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Abstract
Many common objects have highly reflective metallic or painted finishes. Their appearance is primarily defined
by the distortion the curved shape of the surface introduces in the reflections of surrounding objects.
Reflection lines are commonly used for surface interrogation, as they capture many essential aspects of reflection
distortion directly, and clearly show surface imperfections that may be hard to see with conventional lighting.
In this paper, we propose the use of functionals based on reflection lines for mesh optimization and editing. We
describe a simple and efficient discretization of such functionals based on screen-space surface parameterization,
and we demonstrate how such discrete functionals can be used for several types of surface editing operations.

1. Introduction

Many human-made surfaces have highly reflective finishes:
cars, kitchen appliances, lamps and jewelry are common ex-
amples. The appearance of such objects is primarily defined
by the reflections of other objects. Reflections are quite sen-
sitive to surface shape and depend on local surface quantities
(normals and curvatures) as well as viewer location.

Reflectionlinesare a widely used interrogation tool for sur-
faces. Conceptually, these are obtained by computing reflec-
tions of a set of long linear parallel light sources, aligned
with a fixed direction. Visualizing such reflections make
many types of surface irregularities apparent. Reflection
lines can be thought of as a special type of reflected envi-
ronment, capturing the distortion introduced by the curved
shape of the surface for a particular direction of features
in the environment. Reflection lines are widely used in the
automotive industry, and were also found to be useful in
biomedical engineering as a tool for cornea shape recon-
struction [HBKM96]. Advances in graphics hardware made
interactive reflection line rendering widely accessible and
easy to implement.

Figure 1: An example of reflection line optimization.

The process of evaluating surface quality, for which reflec-
tion lines are most commonly used, is complimentary to
shape design. In most cases, the designer defines the sur-
face by manipulating spline or subdivision control points,
or other types of shape controls, then evaluates the quality
using interrogation tools and repeats the process until the
desired quality is achieved. The controls of the shape have
an indirect effect on the quality measure and in the case of
reflective surfaces, it may be hard to guess how the shape
should be modified to achieve a desired effect. A common
alternative is to formulate the surface editing problem as an
optimization problem minimizing a quality functional mea-
suring deviation from desired behavior.

Reflection lines provide a convenient framework for build-
ing such functionals for reflective surfaces. For reasons we
discuss in Section2, arbitrary manipulation of reflections is
not possible. Furthermore, recovering the surface from an
arbitrarily chosen distortion of a reflected image is not al-
ways possible either. However, in most cases, it is possible
to find a surface producing a given pattern of reflection lines.
By choosing a reflection line direction, the user chooses
what feature direction in the environment can be considered
most important. For example, horizontal and vertical lines
are most common in urban and indoor environments, and it
makes sense to use these directions for surface optimization.

In this paper we present a system for interactive surface
modeling based on reflection line manipulation. We show
how to discretize reflection lines on arbitrary meshes, and
demonstrate that a relatively simple discretization is suffi-
cient for shape modeling purposes, provided that a suitable
normal estimation algorithm is used. We propose a numer-
ical technique for solving the problem at rates adequate for
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interactive surface manipulation. Our approach is based on
two insights. First, an arbitrary mesh can be locally param-
eterized over the image plane away from silhouette edges;
this makes it possible to reduce the number of degrees of
freedom used in optimization, and greatly simplifies ex-
pressions. Second, we observe that a simple triangle-based
discretization of second-order quantities using only vertex
degrees of freedom can be used to compute second-order
derivatives of the surface parameterization, which leads to a
fast and efficient matrix assembly. We demonstrate how re-
flection line manipulation can be used to smooth and warp
reflection lines, change reflection line density, and create sur-
faces with a desired reflection line pattern.

Related work. Different types of reflection lines were
extensively studied in the geometric modeling literature.
Some of the earliest work is described in [Kla80], where
a differential-geometric description of reflection lines and
an analytic expression for the variation of these lines is de-
rived; [KK88] describes a technique for adjusting families
of spline curves defining a surface based on reflection line
changes. Reflection lines were also used as a surface inter-
rogation tool in [Poe84, HHS∗92, GLW96, GOZ95, TF97].
Theisel has shown that isophotes and reflection lines can
be viewed as subclasses of a more general class [The01].
Functionals similar to reflection-line functionals are com-
mon in shape-from-shading vision literature (e.g. [Hor86]);
however, the goal there is to reconstruct an unknown surface
entirely from possibly noisy image data, rather than modify
an existing mesh.

Surface fairing functionals based on characteristic line pat-
terns are explored in [HBKM96] and [LGS99] (reflection
lines) and [YBP97, CF98] (highlight lines). A technique
for manipulating reflection line shape directly is described
in [DB04]. In all cases, these techniques were applied to
NURBS surfaces. The formulation we use is closest to
[LGS99], which applies reflection line optimization to B-
spline height fields; we apply a similar formulation to gen-
eral meshes and present algorithms that allow us to achieve
interactive performance.

Various types offairing functionals for surfaces and their
discretizations for spline surfaces, subdivision surfaces, and
meshes are considered in [CG91,WW94,Kob00,SK01] and
many other papers. Fairing functionals are used increasingly
in interactive surface deformation settings, in particular for
general meshes (e.g. [BK04]; see [BS07] for an excellent
survey). An efficient, robust and accurate discretization of
the Hessian of the function defined on an arbitrary mesh is
central to our work. This problem is closely related to the
problem of defining shape operators on meshes;discrete ge-
ometryapproaches (e.g. [PP93,MDSB03,CSM03]) play an
important role in making variational techniques for meshes
sufficiently fast for interactive applications. [GGRZ06] con-
tains a detailed survey of different types of approaches; our
approach builds on [GSH∗04].

Using user-defined reflection fields for surface optimization
is similar to gradient and Laplacian deformation techniques
( [SLCO∗04], [YZX∗04]) in that the optimization functional
depends on the initial mesh geometry (in our case, through
the reflection function).

2. Reflection functionals

In this section we present the relevant basic mathematics
of reflections and functionals based on reflection lines. The
formulations we use are similar to the ones that were used
in [LGS99] for optimization of reflection lines of tensor-
product B-spline height fields.

2.1. Reflection line function

We consider a somewhat simplified formulation of reflec-
tion lines, with both the viewer and the light sources located
at infinity. The reflection line pattern in our model is created
by long line-shaped light sources aligned with a unit length
vectora (Figure2). Each light source can be identified by a
direction in the plane perpendicular toa. If we fix a zero di-
rection, each direction corresponds to an angleθ in the range
−π . . .π. For a pointp of a surface, letn be the normal, and
let v be the view direction, which we assume to be nonparal-
lel to a. In this notation, the reflection direction atp is given
by r = (2/|n|2)((n ·v)n−v). (We do not assume the normal
to be unit length).

Figure 2: Vectors used in the definition of the reflection line
functionθ .

We define thereflection line functionto be a scalar function
on the surface which assigns to each point the angleθ be-
tween a zero direction and the directiond to the linear light
source corresponding to reflected directionr . This direction
is obtained by projectingr to the planeP perpendicular to
a: d = r − (r · a)a. Let va be the projection of the viewing
directionv to the planeP, and leta⊥ be perpendicular tova
in the planeP,

va = [v− (v ·a)a]norm, a⊥ = a×va

where[·]norm denotes normalization. We useva as the zero
direction; in this case the reflection line function is given by

θ = arctan((r ·a⊥),(r ·va)) (1)

where arctan(y,x) produces values in the range−π . . .π. A
reflection line is defined by a constantθ value. As reflection
lines are view-dependent, it makes more sense to consider
them as functions on the image plane, rather than the sur-
face itself. The function is defined everywhere except at the
points wherer is parallel to the light directiona. The gradi-
ent ofθ is of primary importance: the direction of the reflec-
tion lines is perpendicular to∇θ . (Note that|∇θ | measures
the local density of reflection lines.)
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Coordinate formulation. One of the properties distin-
guishing the reflection line optimization from most fairing
problems is that there are fixed spatial directionsa and v
which are a part of the problem formulation. Projections to
these directions are natural choices of variables. We observe
that for silhouettepoints, for which the normal is perpen-
dicular to the view direction, perturbing the surface does
not affect the reflection line function corresponding to these
points; i.e. one cannot optimize the lines near the silhouettes
without moving the silhouettes which is best done by tech-
niques of the type described in [NSACO05]. This suggests
that projection to the image plane leads to the natural param-
eterization for the problem, as in this case silhouette points
will form boundaries for optimization regions.

We choose the coordinate system aligned with the image
plane (a⊥, av, v), whereav is the normalized projection ofa
to the plane perpendicular tov (Figure2). The coordinates
along the three axes arex,y,z: we use the standard conven-
tion for y to be perpendicular to the image,x to be horizon-
tal, andz to be the view direction. For a vectort, we denote
(t ·a⊥) = tx, (t ·av) = ty, and(t ·v) = tz.

Using this notation we reduce the components of our ex-
pression tor1 = (r · a⊥) = 2nznx and r2 = (r · va) =
−2nznysinα +(nz2−nx2−ny2)cosα, whereα is the angle
betweenv andva.

If we regard the surface as locally parametrized over the im-
age plane, i.e. given byz = f (x,y), we take the non-unit
length normal to ben = ( fx, fy,1), where fx and fy are
derivatives of f in two directions, and the expression for
θ = arctan(r1, r2) further simplifies to

θ(x,y) = arctan
(

2 fx,−2 fysinα +(1− f 2
x − f 2

y )cosα

)
.

(2)

2.2. Optimization problems

Given a user-defined reflection function our goal is to deter-
mine a surface which approximates this field as closely as
possible. Mathematically, we can formulate the problem in
several ways: exact match of the reflection function, mini-
mization of the difference between the desired and actual re-
flection function, and minimization of the difference in line
directions and density captured by the gradient of the reflec-
tion function (cf. [LGS99]). We briefly review these options
here, with emphasis on the allowable boundary conditions.

One can observe that ifθ(x,y) is given, Equation2 is a
first-order PDE which can be solved using the characteristic
ODE system ˙x = Fpx, ẏ = Fpy, ṗx =−Fx, ṗy =−Fy, where
F(x,y, px, py) = (1− f 2

x − f 2
y ) tanθ∗(x,y)− 2 fx. With suit-

able assumptions on the left-hand side and boundary con-
ditions, the solution exists. However, as the system is first-
order, only initial value problems generally have solutions.
In particular one cannot expect the problem to have solu-
tions if the values are prescribed on the boundary of a patch.
We also note that if instead of specifyingθ we had speci-
fied the reflection vectorr , the resulting system of two PDEs

would not necessarily have a common solution even with no
boundary conditions.

If the boundary of a region is fixed, the best we can do is
to minimize the difference in reflection functions. Instead of
fitting the angle valuesθ(x,y), we avoid the problems with
the discontinuity ofθ values by using the functional

∫
S
(cosθ −cosθ

∗)2 +(sinθ −sinθ
∗)2dxdy, (3)

where the integral is over the image plane projection of the
region of interest, with projection assumed to be one-to-one.

The Euler-Lagrange equation for this problem is second-
order; therefore one hopes to be able to solve the problem
with Dirichlet data on the boundary, but not with Neumann
data. This implies that one cannot expect the solution to
blend smoothly with the rest of the surface if the optimiza-
tion is performed only on a small area.

Finally, instead of fitting the function values one can fit the
gradient of the reflection function to the gradient of the de-
sired function:

Minimize
∫

S
(∇θ −∇θ

∗)2dxdy, θ |∂S = θ0,
∂

∂n
θ |∂S = ϕ0,

(4)
where∂/∂n is the derivative along the boundary normal.
In this case, the corresponding Euler-Lagrange equation is
fourth-order, similar to the PDE for the thin-plate energy,
and one can prescribe both Dirichlet and Neumann bound-
ary conditions ensuring smooth transition between the op-
timized patch and the surface. In this energy, we need an
expression for∇θ . As r1 = 2 fx andr2 = −2 fysinα +(1−
f 2
x − f 2

y )cosα,

∇θ =
r2∇r1− r1∇r2

r2
1 + r2

2

All problems that we have considered assume that a reflec-
tion line functionθ(x,y) is prescribed.

3. Discretization and numerical methods

We aim to design a discretization of problem4 which bal-
ances accuracy, robustness and efficiency required by inter-
active applications.

A C1 finite-element or arbitrary meshC1 spline discretiza-
tion would be most straightforward but is relatively ex-
pensive. We use a more efficient and easier to implement
alternative which combines a discrete geometric approach
with finite differences. We use triangle-centered discretiza-
tion stencils for both first and second-order derivatives which
leads to simple discretization of Equation4. While there is
no rigorous convergence guarantee by construction, we show
excellent behavior for most mesh types.
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Reduction to parametric case.As it was discussed in the
previous section, our optimization problems can be solved in
a functional setting by using surface parameterization over
the image plane. However, while obtaining such a parame-
terization is computationally expensive for high-order sur-
faces (e.g. subdivision surfaces and splines); for meshes, the
parametrization is easily obtained by a simple linear trans-
formation: we rotate the coordinate system so that the image
plane coincides with the(x,y) plane and the projection of the
light directiona to the image plane is aligned with they axis,
i.e. use the coordinate system(v,av,a⊥) (Figure2). As one
cannot reliably control reflections near silhouette points, we
fix all vertices close to silhouettes, i.e. fix vertices of all tri-
angles with normalsn, for which|n ·v|< ε (we useε = 0.02
in all cases).

For surfaces with no silhouettes (e.g. nearly flat patches)
additional boundary conditions are necessary: typically, we
want the modified surface patch to join smoothly with the
rest of the surface. After preprocessing, the mesh is decom-
posed into disjoint pieces, each of which is a piecewise linear
height field over the image plane.

Our functionals depend on the components of the gradi-
ent and Hessian off , which we discretize next. We use
triangle-centereddiscretization, i.e. a single value of the gra-
dient or Hessian is assigned to each face rather than vertex.
This leads to simple formulas for the gradients and Hes-
sians, and makes it possible to consider a minimal num-
ber of special cases. Each discretization associates a 2× 6
and 3×6 matrix of coefficientsG andH with each triangle.
if fT = ( f (p1), f (p2), f (p3), f (q1), f (q2), f (q3)) (Figure3)
thenG fT andH fT yield the gradient and Hessian respec-
tively.

Discretizing gradients. To discretize the gradient∇ f =
( fx, fy) over the image plane, we use standard piecewise-
linear continuous finite elements.

Figure 3: Vectors used in the gradient and Hessian defini-
tions; all points are in the image plane. The vectorst i j are
perpendicular to corresponding triangle sides and have the
same length as these sides.

We observe that the gradient can be found in the form∑i ci t ii

where ci are determined by∑i ci(t ii · v j ) = f j − fk, and
(i, j,k) is a cyclic permutation of(1,2,3). This yields

∇discr fT =
1

2A ∑
i=1,2,3

f (pi)t ii (5)

where f (pi) denotes the value off at vertexpi . The coef-
ficientst ii /2A do not change and need to be computed only
when the surface is rotated.

Discretizing Hessians.Discretizing Hessians is consider-
ably more difficult: while for gradients a piecewise linear
approximation depending only on function values at triangle
vertices is adequate, for second derivatives one needs to use
more vertices, or introduce additional degrees of freedom.
As the total number of derivatives of order≤ 2 is six, one
needs at least six degrees of freedom per stencil to capture
local behavior correctly.

Most discretizations of second-order quantities (typically,
curvature) used in geometric modeling arevertex-centered,
which is inconvenient for our purposes. To be compatible
with the gradient discretization, we use a triangle-centered
stencil shown in Figure3. †

For triangles without vertices of valence three, it has six de-
grees of freedom, exactly the number needed for discretizing
the Hessian.

On this stencil, an approximation to the Hessian can be con-
structed in a number of different ways. We use a combination
of two approaches.

Triangle-averaged discretization. Cohen-Steiner and
Morvan [CSM03] describes a general approach to comput-
ing shape operators for meshes by averaging elementary
shape operators corresponding to edges. While convergence
of this technique was only established in the integral sense,
and for a restricted class of meshes, simplified versions
of this approach were shown to work well in practice.
The most common example is the well-known cotangent
formula [PP93], which (for small deformations) is equiv-
alent to expressions of [CSM03] summed over a single
ring of edges around a vertex [HPW05]. Similarly, the
triangle-averaged discretization on the stencil of Figure3
introduced in [GSH∗04] uses averaging over three edges
of a triangle. By linearizing this formula, we obtain the
following expression for the Hessian:

1
A

(
∑

i, j, j 6=i

1
A j

f (q j )t ii ⊗ t i j +∑
i

1
Ai

f (pi)t ii ⊗ t ii

)
(6)

† Another possible option is to use a single triangle and add edge-
based degrees of freedom as it was done in [GGRZ06]. We have
experimented with a linearized version of this discretization. In con-
trast to the general curvature discretization (3 coordinates per ver-
tex), addition of edge degrees of freedom in our setting (one degree
of freedom per vertex) adds a significant computational cost. Fur-
thermore, stability of the nonlinear solve is decreased which further
decreases performance.
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wheret i j are side perpendiculars to the triangles of the mesh
projected to the image plane, shown in Figure3. A distinc-
tive feature of this discretization is its robustness and sim-
plicity: only for triangles with very small area may the coef-
ficients in the formula be large.

This is a consistent (converging to the correct values) dis-
cretization of the Hessian for special types of meshes.
Specifically, the Hessian is consistent for meshes in which
verticesqi are reflections ofpi with respect to the centers of
opposite edgesi = 1,2,3. This includes regular meshes and
any affine transformations of regular meshes.

For general meshes, the discretization introduces mesh-
dependent error in Hessian approximation, as shown in Fig-
ure 5. For different types of meshes, the results are mesh-
dependent, no matter how fine the mesh is. Importantly for
our application, the errors are low-frequency while high-
frequency errors have the most effect on the visual quality
of results.

regular 4-8 polar distort. half 3-12 irregular

Figure 4: Mesh types used in convergence experiments.

Figure 5: Convergence experiments: A spherical surface
patch was recovered from an analytically computed reflec-
tion function gradient for different mesh connectivities and
resolutions. Three discretization types are shown: triangle-
averaged, quadratic fit and hybrid. Quadratic interpolation
cannot be applied to meshes with vertices of valence 3; op-
timization also fails on higher resolution irrregular meshes
because it contains stencils with all vertices close to a conic.
The error is measured relative to the size of the object along
the view direction.

Quadratic interpolation discretization. An alternative is
to use a finite-difference approach to discretization: we
compute a quadratic functionQ satisfyingQ(pi) = f (pi),
Q(qi) = f (qi), i = 1. . .3, and use its quadratic term coef-
ficients to estimate the Hessian. The advantage of this ap-
proach is that by construction it is consistent whenever the
quadratic function is defined. This is not sufficient for con-
vergence of the discrete problem solutions to the continu-
ous solution, (see [GGRZ06]) but improves independence
of the result from mesh connectivity. Unfortunately, the ap-
proach is significantly less robust and the following proposi-
tion holds:

For six pointswi ∈R2, i = 1. . .6, there is a unique quadratic
function satisfying Q(wi) = zi , for arbitrary choice of zi , if
and only if these six points are not on the same conic(see
Appendix.)

Whenever six points of the stencil areclose to a com-
mon conic, the coefficients of the quadratic interpolant
become large and Hessian estimation becomes highly
unreliable.

Hybrid discretization. As it can be seen from the plots
above, quadratic interpolation yields good estimates in most
cases, but it is not robust. In practice, we observe that we
have several triangles per mesh for which the six-point sten-
cil is close to a conic, and quadratic interpolation produces
low-quality results. To solve this problem, we combine two
techniques: the triangle-averaged scheme is used when the
quadratic interpolation is unstable, i.e. if the stencil contains
five points or less, or vertices are close to a conic. We eval-
uate stability for a specific six-point stencil by comparing
the magnitude of the discrete Hessian coefficients to 1/l2max,
wherelmax is the maximal edge length in the stencil. If any
coefficient exceedsC/l2max (we useC = 5), we use triangle-
averaged discretization instead of the quadratic interpola-
tion. As it can be seen from the convergence plots, the re-
sulting scheme retains the accuracy of the quadratic fit and
yet does not suffer from its robustness problems, although
it produces large errors for meshes with many degenerate
cases. Such meshes appear to be unusual. Our stability crite-
rion is motivated by the observation that if the function value
is 0 at all but one vertex of a stencil, and is of the orderl2max
(i.e. squared distance to other vertices) at that one vertex, one
can expect to get second derivative magnitudes on the order
of 1 (for a mesh close to regular). Coefficients much larger
than 1/l2max lead to instability.

While numerically the discretization is more accurate, we
note that we have observed few differences in visual quality
when using the triangle-averaged discretization alone. Fi-
nally, while we found this discretization adequate for the
functionals considered in this paper, its performance for
thin-plate or Willmore energy is not as good ( [JR07]).

Discretizing normals. An essential part of an interactive
system supporting reflection manipulation is rendering of
reflection lines and environment maps. Hardware environ-
ment maps use vertex normals to compute reflected direc-
tions and look up values in the environment texture. As Fig-
ure6 shows, standard vertex normal computation techniques
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produce low-quality results for complex meshes. Instead, we
use a local fit to obtain better normals. For every vertexp,
we collect a ringN1 of triangles around it, and all triangles
edge-adjacent toN1. The minimal number of vertices in such
a configuration is six, unless the whole mesh has a smaller
number of vertices. We compute an initial normalninit , and
project vertices to the plane perpendicular toninit .

Let w be the vector of projected point positions of length
K, and let f (w) be the vector of function values at these
points. For each vertex, we precompute a 2×K matrix of
coefficientsCnorm mapping the vectorf (w) to thelinear co-
efficients of a best fit quadratic function in the coordinate
system with origin at vertexp, with z axis aligned with the
initial normal (when it is not defined uniquely, we choose the
quadratic function with minimal norm of coefficients; the co-
efficients are computed using LAPACK function GESDD).
These coefficients define a plane passing through the ver-
tex, and we use the normal to this plane as our final normal.
As long as we do not change the plane we have used for
local normal estimation, the normal approximation can be
recomputed rapidly as the surface is modified. If the motion
is large, the quality deteriorates, andninit needs to be recom-
puted.

analytic averaged face quadratic fit

Figure 6: Comparison of the vertex normal quality; the
surface is obtained by sampling points from a cylinder.
While face averages do not perform well for this mesh, our
quadratic fit procedure yields results visually indistinguish-
able from using analytic normals.

3.1. Numerical implementation

The reflection-based functionals are more complex than
most expressions commonly used for surface optimization,
therefore computing Hessians and gradients are also more
expensive. The energy cannot be replaced by a linearized
functional, because then it would not capture the shape of
reflection lines in most cases. Either a full non-linear New-
ton solve for the energy minimum or a gradient-only method
would be prohibitively expensive, the former due to Hessian
computation, and the latter because of the large number of
iterations required.

To improve performance we use an inexact Newton method
with line search. Instead of a full Hessian computation, we

compute the Hessian once for thelinearized problem, and
use it instead of the full Hessian optimization at all iterations.

If we assume small values offx and fy a simple calculation
shows that the equation for the reflection function reduces to

θlin(x,y) = 2 fx cosα.

The gradient ofθlin remains simple, and is, up to a constant,
[ fxx, fxy]. For the quadratic energy based onθlin , the Hessian
is easy to compute and does not depend on function values.

As the gradient problem is fourth-order and the condi-
tion number of the Hessian matrices grows asN4, iterative
solvers are not efficient; instead, we use a direct solver (PAR-
DISO). The direct solver performs a sparse LU factorization
of the matrix, and solves the system using backsubstitution.
As the Hessian matrix does not change, the matrix factor-
ization needs to be performed only once. For each nonlinear
iteration, only gradients need to be recomputed. As shown
in Figure7, while using an approximate Hessian increases
the number of nonlinear iterations required, each iteration
becomes much faster, and there is a considerable net win
in performance. This performance improvement depends on
the complexity of the target reflection function gradient∇θ∗

and varies in the range 2× to 10×. When the target function
is smooth, which is the most common case (forward opti-
mization in Figure7), the speedups are higher, while for less
smooth targets speedups are lower.

Figure 7: Speedups from approximate Hessian computa-
tion, dependence on the mesh size. Two model problems:
creation and elimination of a bump on a cylinder. Times are
given for a Pentium D 3GHz processor.

4. Reflection line manipulation experiments

Different types of reflection manipulation using discrete re-
flection line functionals follow the same general pattern.
First, the user selects an area to modify and specifies the
boundary conditions. Any boundary segment may be free,
fixed, or clamped, the latter means that two layers of ver-
tices are fixed at the boundary to ensure a smooth match of
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the surface with the rest of the mesh. Then the target reflec-
tion function gradient is defined using user input and the sur-
face minimizing the reflection functional is computed. The
last two steps may be repeated in the interaction loop.

Density and direction change.The simplest type of reflec-
tion line manipulation is requesting a fixed line direction
and density in an area, i.e. specifying a fixed target∇discrθ

∗

everywhere. The energy minimization in this case attempts
to modify reflection lines as requested, while maintaining
a smooth or continuous join of the selected patch with the
rest of the surface. The user can also adjust a fall-off curve
c(t) ≥ 1 which determines how gradual the transition be-
tween the modified area and the rest of the mesh should be.
The energy of each triangle is scaled byc(d) whered is the
distance to the center of influence.

Examples of this type of manipulation are shown in Figure9,
and Figure11. In Figure9, one can see how adjusting reflec-
tion line density makes it possible to control the appearance
of reflections, in particular the sizes of reflected objects. Ro-
tating the desired reflection line direction at a point is shown
in Figure9 on the right. In this example, a surface imperfec-
tion creates a “twist” in the reflection line field which can be
removed by local rotation. Figure11, demonstrates the dif-
ference between conventional smoothing and reflection line
optimization: typically, smoothing algorithms flatten the sur-
face which does not necessarily improve the reflection line
shape.

Smoothing. Isotropic or directional smoothing can be used
to transform initial∇θ values to the target values. This op-
eration is similar to reflection line smoothing described in
[LGS99]. Directional smoothing is particularly useful, as it
straightens reflection lines without changing the behavior
in the orthogonal direction. An example is shown in Fig-
ure 12, left. In this example, the initial reflection function
was smoothed using Laplacian smoothing in the image do-
main, and then used as the target reflection function.

initial surface warp target gradients optimized surface

Figure 8: Warping stages: initial reflection lines, warped re-
flection functionθ , target∇θ∗ computed per triangle, reflec-
tion lines on the optimized surface.

Warping. In the case of warping, the goal is to apply an ar-
bitrary user-specified transformation to the reflection lines.
In our current implementation, the transformation of reflec-
tion lines is specified by a two-dimensional spline, however
any other image warping technique can be used. The general
formula for the transformed reflection function is

θwarp(s, t) = θinit (w−1(s, t))

wherew(s, t) : R2 → R2 is the warping function.

Observe that the inverse of the warping function needs to be
computed, which can be relatively expensive for smooth de-
formations. To avoid explicit inversion ofw(s, t), we imple-
ment the warp using texture mapping and image-domain op-
erations. Rather than attempting to transform∇discrθ values
needed by the functional directly, we transform reflection
function values, and then compute the gradient. First, the re-
flection functionθ values are computed, interpolated to ver-
tices, and used as color values to render the mesh to a texture
θinit . A two-dimensional splinew(s, t) : R2 →R2 is created.
Initially, the control points are equispaced sow is an identity.
As the user moves control points, the spline is rendered to a
new textureθwarp, usingθinit as a texture map. For image-
space mesh vertex positions we sample∆θ = θwarp− θinit ,
and compute its gradient for each triangle using the gradi-
ent formula5, with appropriate corrections applied to values
to eliminate the jump between−π andπ. We add resulting
∇discr∆θ values to the initial∇discrθ values. Note that by
construction∆θ = 0 if w is the identity function. An exam-
ple of warping is shown in Figure10; where the goal is to
improve the shape of reflections at a part of a car hood.

Finally, one can use our technique to create surfaces approx-
imating an arbitrary reflection line pattern, as shown in Fig-
ure 12, right. Any grayscale image can be used to specify
∇θ∗, as long as it is sufficiently smooth (otherwise, the ap-
proximation is likely to be poor).

5. Conclusions

We have described a simple and efficient approach to dis-
cretizing reflection line based functionals on meshes and
demonstrated how these functionals can be used in an in-
teractive system to optimize the shape of reflective surfaces.

One limitation of the proposed approach (which is also re-
sponsible for its comparatively high efficiency) is that the
vertices of the mesh move only in the direction perpendicular
to the image plane. This means that small scale surface de-
tails which make the projection to the image plane not one-
to-one cannot be removed, and creates a disturbance in the
surface during optimization. Although it can be applied to
large perturbations, the technique is best suited for smaller
adjustments of surfaces that are already relatively smooth.
While we tried to eliminate obvious inefficiencies in our im-
plementation, our code is far from optimal.

Our discretization can be easily combined with other surface
optimization techniques, to be applied simultaneously or as
a postprocess.
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Appendix: Quadratic interpolation on a six-point stencil

The quadratic interpolation problem for a six-point sten-
cil requires solving a linear system, which may be singu-
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before after

Figure 9: Left: Changing reflection line density. A fixed reflection line direction is specified with density decreased at the top and
increased at the bottom. Right: reflection line untwisting. The reflection function gradient is rotated to get desired appearance.

before

after

Figure 10: Reflection line warping on a car hood. An intermediate warp is shown in the middle. Note that the change in the
shape is barely perceptible but the change in the reflection is substantial.

c© The Eurographics Association 2007.



E. Tosun, Y. Gingold, J. Reisman, D. Zorin / Shape Optimization Using Reflection Lines

Figure 11: Prescribing fixed reflection line direction on a car, compared to Laplacian smoothing. Note that Laplacian smooth-
ing retains reflection line wiggles.

before after

Figure 12: Left: Reflection line smoothing on a faucet; the initial reflection line function is smoothed and used as the target
reflection line function. Right: Reconstructing a surface with predefined reflection line pattern based on an blurred image.

lar. A simple geometric condition for testing singularities of
point configurations can be derived from geometric consid-
erations, along with an explicit expression for the quadratic
interpolant, which simplifies implementation.

We denote the six points of the stencil in the image plane
by wi , i = 0. . .5. We need to find a quadratic functionQ,
such thatQ(wi) = zi , i = 0. . .5. Assume that all points are
given in homogeneous coordinates. Then we can defineQ as
a 3×3 matrix:Q(wi) = wT

i Qwi . We observe that by linear-
ity of the problem it is sufficient to solve it forzi = δi j , for
j = 0. . .5, to obtain six basis matricesQ j . Assume j = 0,
i.e. zi = 0 for i ≥ 1. It well known that any five points in
the plane are on a conic. Note that the problem of finding
Q0 is equivalent to the problem of finding such conic:Q0

vanishes at all pointswi , i ≥ 1, i.e. defines a conic passing
through these points, and conversely given a nontrivial conic
with matrix M passing throughwi , i ≥ 1, we obtainQ0 as
M/(wT

0 Mw0). If wT
0 Mw0 = 0, either there are multiple con-

ics passing through the points, or the system has no solution;
in either case, the system forQi is singular.

The conic matrixM can be computed using a matrix form of
the Braikenridge-Maclaurin construction, [CG67]. Specifi-
cally, definel i,i+1 = wi ×wi+1 (3d cross product applied
to the homogeneous point representation). LetR(a) be the
skew symmetric matrix satisfyingRx = a× x. ThenM0 is
given byR(w1)R(l34)R(r)R(l23)R(w5), wherer = l12× l45
andQi are obtained by cyclically permutingwi and applying
the same formula.
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