given by (11); for corners,
W bnd is given by (15) in terms of Bbnd,c and b, defined by (10) and (14) respectively.

The constraint matrices M are defined by (17) for the smooth boundary and (20) for convex and concave
corners.

5.4. Choosing regularization parameters.
We use four regularization parameters: εbnd for the boundary curve fit, and εint, εs and εc for different

types of charts. We defined all of these parameters with respect to a a single reference parameter ε setting
the overall scale of regularization.

The number of terms mfit in the least-squares part of the energy we use for fitting is equal to the number
of internal sample points with boundary points excluded: 20K +1 for interior charts, 20K− 4 for boundary
charts and 9 on the boundary, and we need to scale the regularization term in a similar way so that the
ratio between the least-squares fit energy and regularization energy is (approximately) independent of K.
Because the domain of the spline has size (g − 1)× (g − 1), to make the regularization energy independent
of the choice of the number of patches, we can rescale it to unit size, yielding a scale factor (g − 1)2. The
combination of these terms leads to the normalization factor mfit(g − 1)2 for the regularization term.

We choose all regularization parameters to be of the form εx = Cxmfit(g−1)2δx, where the constants δx

independent of d, g and K, are determined experimentally based on quality of the results for basis functions.
The results are only moderately sensitive to the changes in regularization parameters, so we determine them
up to an order of magnitude. Most regularization is required for concave corner vertices, for which the fit
to the subdivision surface sample points is least accurate. The constants we use are shown below.

εbnd εint εs εc,convex εc,concave

10−7 10−7 10−6 10−6 10−4

6. Partition of Unity Functions

One of the reasons to consider the Cd construction described in Sections 5.1 and 5.2 is to obtain better
behavior for lower-order derivatives than we get for the C∞ construction. Numerical estimates show that
the magnitude of the derivatives is primarily determined by the magnitude of the derivatives of partition of
unity (POU) functions wi in (1), rather than chart maps or geometry functions. As our POU functions are
obtained as tensor products of one-dimensional POU functions, the magnitude of their derivatives can be
estimated using derivatives of these one-dimensional functions.

The POU function h from Bruno and Kunyansky (2001) used in the C∞ construction is designed to be
C∞-continuous, but no attempt was made to optimize its derivative magnitudes. One of the difficulties in
using an optimization approach in C∞ setting is that the solutions of suitable optimization problems tend
to be in a space of functions of finite smoothness. This is not an obstacle for Cd surfaces, as long as POU
functions have smoothness d or higher. However, there are fundamental limitations to what can be achieved,
because of the fixed support of the basis functions used in our construction. In particular, we consider the
optimal (in the sense of minimal sup-norm of derivatives) POU function (a perfect spline), and observe that
it still has relatively fast derivative growth.

To simplify notation, in the remainder of this section we consider Cd−1 rather than Cd surfaces, so that
d corresponds to the degree of the polynomials used to construct some of the POU functions. Given any
Cd−1 function ξ, which we call blending function, satisfying

ξ(i)(0) = ξ(i)(1) = 0, i = 1 . . . d− 1; ξ(0) = 0, ξ(1) = 1, (22)
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we obtain a Cd−1-continuous partition of unity function for surfaces in the same way as in Section 4.1. The
partition of unity property is guaranteed if ξ(u) satisfies the natural symmetry condition

ξ(u) = 1− ξ(1− u) (23)

In addition to C∞ POU functions, we consider three more types of POU functions; all these functions
are piecewise-polynomial:

• Uniform spline of degree d, satisfying boundary conditions (22).

• POU function minimizing the L2-norm of d-th derivative (W 2
d norm).

• POU function minimizing the sup norm of d-th derivative (W∞
d norm).

For most geometric modeling applications, minimizing sup norm is likely to be most relevant. However,
as we demonstrate, the behavior of piecewise polynomial functions is qualitatively similar for practical values
of d.

Uniform spline blending function. This is the simplest Cd−1 POU function to define. We use a sequence of
2d + 1 knots 0, 1/d, 2/d . . . 2(d− 1)/d, 2d, with d control values all set to 1, that is,

ξunif,d(u) =
d−1∑
i=0

Bd(du− i) (24)

where Bd(u) is the B-spline basis function of degree d for knot spacing 1, supported on [0, d + 1].
As ξunif,d(u) is Cd−1 by construction, and for u < 0 ξ(u) ≡ 0, the boundary conditions (22) are satisfied

at u = 0. Using the standard spline partition-of-unity property,
∑d−1

i=−d Bd(du− i) ≡ 1 on [0, 1], and spline
basis function symmetry Bd(u) = Bd(d− u), we obtain

1− ξunif,d(1− u) =
d−1∑

i=−d

Bd((1− u)d− i)−
d−1∑
i=0

Bd((1− u)d− i)

=
−1∑

i=−d

Bd(du + i) =
d−1∑
i=0

Bd(du− i) = ξunif,d(u)

We compute the maximal magnitude of d-th derivative of ξunif,d(u), to compare with the other blending
functions. Using the equation for a B-spline derivative d

duBp(u) = Bp−1(u) − Bp−1(u − 1), we obtain the
expression

(ξunif,d)
(d) (u) = dd

d−1∑
i=0

d∑
j=0

(
d

j

)
(−1)jB0(du− i− j)

As B0(ud − `) is zero outside the interval [`/d, (` + 1)/d, it is sufficient to consider the sum over 0 ≤ ` =
i+ j ≤ n to determine the derivative values on [0, 1]. Setting i = `− j, and rearranging the terms, we obtain

(ξunif,d)
(d) (u) = dd

d−1∑
`=0

B(du− l)
∑̀
j=0

(−1)j

(
d

j

)
= dd

d−1∑
`=0

B(du− l)(−1)`

(
d− 1

`

)
where we use the combinatorial equality

∑`
j=0(−1)j

(
d
j

)
= (−1)`

(
d−1

`

)
. As B(du− l) is 1 on [l/d, (l + 1)/d],

the magnitude of the derivative on each such interval is constant, and equal to
(
d−1

`

)
, which is maximal for

d(d− 1)/2e.
The properties of ξunif,d are summarized in the following proposition:

Proposition 1. The blending function ξunif,d is Cd−1 continuous and satisfies the boundary conditions
(22) and symmetry condition (23). Its d-th derivative is piecewise constant and its maximum is

(
d−1

d(d−1)/2e
)
.
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d 1 2 3 4 5 6 7 8
r(h) 1.95 2.74 5.34 13.2 39.4 179. 904. 4979

r(ξunif,d) 1.00 1.00 1.69 2.00 3.05 3.80 5.59 7.11
r(ξ2,d) 1.00 1.50 1.88 2.19 2.46 2.71 2.93 3.14

sup[0,1] |ξ∞,d| 1 4 32 384 6144 1.22e+05 2.94e+06 8.25e+07

Table 1: Ratios r(ξ) = sup[0,1] |ξ(d))|/ sup[0,1] |
`
ξ∞,d

´(d) | for h, ξunif,d and ξ2,d; the last row shows values of

sup[0,1] |
`
ξ∞,d

´(d) |.

W d
2 -optimal blending function. In this case we compute the function minimizing the functional∫ 1

0

(
ξ(d)(u)

)2

du

with boundary conditions (22). The standard calculus of variations derivation yields the Euler-Lagrange
equation for this functional:

ξ(2d) = 0.

We conclude that the solution of the optimization problem ξ2,d is a polynomial of degree 2d−1. 2d boundary
conditions define this polynomial uniquely, and an explicit expression for this polynomial can be obtained
by observing that its derivative g(t) = f ′(t) is a polynomial of degree 2d− 2 satisfying 2d− 2 homogeneous
boundary conditions g(i)(0) = g(i)(1) = 0. One can easily check that td−1(1 − t)d−1 satisfies the desired
boundary conditions, and, therefore, all possible g(t) are of the form Ctd−1(1− t)d−1.

The function ξ2,d(t) can be obtained by integrating g(t) over the interval [0 . . . t], and computing the
constant C using the condition ξ2,d(1) = 1. This leads to the formula

ξ2,d(u) =
(2d− 1)!

((d− 1)!)2

d−1∑
i=0

(−1)i

i + d
ui+d

(
d− 1

i

)
(25)

To compute the maximum of the derivative of ξ2,d, we observe that it is attained at one of the boundary
points 0 and 1. While we do not prove this in the general case, this fact is easily verified numerically for any
finite d computing the roots of (ξ2,d)d+1 with guaranteed bounds and evaluating (ξ2,d)d. (We have verified
this for d ≤ 20). The analytic expression for the value |(ξ2,d)(d)| is easily obtained by differentiating (25).

Proposition 2. The blending function ξ2,d is Cd−1 continuous and satisfies the boundary conditions (22)
and symmetry condition (23). Its d-th derivative is a polynomial of degree d− 1, its maximum is (2d−1)!

(d−1)! .

W d
∞-optimal blending function. As the magnitude of the pointwise values of the derivatives is often most

important for applications, we consider blending functions defined as solutions of the following optimization
problem:

sup
u∈[0,1]

|ξ(d)(u)| → min, (26)

subject to (22).
This type of blending function is a perfect spline. It properties are summarized in the following proposi-

tion:

Proposition 3 ( Glaeser, Louboutin (Glaeser, 1967), also found in Schoenberg (1971)). The blend-
ing function ξ∞,d, solving (22), is Cd−1-continuous and satisfies the boundary conditions (22) and symmetry
condition (23). It is piecewise-polynomial of degree d, with points of discontinuity of d-th derivative are
ti = 1

2

(
1− cos π

d

)
. Its d-the derivative maximum is 22d−2(d− 1)!.
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Explicit expressions for the maximal derivative values in Propositions 1-3 allow us to compare different
blending functions. The ratios of maximal derivative magnitudes to the W 2

∞ for the range d = 1 . . . 8 are
shown in the Table 1. Note that while the ratio grows, for low values of d, the difference between polynomial
blending functions is small; but all of them have significantly lower derivatives than h. We also observe a
fundamental limitation of compactly supported functions: the magnitude of the derivatives above 6 of the
optimal function can be regarded as infinite for most practical purposes.

Figure 12(a) compares different types of blending functions for d = 3. Figure 12(b)-(f) shows the plots of
d-th derivatives of all blending functions of smoothness d− 1 (note that W d

2 -optimal function is a piecewise
Cd−1 continuous polynomial of degree 2d− 1).
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Figure 12: Comparison of different blending functions. (a) Function plots (b)-(f): Derivatives of order d for C∞, uniform
spline of degree d, W d

2 - and W d
∞-optimal blending functions for d = 1 . . . 5. (g) Fifth derivative with the C∞ blending function

omitted.

7. Properties of manifold surfaces

In the preceding sections we have discussed the possible choices for geometry and POU functions used
in the manifold surface construction. We examine several properties of the resulting surfaces: numerical
smoothness, flexibility and visual quality.

Our goal (cf. Section 1) is to construct surfaces of high-order smoothness, with explicit C∞ or Cd

parametrization, are at least 2-flexible, and are similar in visual quality to Catmull-Clark surfaces. We
evaluate our construction according to these criteria.

7.1. Parametrization Derivatives
By construction, derivatives of all orders are formally defined for C∞ surface parametrization and deriva-

tives up to order d are defined for Cd surfaces. However, from a practical point of view, large derivative
magnitudes are indistinguishable from the absence of differentiability.

The tight lower bound on the maximal derivative norm for a compactly supported function f with fixed
L2 norm, follows from the bounds on the derivative of the optimal blending function (3). Indeed, if f is
Cd−1 and supported on an interval [0, 1], we can introduce an auxiliary function F (t) =

∫ t

0
f(s)ds, the L2

norm constraint becomes F (1) = 1, and the problem reduces to the problem of finding the optimal blending
function. This yields the upper bound for the derivative 22dd!. This bound is relatively conservative, and is
reached only for a bump of minimal support (e.g, with z coordinate for one control point set to 1 and the
rest to zero). To gain a better sense of the derivative behavior, we evaluate derivatives for different types of
charts for a simple smooth shape.

The derivative magnitude range and distribution is shown in Figures 13, 14, 15 and 16. We consider
derivatives up to order 5: as Table 1 indicates, derivatives of higher order are likely to have very large magni-
tudes. Figure 13 shows the behavior of derivatives on an interior chart of valance 6 for a C∞ surface(above)
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and C5 surface(below). The remaining figures compares the behavior for smooth boundary, convex corner
and concave corner charts. We observe that for C5 spline-based construction we get a substantial improve-
ment in derivative behavior primarily thanks to the change in the blending function.

 min

 max

0.3137 0.4648 0.7030 6.450 239.3

0.3136 0.4500 0.6793 3.458 37.98

Figure 13: Distribution of derivative magnitudes for a C∞ (upper row) and a C5 surface with g = 3 (lower row); the maximal
derivative magnitude is indicated below each image. The control mesh is flat with a single interior extraordinary vertex of
valence 5 raised to height 1.

 min

 max

0.4329 0.3343 2.206 54.22 2142.

0.4313 0.2833 1.857 11.22 187.8

Figure 14: Distribution of derivative magnitudes for a C∞ (upper row) and a C5 surface (lower row) with boundary (g = 3).
The maximal derivative magnitude is indicated below each image. The control mesh is flat with a single smooth boundary
extraordinary vertex of valence 3 raised to height 1.

7.2. Flexibility
Cd-continuity only guarantees that the surface parametrization derivatives exist, but does not preclude

undesirable behavior even locally: second or even first derivatives may vanish at certain fixed points of the
surface for any choice of control point positions. This has been recognized in the context of subdivision
surfaces (Reif, 1995): while it is relatively straightforward to construct C2 subdivision surfaces with flat
points at extraordinary vertices (Biermann et al., 2000b), (i.e., vanishing curvatures and second derivatives
of a parametrization), it is far more difficult to define subdivision surfaces which have nonzero curvatures
and 2nd derivatives of a suitable parametrization at the extraordinary vertices. The absence of 2-flexibility
can be considered a major downside for a basis used to define surfaces, as it leads to visual artifacts and
numerically undesirable behavior.
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 min

 max

0.5316 0.9555 8.951 320.4 14800.

0.5196 0.8212 6.100 56.24 1289.

Figure 15: Distribution of derivative magnitudes for a C∞ (upper row) and a C5 surface (lower row) with a convex corner
(g = 3). The maximal derivative magnitude is indicated below each image. The control mesh is flat with a single convex corner
extraordinary vertex of valence 3 raised to height 1.

 min

 max

0.6571 1.897 10.40 257.8 11150.

0.5583 1.005 6.983 56.81 831.2

Figure 16: Distribution of derivative magnitudes for a C∞ (upper row) and a C5 surface with g = 7 (lower row) with a convex
corner. The maximal derivative magnitude is indicated below each image. The control mesh is flat with a single convex corner
extraordinary vertex of valence 3 raised to height 1.

Definition 1. We say that a set of Cd-continuous functions Bi(u, v), (u, v) ∈ Ω ⊂ R2, i = 1 . . . n, is
k-flexible at a point x = (u, v) if for any derivative ∂`

u∂m
v , l + m = k, the span 〈

∑n
i=0 ci∂

l
u∂m

v Bi(x), l + m ≤
k〉 = RN , where N = k(k +1)/2 is the number of derivatives of order ≤ k. In other words, for all derivative
of order ≤ k any desired set of values can be obtained simultaneously by a choice of control points.

In matrix form,
∑

i ciBi(u, v) = B(u, v)T c. If M [B] is the N × n matrix with rows equal to ∂`
u∂m

v B(u, v),
then flexibility of the set Bi is equivalent to the condition that matrix M [B] has rank N .

One can easily show that manifold surfaces are at least 3-flexible by construction at the centers of charts,
as the value of the surface there is defined by the local geometry function only (Ying and Zorin, 2004b).
This does not guarantee however that the surface is flexible elsewhere. Flexibility at arbitrary points is in
general difficult to prove analytically (although an analytic proof for a C2 construction of Zorin (2006a) for
meshes with nonadjacent extraordinary vertices is given in (Zorin, 2006b)).

For our construction, we examine flexibility at arbitrary points numerically. We focus on 2-flexibility, as
it is most relevant in applications, although our technique can be used for flexibility of arbitrary order. Our
numerical estimates cannot be regarded as a proof, but if desired could be converted to a formal proof of
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flexibility at a dense set of sample points by using interval arithmetic for all calculations, similar to (Zorin,
2000).

The local geometry function on a chart can be expressed as:

fLock(x) = BT (x)Wp(c,2) = BT (x)WSpc (27)

where p(2) are the set of data points after two steps of subdivision, pc are the control points of the initial
mesh M in the 2-neighborhood of the vertex, which determine p(c,2) uniquely.

Recall that the domain of our surface is the mesh M ; on each face F of M , we can introduce bilinear
coordinates x = (u, v), in the range [0, 1]. For a surface patch corresponding to a face F , the direct formula
for the surface f is obtained by blending local geometry functions (similar to (1), but with face, rather than
chart, coordinates considered):

f =
4∑

i=1

(
f locwi

)
◦ ϕ−1

i =
4∑

i=1

(
(Bi)T wi

)
◦ ϕ−1

i W iSipc,i

where the subscript i refer to the chart centered at vertex i = 1 . . . 4 of the face F . Let p be the vector of
all points in 2-neighborhood of F . Each vector pc,i can be obtained by selecting entries from p, so we can
write pc,i = Qip, where Qi is the selecting matrix with 0 and 1 entries. This leads to a combined expression
for f(x) on F :

f =

(
4∑

i=1

(
wi(Bi)T

)
◦ ϕ−1

i W iSiQi

)
p = (BF )T p (28)

where BF is the vector of basis functions corresponding to vertices in the 2-neighborhood of the face F in
M . These functions depend only on vertex valences and chart types overlapping F , but not on control point
positions. Constructing the matrix 6× n M [BF ] with 6 rows ∂`

u∂m
v BF , ` + m ≤ 2, we reduce the question

of verifying 2-flexibility to verifying that this matrix has maximal rank for any point on F and any choice
of valences and chart types.

While it is possible to estimate the rank of matrices M [BF ] numerically using SVD, we simplify our task
by applying a basis transformation to the basis B̃ with the new basis chosen using geometric considerations.
To motivate our choice, we consider a simple example of polynomial basis P 1, u, v, u2, uv, v2 . . ., up to
polynomials of total order k. Let M [P ]6 be the 6× 6 matrix obtained from the full 6× n matrix M [P ] by
taking the first 6 columns. One can easily see that it is an upper-triangular matrix with constant non-zero
entries on the diagonal (reducing to a diagonal matrix for (u, v) = (0, 0)), and, therefore, has rank 6. We
conclude that M [P ] also has rank 6.

While BF does not reproduce polynomials other than the constant, it is reasonable to expect that a
configuration of control points ci sampled from a polynomial will lead to a function

∑
i ciB

F
i with qualitative

behavior similar to this polynomial. If we replace BF with a set of functions B̃ approximating polynomials,
one can hope to establish flexibility in most cases by examining only the determinant of a 6× 6 submatrix
M [B̃]6 of the full matrix of derivatives M [B̃] and consider other submatrices only rarely. In this way, we
can check flexibility at any given point by evaluating a small number (typically one) matrix determinants.

To test flexibility over the whole face F , we evaluate the determinant M [B̃]6 on a dense grid, and verify
that all signs are the same. If the determinant changes sign, we replace one row with a different row from
M [B̃] and repeat the process for the new matrix.

Transformed basis construction. For a 2-neighborhood of face F , we construct the transformed basis func-
tions B̃i =

∑
j cijBi in two steps. First, we construct the one-to-one map of the 2-neighborhood of F to the

plane, with positions of points entirely determined by the mesh connectivity, and F mapped to the square
[0, 1]2 (we discuss this step in more detail below). Each vertex gets coordinates ui and vi; we use these
coordinates to construct our approximations of linear polynomials B̃u =

∑
j ujBj and B̃v =

∑
j vjBj . Ap-

proximations of higher-order polynomials P `,m(u, v) = umvl are constructed as B̃umvl =
∑

j vm
j ul

jBj , that
is, by using sampled values P `,m(ui, vi) at vertices of the 2-neighborhood of F . The basis transformation
can be expressed in matrix form as B̃(u, v) = TB(u, v) where T is the matrix with entries vm

j ul
j .
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It remains to describe how the positions (ui, vi) are determined. We restrict our construction to the case
of meshes obtained by 1 step of Catmull-Clark refinement from an arbitrary mesh, to separate extraordinary
vertices by vertices of valence 4, as otherwise the number of possible distinct connectivities of 2-neighborhood
of a patch is very high (if desired, e.g., the Floater parametrization method can be used to determine ui

and vi for an arbitrary mesh). For our restricted setting, a simple construction shown in Figure 17 suffices.
Let G be the parent patch of F , and let v be the vertex of G shared with F . We map the 1-neighborhood
of G to the plane, by mapping the 1-neighborhood of v to a symmetric star first, and then mapping the
remaining quads adjacent to G so that they are mapped to parallelograms of equal size. Finally, a single
step of midpoint subdivision is used to obtain the planar layout.

F
G

F
G

Figure 17: Construction of the planar map of a 2-neighborhood of a face for valences {7,5,6,5} in a mesh with no adjacent
extraordinary vertices. Left: initial layout for 1-neighborhood of the parent G of F . Right: layout for the 2-neighborhood of
F .

Numerical verification of 2-flexibility. If only one vertex in the 2-neighborhood of F is extraordinary, the
minimal det M6[B̃] as a function of the valence is shown in Figure 18, right). Figure 18 shows the value of
the determinant as function of the coordinates (u, v) on the face F .
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Figure 18: Left: Determinant distribution on a face f with one valence six vertex at (0,0). Right: Plot of minimum determinant
on a face as a function of valance.

We have tested all combinations of valances for the four vertices surrounding the face F for valences in
the range 3..12, in all cases observing that the determinant det M6[B̃] is nonnegative. For valances higher
than 13 det M6[B̃] may change sign, and other submatrices using a different set of six columns. In all cases
we could successfully find other submatrices where the positivity of the determinants are maintained.
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7.3. Visual quality
Cd-continuity and flexibility are local surface properties and do not capture the global surface behavior.

It is well-known that a formally C2 or higher-order surface construction can exhibit severe artifacts that
preclude its use in practical applications. While various types of formal measures of global behavior can be
developed, visual comparison is often a more reliable criterion.

By using sample points from a Catmull-Clark subdivision surface, we ensure that the overall shape of
the manifold surface is close to the shape of the reference subdivision surface. However, relatively small
deviations may lead to subtle changes in surface appearance. The differences typically cannot be seen even
with specular shading, and we use reflection lines to show these clearly.

Figure 19 compares the appearance of Catmull-Clark C∞, Ck-continuous surfaces build using our con-
struction. Only insignificant differences in reflection line patterns can be found in most cases. For some
models, one can identify areas where the reflection lines for higher-order Ck surfaces are less even (Figure 20).

Control mesh Catmull-Clark C∞ C3 C5

Control mesh Catmull-Clark C5

Figure 19: For most meshes, overall Catmull-Clark surface and Ck surface appearance are nearly identical, with some differences
apparent in flat areas (e.g., for the double torus).

The two main parameters of our spline construction are the degree of the spline and the number of spline
patches we use; In most cases (with an important exception of concave corners) the number of patches makes
little difference, as long as it is not a single patch, and the visual appearance of surfaces for k in the range
2 to 5 is similar (Figure 21).

Figure 23 compares the behavior of the reflection lines for (unmodified) Catmull-Clark C3, and C∞

surfaces near boundary vertices of valence 3, 5 and 7.
Figure 22 compares the overall appearance of Catmull-Clark, C∞ manifold surfaces and C3 manifold

surfaces for concave corners. One can once again see the limitations of the C∞ approach for concave corners:
even relatively high polynomial degree is insufficient to match the overall shape of the subdivision surface
closely, resulting in an overshoot. With sufficiently many patches, the spline surface results in a closer
match, although the deviation from the subdivision surface is still significant.

23



Control mesh Catmull-Clark C∞ C3 C5

Figure 20: On some meshes C∞ and higher-order (e.g., C5) surfaces have minor artifacts in relatively flat areas absent in
lower-order (C2 or C3) manifold surfaces and Catmull-Clark surfaces.

C2, g = 3 C3, g = 3 C5, g = 3

C3, g = 3 C3, g = 5 C3, g = 7

Figure 21: Upper row: surface appearance for fixed g = 3 and varying smoothness; Lower row: fixed smoothness C3 and
varying g

Figure 24 compares the effects of changing face aspect ratio on Catmull-Clark and C3 surfaces. In the
top row, the mesh contains more elongated faces; in this case the reflection lines for the manifold surface
are noticeably less fair compared to the Catmull-Clark surface. For a mesh with more uniform face aspect
ratios, the difference is small.

8. Conclusion

We presented a manifold-based smooth surface construction which can handle all basic types of piecewise
smooth boundary behavior. Similarly to splines, it can be evaluated using a closed form parametrization
(although a significantly more complex one) allows choosing the degree of smoothness of the parametrization,
and exhibits nearly-optimal rate of growth of high-order derivatives for the class of parametric surfaces
defined on meshes with basis function support restricted to two rings around vertices. While it is difficult
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Catmull-Clark C∞ C3, g = 11

Figure 22: A close-up of a concave corner of valence 3 (flat mesh with the corner vertex lifted to height 1) for different surface
definitions.

3

5

7
valence control mesh Catmull-Clark C∞ C3, g = 5

Figure 23: Comparison of surface behavior for smooth boundary vertices of valences 3,5 and 7.

Mesh Catmull-Clark C3 surface with g = 3

Figure 24: High aspect-ratio faces may result in more irregular reflection lines on manifold surfaces compared to Catmull-Clark
(upper row). Splitting such faces results in higher consistency with the appearance of the corresponding Catmull-Clark surface
(lower row).

to prove flexibility of our surface construction at arbitrary points analytically, an extensive numerical study
confirms that these surfaces are 2-flexible.

It appears unlikely that it is possible to improve the derivative behavior due to fundamental lower bounds
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on the derivative growth, but it may be possible to achieve this by increasing basis function support and chart
size – a possible direction for future research. A fundamental limitation of our construction is using Catmull-
Clark surfaces as the “guide” surface. This means that our surfaces inherit all artifacts of Catmull-Clark
surfaces, e.g., severe problems near high-valence vertices. On the other hand, one can use our construction
in combination with any coarse-mesh construction to obtain surfaces of arbitrary smoothness, so a more
expensive or advanced technique yielding better quality surfaces can be used instead of Catmull-Clark.

We are able to match the visual quality and shape of Catmull-Clark surfaces very closely, with the
exception of concave corners. It may be possible to obtain better results using a different choice of spline
basis instead of tensor-product B-splines.
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